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Normal form maps for grazing bifurcations in n-dimensional
piecewise-smooth dynamical systems

M. di Bernardo*! C.J. Budd*and A.R. Champneys$

July 27, 2000

Abstract

This paper presents a unified framework for performing local analysis of grazing bifurcations in n-
dimensional piecewise-smooth systems of ODEs. These occur when a periodic orbit has a point of tangency
with a smooth (n — 1)-dimensional boundary dividing distinct regions in phase space where the vector
field is smooth. It is shown under quite general circumstances that this leads to a normal-form map that
contains to lowest order either a square-root or a (3/2)-type singularity according to whether the vector
field is discontinuous or not at the grazing point. In particular, contrary to what has been reported in
the literature, piecewise-linear local maps do not occur generically.

First, the concept of a grazing bifurcation is carefully defined using appropriate non-degeneracy con-
ditions. Next, complete expressions are derived for calculating the leading-order term in the normal form
Poincaré map at a grazing bifurcation point in arbitrary systems, using the concept of a discontinuity
mapping. Finally, the theory is compared with numerical examples including bilinear oscillators, a relay
feedback controller and general third-order systems.

1 Background

Switching and impacting behaviour is found in many devices of relevance in engineering and applied science
[Brogliato 1999]. Electronic circuits and vibro-impacting machines, for instance, provide examples of systems
whose dynamical behaviour is affected by the occurrence of discontinuous events. These events include the
switching of a system component (diode, transistor etc.) or the collision with an external obstacle or
wall [Deane & Hamill 1990, Norsworthy, Schreier & Temes 1997, Budd & Dux 19944]. Further examples
include suspension bridges, rocking blocks, walking mechanisms, friction oscillators and many others [Peterka
1974, Doole & Hogan 1996, Fossas & Olivar 1996, Hogan 1989, McGeer 1990, Popp, Hinrichs & Oestreich
1995].

Because of their non-smooth nature, these devices are usually modelled by means of appropriate piecewise-
smooth sets of ODEs of the form
i = F(z,1, p), (1.1)

with F : R**™+1 1 R being a piecewise-smooth (PWS) function, ¢ the time variable, p € R™ a parameter
vector and =z € R" the state vector. The phase space of such a general system can be partitioned into
finitely many regions associated with different functional forms of the system, separated by smooth (n —1)-
dimensional boundaries.

Recently, it has been pointed out that even simple switching systems can exhibit a plethora of complicated
dynamical regimes. Several dramatic bifurcation scenarios are known including the sudden transition from
stable periodic motion to fully developed chaotic behaviour (e.g. [di Bernardo, Feigin, Hogan & Homer
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Figure 1: Schematic description of the system trajectory near a smooth phase-space boundary, ¥. The
trajectory can evolve entirely in region S; without crossing the boundary (case I), hit it tangentially at a
grazing point (case II) or cross the boundary and start evolving in region Sy (case III).

1999, Banerjee & Grebogi 1999]). In particular, a qualitative change of the system behaviour is usually
observed when a part of the system trajectory hits tangentially one of the boundaries between different
regions in phase space. When this occurs the system is said to undergo a grazing bifurcation, also known
as C-bifurcations in the Russian literature (see Fig. 1) [Nordmark 1991], Feigin [1970, 1974, 1978]. These
events are often studied in the case of specific low-dimensional physical systems such as, for example, impact
oscillators [Babitskii 1978, Shaw & Holmes 1983a, Foale & Bishop 1994, Whiston 1987] and power electronic
converters [di Bernardo, Champneys & Budd 1998, di Bernardo, Garofalo, Glielmo & Vasca 1998|.

Following the original approach presented in [Nordmark 1991], the analysis is usually carried out by finding
an appropriate local map describing the system dynamics in a neighborhood of the grazing event [Chin,
Ott, Nusse & Grebogi 1994, Foale & Bishop 1994, Foale 1994, Budd & Dux 19945, di Bernardo et al. 1999).
This normal form is then used to classify the bifurcation scenarios following grazing. These can include
several nonstandard transitions including the aforementioned “jump” from a periodic solution to a chaotic
attractor.

In the case of two-dimensional impact oscillators, for instance, where a particle hits a rigid wall, the local
map, also known as the Nordmark map, was found to contain a square root singularity [Nordmark 1991].
The dynamics of such a map was studied by Chin et al. [1994] and shown to give rise to a plethora of complex
phenomena including the so-called “period-adding” cascade. Note that the impacting event in this system
is modelled by means of a coefficient of restitution law which introduces a discontinuity in the system states
at each impact [Thompson & Ghaffari 1983], which is equivalent to a é-function-type discontinuity in the
vector field F' of equation (1.1). This analysis was recently generalized to n-dimensional impact oscillators
in Frederiksson & Nordmark [2000].

Independent work reported in Nusse & Yorke [1995, 1992, 1994] and Feigin [1970, 1974, 1978, 1995, 1996]
confirmed that these complex phenomena are qualitatively similar to those observed in discrete-time piece-
wise linear maps undergoing a so-called border collision bifurcation. This bifurcation occurs when a periodic
point of the map crosses one of the boundaries. Moreover, as recently expounded in [di Bernardo et al.
1999], Feigin goes further and offers a first attempt to explain the relationship between grazing and border
collision. In fact, he conjectures that the dynamics near grazing of a general n-dimensional PWS system can
be described by piecewise-linear local maps. Thus, under an appropriate choice of coordinates, the grazing
of a limit-cycle of the original PWS system corresponds to the border-collision of its normal form. This idea
was independently used by Yuan, Banerjee, Ott & Yorke [1998] where the classification of the dynamics
close to a grazing in a widely used electrical circuit is carried out successfully and confirmed by experiments.



Summarizing the above literature, one might conclude that the dynamics of a PWS system near grazing are
described by:

e local maps with a square-root singularity if the vector field has an impulsive discontinuity across
different regions in phase space (as in impact oscillators);

e piecewise linear normal forms if the states are continuous across the phase space boundaries but the
vector field is not.

This gives rise to several interesting issues. For instance, in the case of oscillators with non-instantaneous
impacts (such as would occur for example with a particle hitting a compliant but stiff wall) one should
expect convergence towards a square-root singularity as the duration of the impacts is made shorter and
shorter [Shaw & Holmes 19835, Frederiksson & Nordmark 1997, Nordmark 1997]. At present, it is difficult
to account for this transition analytically due to the lack of a consistent general theory for the derivation of
appropriate local mappings in n-dimensional PWS systems near-grazing.

The first step of such a consistent theory have been presented in a recent paper by Dankowicz & Nordmark
[1999]. Specifically, in the course of their study of a class of friction oscillators, they applied the concept of
a discontinuity mapping to analyse the local dynamics near grazing of arbitrary autonomous vector fields
which are continuous across the boundary. As set out in detail in Sec. 2.2 below, this mapping is defined
as the “correction” that must be applied to the system trajectory in order to account for the presence of
the switching or impacting boundary in phase space. This powerful concept allows the formal derivation
of stroboscopic Poincaré mappings for general non-smooth dynamical systems undergoing grazings. For a
particular class of vector field that is continuous across the discontinuity boundary, but with discontinuous
Jacobian there, they show that the discontinuity mapping has a 3/2 power-law singularity. They then go
on to examine the dynamical consequences of this for the friction oscillator example, showing that globally
period-adding bifurcations and chaos may occur for such a mapping also.

The analysis of Dankowicz & Nordmark [1999] is based on the use of the Implicit Function Theorem but
unfortunately does not allow easy and immediate comparison between local maps associated with different
properties of the vector fields. Moreover, in its original formulation the discontinuity mapping takes zero
time and is only really appropriate when studying Poincaré maps which are defined stroboscopically in time
for T-periodic non-autonomous systems.

In this paper we present a general strategy for the derivation of appropriate local maps near grazing for
n-dimensional PWS systems. Our analysis is based on the use of asymptotics and power series expansions
which yield a synthetic analytical description of the grazing normal form for a generic PWS system. Our
work extends the results presented in [Dankowicz & Nordmark 1999] in three ways:

e we do not assume the vector field is continuous across the boundary but allow for arbitrary jumps in
either the vector field or its derivatives, with the only restriction being that the jumps must be such
that there is no possibility of a so-called sliding solution (i.e. a solution evolving along the boundary
itself);

e we introduce a preliminary stage where the discontinuity boundary is flattened locally through an a
priori near-identity transformation which leads to much simpler final forms of the local maps and the
possibility of writing general expressions for these maps;

e we define the new concept of a Poincaré-section discontinuity mapping which is more general than
the zero-time mapping and enables the study of grazing periodic orbits in both autonomous and
non-autonomous systems.

The result is a general formula for the normal form map that describes a grazing bifurcation in n-dimensional
PWS systems. In particular, we present three alternative derivations of such local mappings which give both
a heuristic and more rigorous description of the system dynamics near grazing. This allow the immediate
comparison of systems characterized by both continuous and discontinuous vector fields across the boundary



and the derivation of their corresponding normal forms. In this sense, our work extends and encompass the
ideas presented in [Dankowicz & Nordmark 1999].

Surprisingly, the main results of our investigation suggest that a square-root singularity, similar to the
one contained in the Nordmark map, has to be expected only if the vector field is discontinuous at the
grazing point. In all other cases, provided that either the first or second derivative of the vector field is
discontinuous at the grazing point, a singularity of order % is observed instead. Thus, we claim that
piecewise-linear local maps are not seen generically for systems with smooth boundaries. In contrast, a
piecewise-linear map can indeed be derived, as shown in [di Bernardo, Budd & Champneys 20005], when the
boundary itself has a corner-type singularity, and a trajectory undergoes a so-called corner collision grazing
at the boundary. Incidentally, the system in [Yuan et al. 1998] falls precisely into this latter class because
the phase space boundary is given by a sawtooth function and grazing occurs precisely at the corner of the

sawtooth.

The rest of the paper is structured as follows. After stating our main assumptions, in Sec. 2 the concepts of
grazing and discontinuity mappings are carefully introduced. Sec. 2 then goes on to state the main results of
our investigation, the derivation is given in Secs. 3 and 4 where a local analysis of the dynamics near-grazing
is carried out. This is based on three different stages according to whether the trajectory is on one side
of the phase-space boundary or the other. Thus, we will study the motion before the first crossing of the
boundary (Sec. 3.1), on the other side of the boundary (Sec. 3.2) and after its second crossing (see Sec. 3
and Fig. 4 for further details). As mentioned above, this third stage is developed in three alternative ways.
First a heuristic description is presented in Sec. 3.3.1, then the zero-discontinuity mapping and the Poincaré
discontinuity mapping are derived in Secs. 3.3.2 and 3.3.3 respectively. The application of these maps to
the analysis of periodic orbits which graze is outlined in Sec. 4. Finally, Secs. 5 and 6 present numerical
applications to a bilinear oscillator and to higher-order systems, which perfectly illustrate the theory.

2 Grazing in piecewise-smooth dynamical systems

2.1 Assumptions

We will focus our attention on n-dimensional piecewise-smooth sets of autonomous ODEs (1.1) which for
small z we assume can be written in the form

[ Fi(z), ifH(z)>0

“T {Fz(iv), if H(z) <0 ° (2.1)

where z € R, Fy, Fy : R" — R” are supposed to be sufficiently smooth, H : R” — R is a sufficiently smooth
(at least C*) scalar function of the system states, which defines a phase space boundary between regions
of smooth dynamics, and, for the time being, we have suppressed the parameter dependence in F. Note
that non-autonomous dynamical systems can be put in the form (2.1) by considering time as an extra state
variable described by the equation ¢ = 1 and making the phase space cyclic in the t-coordinate direction
(e.g. a cylinder).

According to (2.1), H defines the set
S:={zeR":H(z) =0}
which is termed the switching manifold. S divides the phase space locally into two regions

ST ={zeR": H(z) > 0}
ST={zeR":H(z) <0}

associated with the two functional forms F; and Fy respectively. We assume that both the vector fields F
and Fy are defined over the entire local region of phase space under consideration, i.e., on both sides of S.



Thus, the flows ®;, 1 = 1,2, generated by each of the vector fields can be defined as the quantities that

satisfy
0

ot
Without loss of generality, we say that a grazing occurs at = 0 if the following conditions are satisfied for
1=1,2:

®i(z,t) = Fi(Di(z,t),  O(z,0)==z. (2.2)

H(0) =0, (2.3)
H(0) #0, (2.4)
(VHC, a(;{:i (0,0)) = (VH®, F®) — 0, (2.5)

d2H(®(0,1)) OF) 0’H
ar |, <VH0 oz > <WFZ'O’F"O> =0 20

where a superscript ‘0’ denotes quantities evaluated at £ = 0. The first two conditions state that H is a
good function for defining the switching manifold. The third condition states that grazing takes place at
the origin of z, i.e. that the vector field there is tangent to S. The final condition ensures that the curvature
of the trajectories in ST and S~ is of the same sign with respect to H and without loss of generality we
assume this sign to be positive.

In addition, we will also assume that in a sufficiently small neighborhood of the grazing point, no Filippov
solution (or sliding) can take place [Filippov 1988]. Such a solution can be seen heuristically as a motion
taking place along the discontinuity surface in the limit of infinitely many switchings. A necessary condition
to avoid sliding is that, under the flow of system (2.1) sufficiently close to the grazing point, the boundary
{H = 0} should never be simultaneously attracting (or repelling) from both sides S™ and S~; that is

(VH,F\(VH,F) >0, 0<|z] <e (2.7)

for some € > 0.
The trajectory, = z4(t), generated by the flow ®;(0,%), which satisfies the grazing conditions listed above
for t = 0, is termed the grazing trajectory. The grazing sets, Ly, © = 1,2, are defined as:
Ly :={z € S|(VH, F;(z)) = 0}, i=1,2 (2.8)
Note that, condition (2.7) implies that
Lgl = ng. (29)
i.e., Ly and Lgp must coincide otherwise there will be regions where sliding is possible (see Fig. 2).

In the analysis that follows it will be helpful to assume that S is flat up to a sufficiently high order. That
is (0°H®)/(0z") = 0 for i = 2,..., N for some N. Note that this may be assumed without loss of generality
by making a series of near-identity transformations of form

1« OH° VH? . i
P=rty & r) = i) =F 2.1
~ 83H0 VHO . . . )
e r) = H(z), F()=F( 2.11
r=x+ Z 8«Tzaﬂtja$k L4l J Ty ||VH0|| H(:I:) H(w), (g;) (:C), ( )
etc.

It will transpire that removing the derivatives of H up to order four is sufficient for our purposes. Henceforth
we shall assume that such sequence of transformations (2.10), (2.11) has been made, and we shall drop the
tildes on the new variables.

In terms of the new variables the last two conditions (2.6) then be simplified to read

0
:<VH°,68F F°> 0. (2.12)

d2H(3(0,1))
dt?

t=0
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Figure 2: Grazing lines as defined by (2.8) in a representative three-dimensional example when they do (a)
and do not (b) coincide. Note that if they do not coincide, the gradients of the system flows imply that
there are two regions where sliding is possible (one stable and the other unstable).

Also, if we assume that (2.9) holds so that Ly; = Ly := Ly, then (2.7) can be simplified to
(L, FO)(L, F) > 0, (2.13)

where L is a unit vector perpendicular to VH and L_g. Condition (2.13) is arrived at by requiring that at
the grazing point the grazing manifold L, is not attractive. Note that it has the advantage over (2.7) in
that it only involves quantities evaluated at the grazing point.

Because of the smoothness of the vector fields, we can expand the system flows ®;(x,t) as a Taylor series
about the grazing point (0,0) as:

09! a<1>0 10%9? , 16%®Y ,0%@)

®i(z,t) = @+ 5 t t
i(@?) e e TR N v R N PR T
1 83¢'0 3 83¢'0 5 83 0 ) 83 0 5
- 2.14
+ <a$3x+ 55 L 35, 8t2xt+3ax2atxt)+ (2.14)
1 (009 , 0'®Y , 59 040 R
— t*+4 23t 22 + 4 13 ..
+ (ax4 Tt g U e T et t A gaas® >+

Note that we have used a shorthand notation here for the higher-order derivative terms, for example

a0 P
= Tz
Oz3 Z 0r;z;x

ij k=123 0TIk

In what follows, we shall continue to use this shorthand, with care taken to correctly evaluate the derivative
tensors when required. Also, for the sake of simplicity, we will omit the superscript 0. Thus, unless specified
otherwise, all the quantities are evaluated at the grazing point (z,t) = (0,0).

Using the second expression in (2.2) and the fact that

8’® OFY OF) 030  OF?

0
o2 ot 0b; Ot axF“

we obtain from (2.14) that

10F; O
2 Oz 8:5 T

1(8%F; , (0F\” s 18°F; , &°F, OF\*\
+6<35L‘2E+(8.’E>Et+282 t+ 82F+(%) xt

b,(z,t) = xz+Fit+ -




1 63F 82F OF; OF; 0%F; OF;  OF; 0°F;
24 2 (Fi%+ oz F) (aﬂ oz | 0z Oz 2) (2.15)
83F O F; OF, 0°F; 0°F;
4 i 3 1 i 2,42
+ ( t (83F+8$ aﬂ) t [83
N d? 32F i p OF: OF; (0°F;  OF; | OF: O F; OFip, oF;\° 3
2 Y ow i or T\ 02" T oz a2 or ) | ”©

= x4 Fit+ ait2 + biwt + ¢t + diz’t + ezut® + fit* + gt + hiat? + jixt® + O(5),

where the remainder term O(5) is a shorthand for terms involving monomials in (z,t) of order at least 5.

Notice that, linearizing system (2.1) in a sufficiently small neighborhood of the grazing point (0,0), we
obtain

. Az + By, lfH(iL') >0

N {A2$+Bg, if Hz) <0 ~’
where
OF)
or’
Thus, the vector field is continuous at the grazing point (z = 0,¢ = 0) if B; = By, while the vector field is
discontinuous if By # Bs.

Ay = B; = F).

2.2 Discontinuity Mapping

As mentioned in the introduction, the main aim of this paper is that of presenting a comprehensive strategy
for the derivation of appropriate local mappings in a neighborhood of the grazing event for n-dimensional
piecewise-smooth dynamical systems. For this purpose, we briefly summaries here the concept of the so-
called discontinuity mapping which was introduced in [Dankowicz & Nordmark 1999] and will be used later
in Sec. 3.3.2.

The discontinuity map can be defined as the correction to be made to the system trajectories in order to
account for the presence of a switching manifold in phase space. Its algebraic construction will be described
later, in Sec. 3.3.2, but is depicted graphically in Fig. 3. Specifically, take a trajectory such as the one
depicted in Fig. 3 and suppose that it intersects some Poincaré section 3; at some time ¢; < 0 and a second
Poincaré section, ¥, at some time ¢y > 0 (see Fig. 4). In order to compute such a trajectory from ¥; to ¥,
we would compute the first segment (from ¥ to Z) using flow 1. Then, we would consider the second flow
(from z to Z) to take into account the fact that the system has crossed the switching manifold. Finally, we
would use again flow 1 to compute the third segment of the trajectory (from Z to Xj).

Alternatively, we could use flow 1 to compute the trajectory until it reaches a given reference section (e.g. the
plane IT in Fig. 3), even if it crosses the switching manifold. At this point, we would apply the discontinuity
mapping to take into account the fact that the manifold has been crossed. Finally, we would apply again flow
1 to compute the final part of the trajectory from the corrected initial point on II to the desired Poincaré
section Xs.

We term this mapping the Poincaré discontinuity mapping (PDM). This is a generalization of the mapping
introduced in [Dankowicz & Nordmark 1999] which we term the zero-time discontinuity mapping (ZDM),
that is the map obtained by considering the zero-time correction needed to take into account the presence
of the boundary. The ZDM will be particularly useful for describing the local dynamics of non-autonomous
systems while the PDM will be more suitable to construct global maps for periodic orbits which graze (for
more details see Sec. 3.3.2 and 3.3.3 below).

In this sense, the discontinuity mapping represents the correction brought about by the presence of the
switching manifold. It is obvious, as will be shown later, that the construction of both the PDM and ZDM
requires knowledge of both the flows on each side of the switching manifold.



Figure 3: A graphical explanation of the Discontinuity Mapping (DM)

2.3 The results

Using these mappings, the local dynamics of the system near grazing can be effectively described analytically.
In the rest of the paper we shall show that there is a fundamental difference between systems that are
continuous at the grazing point, and ones that are discontinuous. Specifically, Section 3 below is devoted to
a proof of the following theorem.

Theorem 1 Given the assumptions (2.3)-(2.6), (2.9), (2.12) and (2.13), then, as defined in Sec. 3, the
local discontinuity mappings (DM) describing trajectories in a neighbourhood of the grazing trajectory have:

a 3/2-type singularity at the grazing point in the case where FY = FY while aﬂ * %5 oF. e aa ;;1 # a;ﬁ ; and
a square-root singularity if FY # FY.

Note in particular that we never see the case of a piecewise-linear discontinuity mapping.

Section 4 then goes on to consider the neighbourhood of a periodic orbit that grazes. The results there can
be summarized in the following theorem which for simplicity we state here for a time-7" stroboscopic map
for an mT-periodic orbit in a T-periodic non-autonomous system. Similar, but slightly more complicated
expressions hold for the more general case of a Poincaré map around a periodic orbit in an autonomous
system (see formulae (4.4) and (4.5) below).

Theorem 2 If the grazing trajectory is part of a hyperbolic mT -periodic orbit p(t) that grazes at a parameter
value p = 0, then the Poincaré map defined in a neighbourhood of p(t) can be written locally as follows.
1. If the vector field is discontinuous at grazing we have:
Nz + My, if (VH,z) >0
Nw+\/(VH,z)| + Mu+ h.o.t. if (VH,z) <0,

where

N[

B (VH, %22 F) 2
=2(F, - F) ((V F1) ,

0 0
<VH’ %FQ> H’ (')le



and N, M are appropriate matrices and vectors describing the linearized Poincaré map for non-border-
crossing trajectories in a neighbourhood of p(t) (see Sec. 4 below for precise definition).

2. If the vector field is continuous, i.e. Fy = Fy := F, but has discontinuous first derivative:

Nz + Muy, if (VH,z) >0
AN (5 vi(VH,2))5 + Vau((VH,2)))F +va(VH, 522) ((VH,2)|)3 ) + Mp+ ho.t if (VH,z) <0
where
1 O’F, &F\ ., .0OF0F _ 2|(0F OFy\?
vio= <VH,%F1>3{ (8:1:2 s )F T st 3 <8—> 2(8—35) F
B 2 OF, 8F1 g 62F2 OF,
(VH,%L2F) \ Oz ax 3 oz
+(vm, (2208, ‘9F2 F)+( 8F2
"\ 0z Oz
v 2 <8F2 apl)
2 = -
vy = 2 (%FfZFQ—aaFlFl).
(VH, 2L Fy)/(VH, 22 ) \ 7 T

3 Local Analysis

Throughout this section we shall consider only points (z,t) sufficiently close to the grazing point (0,0),
specifically those points lying in a ball of radius ¢, ||z|| < €, |t| < €, for some sufficiently small € > 0. Assume
that system (2.1) has a grazing orbit lying entirely in region S* in a neighborhood of the grazing point
z = 0, i.e., an orbit verifying conditions (2.3)—(2.6), (2.9), (2.12) and (2.13). Moreover, suppose that this
orbit intersects some Poincaré section 3; at time ¢; < 0 and a second Poincaré section, X9 at some time
ty > 0 (see Fig. 4). Introduce a coordinate ¢ on X; such that when € = 0 the orbit grazes the switching
manifold S, while for € # 0 it either crosses the boundary for € > 0 or remains in ST if ¢ < 0.

We now seek to investigate the local dynamics of system (2.1) in a neighborhood of the grazing point by
varying € and observing the corresponding changes of the Poincaré intersections on ¥5. In so doing, we will
divide the analysis into three different stages:

1. Motion in ST before the first crossing of the switching manifold at ¢t = t; < 0,z = 7;
2. Motion in S~ until the crossing of S at t =19 > 0,2 = Z;

3. Motion in ST after the second crossing of S.

In fact, the PDM as defined in the previous section is in effect defined by taking the limit as both ¥; and
Y9 tend to II, but it may be helpful conceptually to consider motion between two hypothetical surfaces ¥
and Y9 as drawn.

3.1 Step 1: Motion before the first crossing of S

Let z4(t) = ®1(0,t) be the grazing trajectory existing for ¢ = 0, and consider perturbations of z, of size ¢
such that:

.’L‘(t) = (I>1 (51‘0, t)
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Figure 4: Local analysis of grazing. A sketch graph of the three-dimensional case

for some zy which we assume to be such that:
(VH, zy) < 0. (3.1)

This ensures that for € > 0 we are analyzing a trajectory that really does cross { H = 0}, even if we consider
it as being entirely generated by the first flow with initial condition exg. Specifically, if ¢ > 0, then at some

time t; = —§ the perturbed trajectory, z(t), will cross the switching manifold at z = Z given by
T = @1(8:60, —6) = ETQ) — (5F1 + 62a1 — 651)1]70 — (5301 — 625d1$% + 85261560
+61f; — 36g123 + €26%hixE — 635120 + O(5), (3.2)

where we have used the Taylor expansion (2.15) up to fourth-order terms.

We wish to define é to be the time such that H(z) = 0, which since H(0) = 0 and H is flat up to order 4,
implies

(VH,z) = O(||z[]°)- (3.3)
Using the expansion (3.2) for z, (3.3) becomes

ETQH — (5F1H + 52CL1H — E(S(bla?o)H — 5301]-1 — 826(d1$(2))]-[ + 5(52(61.’1,'0)1{
+(54le — 636(91-7»'8)]-[ + 5262(h1$(2))H — 8(53(j1.1‘0)H + 0(5) =0, (34)

where the subscript H denotes the component of a vector quantity along VH i.e.

= (VH,y).

Now the second term of (3.4) is —6(VH, F1) which is zero by the grazing condition (2.5). Hence we can

solve (3.4) for § as an asymptotic expansion in /¢ with lowest order term 0(6%). Note that there are two
solutions but we are interested in the solution where § is positive, and hence

(VH,
§=me? +yae + 362 + O(g?) where 7y = 1/ \/ i 61;?0 Ay (3.5)
) Ox
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Note by assumptions (2.12) and (3.1) that the quantity inside the square root is positive, hence by choosing
¢ small enough this is indeed a valid asymptotic expansion. Furthermore we obtain

b 2
p = hoitam (3.6)
a1H

s = _laiuys + (e1z0) i — (hizo)my2 — 3eimiye + fiuyi
2 G1H '

(3.7)

Hence, we can conclude that the time § at which the perturbed trajectory, z(t) crosses the switching manifold
varies to lowest order as y/e. This will be shown to be extremely important in determining the overall local
behaviour exhibited by the system when perturbations around the grazing point are considered.

3.2 Step 2: Motion in S—

We now consider the piece of the perturbed orbit that lies in S~. Then, starting from z = Z, we have that
after some time t3 = A:

H() := ®9(z,A) =0 (3.8)
where 7 is given by the substitution of the expression (3.5) for § into (3.2). That is,
z= Xle% + x2¢ + X38% + O(g?), where x1 =—-Fim (3.9)
and X2 = w0 — 7P+ aii, (3.10)
X3 = —bizoy +2umiy —vF - an. (3.11)

To get an approximation for A, we need to solve (3.8). As with the calculation of §, we can simplify this
condition to read
(VH, ®2(z,A)) = O(||z[°),

which can be expanded as a Taylor series about the grazing point by using the expansion (2.15) for &3 up
to fourth-order terms. Thus we obtain

T+ FogA + asg A + (027) g A + cog A% + (deZ?) g A + (e2%) g A?
+ f2HA4 + (g2.’f'3)HA + (hQ.’Z‘Z)HA2 + (jg.’f')HA?’ = 0(5) (312)

Now Fyyg = (VH,Fy) = 0 by the definition of grazing, and zy = O(5) since £ € S. Hence the first two

terms of (3.12) can be removed and, after substitution of the expansion (3.9) for Z, the resulting expression

can be solved for A as an asymptotic expansion in €, ignoring the trivial solution A = 0. Thus we obtain
(box1)m _ (VH,baFi)m

1 3
A j— 5 b} 2 = — = ].
= V1E€2 + V9€ + V3E2 + 0(6 ), where 1 s (V , a2> ’ (3 3)

and o = Y1 [(dox?)m + c2mv} + (bax2)m + (eax1) v (3.14)
? 2a2v1 + (bax1)H ’ )

vy = — (Jaxu)mv? + (baxa)mvi + azmvs + 2daxax2)avi + (bax2)mve + fonvi L
2a25v1 + (b2x1)H
_2(eax1)mvive + 3camvivs + (eax2) mvi + (haxa) mvd + (dax?)mve + (gaxd) v

2a951v1 + (bax1)m

. (3.15)

Equation (3.13) is an estimate of the time A spent on the other side of the switching manifold in terms of

the size of the initial perturbation ¢. Note that the leading order term »; is again O(s%) and is non-zero
and finite by conditions (2.12) and (2.13). Hence the asymptotic expansion is valid.
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3.3 Step 3: Motion after the second crossing of S

We look finally at the motion of the system after the second switching (i.e. when the trajectory crosses
again the switching manifold). We shall present three alternative ways of carrying out the analysis. The
first is heuristic and motivates the statement of Theorem 1 by showing how certain terms cancel in a Taylor
expansion when simply comparing the trajectory in question with one that is governed by the flow ®; alone.
It turns out that this gives the right order of scaling for the local discontinuity mapping (DM) described in
Sec. 2.2.

We then proceed to derive rigourously such a mapping in two separate ways. First, we calculate the DM
taking zero time (the ZDM) and second the one calculated with respect to a Poincaré section (the PDM).

3.3.1 A heuristic calculation

We have that at ¢ = t9 = A — § the perturbed trajectory crosses the switching manifold again at £ and
enters the region S*. Therefore, it can be compared directly with the unperturbed trajectory z, obtained
by considering the trajectory still rooted at Z but generated by the first flow, i.e. z,(t) = ®1(Z,t). Thus, at
time ¢t = t9 we have:

§o == x(t2) — wu(t2) = ©2(Z,A) — 1(2,A)

and expanding ®; and ®, about the grazing point, according to (2.14), we then get:

& = (B—F)A+ —(@FQ—@F)A2+(@—@)5A

2\ 0 15} oz or
v (G (32) ) - (SR 2 (3) n)|o
; %_%_fgl]m (3.16)
+ %-(%Fer(%)Z)—(%Fﬁ(%)Z) TA? +

Now, as mentioned in Sec. 2.2, the discontinuity mapping (DM), as defined by Dankowicz and Nordmark
[Dankowicz & Nordmark 1999], can be considered as the correction that must be added to a trajectory
governed by flow ®; alone in order to account for the time it spends in region S_. Note there is some
freedom as to the point on the trajectory to which this transformation is applied. Thus, we can see the
vector & defined by (3.16) as an approximation of such a correction at time ¢5. In order to apply the DM at
some other time instance we would simply have to evolve both the trajectories through z(t2) and z,(t2) by
flow @, through the same time-interval. Moreover since everything is local, by choosing € small enough, this
time of evolution will be sufficiently small to justify taking a linear approximation to ®;. Hence one ends
up with simply a linear transformation of &y, which does not affect the order of the leading-order singularity
of the DM. Thus, we shall therefore view (3.16) as giving a heuristic form of the DM.

Now let us calculate the leading order term of &y as a function of e. Since & and § ~ /2 by (3.5) and (3.9)
then equation (3.16) shows that we can get /2 ¢ or £3/2 leading-order behaviour, depending on which is
the first non-zero term in the expansion of £y. Let us see which occurs under the assumption that the vector
either is or is not continuous at the gazing point.

First, consider the case of discontinuity of the vector field at the grazing point,
Fy, #+ F.

Then the dominating term in (3.16) will be (F» — F;)A. Hence, from (3.13), we derive a /¢ local behaviour.
That is

<VH) b2F1> 2<VH7£E0> 1

Eo = (F, — Fy)vie? + O(e) = 2(F, — F) VH.a) \| 2 (VH,a) e2 4+ O(e), (3.17)
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the O(E%) term of which is generically non-zero.

If, instead, we assume that the vector field is continuous at the grazing point, then Fy = Fy at = 0. Thus,
in this case, the linear term in (3.16) disappears and the dominating term would appear to be the quadratic

form: 1 (0F OF OF, OF
R 2 N 1 92 2 _ 1 —
0= <—8x Fy— F1> A’ + <—[“)x o ) zZA. (3.18)

However, careful evaluation shows that this term is zero to leading order. Specifically, substitution of (3.9)
and (3.13) into (3.18) yields

1 8F2 8F1 8F1 8FQ

— o (L2 e )24 (Ep - 22 2 1
© [2(895 2= %, 1)V1+<6.’L‘ 1= 5, 1)1/1’71]6"‘0(52) (3.19)
and since F; = Fy := F, we also have
BFQ BFQ aFZ
Fy = = F
or "~ ? or 1 ox
and from (3.13)
VH,°EF
v = < Oz >71:271.

(VH, 52 F)
Thus, from (3.19), we get

[ (0F, OR OF, OF ) . _ :

Hence, if the vector field is continuous at the grazing point (but not necessarily anywhere else across the
switching manifold), both the linear and quadratic terms in (3.16) disappear and since § and Z ~ e'/2, ¢
will vary as e%/2.

3.3.2 The zero-time discontinuity mapping (ZDM)

In order to define the ZDM we want to solve from the point & = ®5(Z, A), backwards in time using the flow
®; through a time —t3 = § — A. The ZDM is then the map from the initial point ez to this final point

zp = B1(2,6 — A).
Now using the Taylor expansion (2.15) for ®; up to third-order terms we have
;=2 +Fi(§—A)+a1(6 — A2 +b1E(6 — A) +c1(6 — A)® +di22(6 — A) + e12(6 — A?) + O(4), (3.20)

where

& =T+ FyA + as A + byZA + 3 A3 + dpZ® A + e27A% 4+ O(4). (3.21)

Thus, using the asymptotic expansions (3.5), (3.9), (3.13) and (3.21) for 4, Z, A and &, we can systematically
express &5 as a Taylor series in \/e. In order to prove Theorem 1, it suffices to consider in detail only the

0(6%) and O(e) terms. For the case of continuity of the vector field at the grazing point (but discontinuity of
its Jacobian or Hessian derivative there) we shall additionally need to show that the O(eg) term is non-zero.

So let us first concentrate on the terms in s up to O(e). From (3.20), we obtain:

Ty = T+ (F2 — Fl)A-FFl(S
+ag A% + bz A + a1 (6 — D)2+ b1(6 — A)(Z + FRA) + O(e

3
2

) (3.22)
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Considering the case of discontinuity of the vector field at the grazing point Fy # F5, then the leading-order
term in z; is O(e2). Specifically

Ty = Xlgé + (F2 — Fl)ljlgé + Fl')’le% + 0(5)
1 1 1 1
= —Fime? + (Fp — Fi)vie? + Fiye? +0(e) = (Fy — Fi)vie? + O(e), (3.23)

which is the same as the leading order term (3.17) of £ for this case and is O(s%). This proves Theorem 1
for the case of a discontinuous vector field.

If, on the contrary we assume that the vector field is continuous at the grazing point, i.e. F; = F3 then the
O(E%) term in (3.23) obviously vanishes and the leading-order term would appear to be O(¢). However, for
apparently similar reasons to the cancelation that occured in the previous heuristic calculation, we will now
show that this term is in fact equal to exzg. Hence the ZDM is the identity up to this order, and the leading
order non-trivial term is O(sg). Specifically, from (3.22), the O(e) term is

U= (Fﬂz + x2 + azuf + —boFiyivy + a1(m — 1/1)2 + b1(y1 — 1) (Fovy — F1’71)) £, (3.24)

for which by the definition of x2, the first two terms are equal to zo + a17?.

Now, by similar arguments to those shown in Subsection 3.3.1 above, continuity at the grazing point implies
Fi =F,:=F, andhence v; =2y and bF; =0bF; =2a;, (3.25)
with the latter equality being true because of the definition of a; and b; in (2.15). Hence (3.24) yields
U = (20 4+ a17? + 4ay} — dasy? + a1y? — 2a17%)e = ex.

Hence the ZDM is the identity map up to O(e) and the leading-order non-trivial term is at least O(E%).

The expression for the O(sg) term can be written down in a systematic manner from (3.20) using (3.21),
(3.5)-(3.7), (3.9)-(3.11), and (3.13)-(3.15). The algebraic manipulation package Maple was used to simplify
the resulting expression using the relations (3.25). The result is

EZDM = [(862 —c1+ (61 — 462)F + (2d2 — dl)F2) ’)’?‘I‘
+((2b2 — b1)x2 + 2(az — a1)va) 11 + Fiys + xa) €2, (3.26)

which is expressed purely in terms of F;, F5 and their derivatives in Appendix 1. Note from there that, unless
a remarkable (non-generic) sequence of cancelations occurs, this term will be non-zero provided % %.
In fact, the formulae in the appendix also clearly reveal that the term is also non-zero if %iwl = % but
662 ;;1 # 662 ;;2, that is if the vector field is C' across the boundary but not C?. This then proves Theorem 1
for discontinuous vector fields.

3.3.3 The Poincaré section discontinuity mapping (PDM)

As motivated in Sec. 2.2, when coupling the dynamics of a DM to a global Poincaré map around a periodic
orbit that grazes it is more useful not to compute a local DM that takes zero time, but to compute one
which maps a certain Poincaré section back to itself. Note that in the case of a non-autonomous periodically
forced system, the ZDM in effect calculates the PDM for the Poincaré section t=const. Hence by extending
the phase space with a trivial equation ¢ = 1 if necessary, the PDM is a more general concept since it
can be used to describe the adjustment to Poincaré maps around periodic orbits for both autonomous and
periodically forced systems.

So let us suppose that the initial point ex( is on a Poincaré section II which is defined by a normal vector
. That is
exg €I, Il:={z:(mw z) =0}
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where, to ensure that the flow is transverse to II we require
(m, F;) # 0, 1=1,2. (3.27)
We shall denote by a subscript 7 the projection along 7, that is
Yyr = (m,9).

Then in order to define z¢, instead of demanding that the transformation from ez should take zero time,
we shall demand that z; is on the Poincaré section II. That is z; = ®1(Z,t*) where t* is defined by the
condition

T =P1(Z,t")r =0 (3.28)

Now for the case of the ZDM, we had t* = 6 — A, although it is not clear that the final z; lay in any linear
transverse Poincaré section containing ezg.

3
2

As with the ZDM we shall concentrate on terms up to O(e2) only. To that end, let us define

"= 7'1€% + e + 7'36% + 0(62).
Then, using the fact that
zp=®1(%,t") =& + Fit* + ar(t*)? + bidt* + e1(t*)° + d12°t* + e12(t*)? + O(4), (3.29)
from the Taylor expansion of (3.28) about the grazing point we have:

0 = (F+FAt"+a)’ +bit") +0(3)
= (:i—f—FQA—I— GQAQ + bQIEA-f-Fl(Tl&‘% +7'2£) + [(117'12 + bl(:f + FQA)T1]€) + 0(3)

= ([—F1’Y1 + Fovy + F1T1]€% + [x2 + Fovs + Fi7a + agvi — baFiyivy + ar7i (3.30)

+by 71 (Fovy — Fl’Yl)]) €+ 0(5%)

™

Now it is possible to solve the above equation term by term to get an expression for 7y, 7 etc. First, taking

the O(E%) term we get
F27r
T =791 — =V 3.31
1=MN Fi, 1 ( )

which is well defined and non-zero since Fy,; and Fy; are nonzero by (3.27). Notice that in the case where
Fi; = F5; = 1, which would be the case for an non-autonomous system where 7 is in the direction of £,
then this expression for 71 reduces to the leading order expression for 6 — A and one recovers the leading
order expression for the ZDM. More generally we have, after substituting (3.31) into (3.29),

F:
Ty = T+ Flt* + O(E) = <—F1’}/1 + Fhvy + Fiyp — F—?Fﬂ/l) 5% + O(E)
™

For \ 1
:m@—%ﬂyﬂm@ (3.32)
T

which is O(E%) unless
FyFy, = F\Fy,. (3.33)

Now this condition is satisfied precisely when Fy is a scalar multiple of F;. The scalar is Fy,;/Fi, which
for non-autonomous systems with 7 chosen in the direction ¢ must be 1. Thus for the ZDM the condition
(3.33) reduces to F; = F5 so that the condition for square root behaviour is F; # F5. But more generally

15



we have shown that this term vanishes if F} = KF;, for some constant K. Note that in the case of non-
autonomous systems, this would imply a rescaling of the time variable (¢ = 1) across the boundary. Thus,
this is consistent with what was previously observed for the ZDM.

Now let us consider the case when (3.33) is satisfied and the O(aé) term vanishes. Now we need to calculate
T9. From (3.30) we obtain

—F1273 = Xor + Faxva + a2707 — (b2 F1)amivs + @112 + (01 F) i — (b1 F1)xni i
However, using the definition of x4, the first term on the right-hand side is
w — Figzys + alﬂ"Y% = —Fizv + 0417r'7%7

since zo € II. Hence

1
=7 = 5 (0277 + Farva + a0} — (o F1)xyivn + aaa7! + (1 Fo)wiams — (iF1)emim) . (3:34)

1
First consider the case where F; = F5. Then
=2y, n=m-v=-7, bFj=2a,

which when substituted into (3.34) gives

o= (1)t ot (-t - 293) + 4y} + 44})

= 72 — V.

F17r(

Hence in this case ) 3 3
t"=(y —vi)e2 + (2 —12)e+0(e2) = A — 6 + O(e2),

which is the same time as that defining z; in the previous subsection. Therefore the O(e) term of z is the
same as that for the ZDM which is the identity exy. Hence provided it is non-zero, the leading-order term
in this case is 0(52) Specifically, this term is derived (using Maple) as:

Eppm = [8ca —ci + (e1 —des)Fy + (2dy — d1)FE] i
+[2(ag — a1)va + (2by — b1)x2] 11 + Fi73 + x3 + Fivs
where
1
T3 = —V3— F— [802 —c1 + (61 — 462)F1 + (2d2 — dl)F12 + 2(b2 — bl)al]w’)’i}
1

+[2(ag — a1)v2 — 2(ag — a1)y2 + (2by — [)1).’50]7r 71 + X3r}-

An expression for this term purely in terms of Fy, Fy and their derivative can be found in Appendix 1, from
where it can be seen that, like for the PDM, (3.35) is generically nonzero if F; = F5 but either the first or
second derivatives of F' do not coincide across the boundary.

Finally, we are left with the case F} = KFy, i.e. Fi;/Fy = K in (3.33). Then

Iy
vi=2Ky, mm=m-— —uv=-vy, hF=

2
— by Iy = 2K
2 ai, 21 az,

K
which substituted in (3.34) yields:

1
T2 = Y2 — ﬁ (04171"7% + Forvo + 40}271'K2'Y% - 404271"7% + 0171'7% - 4&17()’% + 204171"7%)
1 a1x 2 2 a27 2 2 2.9
= R ER TR (i+7 - +29) - 7. (4K*~] — 4K*y7)
T
1
= 72— gl/z-
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Thus, in this case

14
t* = (71— v1)e? + (2 — Ez)e +0(e?). (3.35)
Substituting (3.35) into (3.29), we then get
_ 1 2 2 o Finn
zr = (x1+Fhvi+Fiy)er + |z — Fiya + 2a17] + 4aa Koy + 7l
— b1F1'Y% + F1 (")’2 — %) — 2b2F1’)’%K] e+ O(E%) = €exg + O(E%)

Thus, even in this case the O(¢) term of x is the same as that for the ZDM which is the identity ezo. Hence,
the leading order term is also O(s%) which can be shown to be non-zero using computer-assisted algebraic
manipulation. Moreover this should be no surprise because setting F; = K F5 gives the same phase portrait
as Fy| = Fy, just rescaling time in the region S—. Hence the O(e%) term is just a transformation under this
rescaling of the term (3.35) and is therefore nonzero. In particular, if we define F, = K F, then the formulae
for case F} = Fy apply with appropriate redefinition of the various constants as, bs, o, etc.

4 Poincaré maps close to periodic orbits that graze

Now let us suppose that the system (1.1) depends smoothly on a parameter u, and that at u = 0 there is a
periodic orbit z(¢) = p(t) that grazes at the point z = 0 = p(0) (where the phase of p has been fixed without
loss of generality). Moreover we shall assume that this orbit is hyperbolic and hence isolated. Finally,
we assume that there are no points of grazing along p(t) other than at ¢ = 0. Since these are both open
conditions, then we also assume that they are true for a sufficiently small neighbourhood of 1 = 0 and p(¢).

Consider first the case of a non-autonomous system whose coefficients are periodic with period 7. We are
thinking here of the case of a forced oscillator system, for example. Then suppose that p(¢) is an mT-periodic
orbit for some m > 0. Hence, for p = 0, x = 0 will be a fixed point of the time-mT flow map Il defined,
in a full neighbourhood of z = 0, by solving the flow in a neighbourhood of p(t) as if the switching manifold
S were not present and ¢ applied throughout the phase space. The assumptions on smooth parameter
dependence, hyperbolicity and lack of further grazing then imply generically that

Mper : £ — Nz + Mp + o(|z], p), (4.1)

for some nonsingular n X n matrix N and non-zero n-dimensional vector M. For simplicity, we assume
the ZDM (3.26) to be p-independent without loss of generality, since one can perform a local parameter-
dependent change of co-ordinates if necessary.

A global time-mT map can be obtained by composing the ZDM with II,,. If the vector field is discontinuous
at the grazing point, the resulting global map can be written using (3.23) as

Uper o lzpar = @ = { va—\l—/ﬁ%w—t MM)M + o(|z|, ) ii égg: 3 z 8, (42)
If the vector field is continuous at the grazing point, the global map can instead be written as:
Nz + My + o(|z|, p) if (VH,z) > 0,

Mper o Mypar : @ — 4 N |2+ vi((VH,2))3 + Vau(|(VH,2)]) 2 (4.3)

+v(VH, G20) ((VH, o)) 3] + Mp + o(|af2, ) if (VH, z) <0,

where w, vy ,V5 and v3 can be derived from (3.26) and are listed in Sec. 2.2. Either of these maps then
describes all trajectories that remain within a neighbourhood of the grazing orbit; a fixed point represents
an mT-periodic orbit of the flow, period-n points represent mnT-periodic orbits, etc.

Now let us consider the more general case of an autonomous system, or a non-autonomous system with time
taken to be one of the dynamical states. Here we shall use the Poincaré section II defined in the previous
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section. Now we have no need for information on the period of the hyperbolic periodic orbit p(t), just
that it represents the fixed point of a Poincaré map from II to itself defined by the flow where ¢; applies
everywhere. The assumptions about hyperbolicity and no other grazings along p(t) mean that this Poincaré
map again takes the form (4.1) but where now the 7 component of Nz and M are irrelevant so as the map
is really reduced to an (n — 1)-dimensional one. For convenience of notation we shall continue to bear this
in mind, but continue to stick to n-dimensional vectors. In order to account for the correction owing to the
portions of trajectories that enter S~ in a neighbourhood of the grazing, we must compose Il with the PDM
to obtain a global Poincaré map. Again, if F; = Fy at grazing, this results in the map

N+ My + of|l, 1) if (VH,2) > 0,
IT IT : 44
per ©PDM = T { Nw,/[(VH,z)| + Mp + o(|z|,p) if (VH,z) <0, (44)
where from (3.32), we get:
1
F. VH, 22 2 2
Wy = 2(Fy — ﬁF1)< 0z 1) - .
Flﬂ' <VH, Q—;FQ) <VH, a_lel
If the vector field is continuous at the grazing point, the global map can instead be written as:
Nz + Mp+ o|z|, 1) if (VH,z) > 0,
3 1
My oMppr: @ — 4 N |2+ Via((VH,2))? + Vora((VH, 3)]) (4.5)

v (VH, S2)((VH, )P 3] + Mp + o(|af2, p) (VH,z) <0,

where, from Appendix 1, we obtain:

vig = vi— 2L {g(d2 — d)F? 4 2(byar) % [(bra1) + 2(b2as)]

Fi: |3
2
_E(G’Q’K —a1r) - [deam + (b2a1 — 2b2a2) g + (doF?) 1] b

F
Var = va— —— [(ba — b1)zo),

Flﬂ'

2 F

Vig = V3+ aF—M(azw — Qi)

These maps have the same general form as (4.2) and (4.3) but are defined from the (n — 1) dimensional
Poincaré section II to itself.

5 Examples 1: bilinear oscillators

To test the local theory derived in the previous section, we shall use it to perform the local analysis of
grazings in the so-called bilinear oscillator defined by the equation [Shaw & Holmes 19835):

&+ G + klx = B cos(wt) (5.1)

wherei=1ifz >0andi=2if z < 0.

Firstly, we set z3 := wt as an extra state defined by the equation 3 = w. We can then recast (5.1) as a set
of first-order autonomous differential equations as:

. A1£E-|-Bl, lfH(.T)):Cl‘>0
o AQCC“[‘BQ, lfH(.’L‘) =Cz<0
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where

0 1 0 0 1 0
Ay = |-k -G 0, A=|-kK -G 0],
0 0 0 0 0 0
0 0
By = Brcoszy |, Bo=| Bacoszs |, (5.2)
w w

C = (1 0 0).

Note that in this case, we have:

0
OF;
3 - = A;, Fil,.o=106i |
T =0 w

and the switching manifold is the set:
S ={z € R*: Cz = 0}.

According to the local analysis presented above, the local behaviour exhibited by the bilinear oscillator
about the grazing will vary according to the properties of the system vector field at the grazing point = 0.
Specifically, we should be expecting a /€ local behaviour if the vector field is discontinuous at the grazing
point and an €3 behaviour otherwise. To test this hypothesis, we now proceed by computing the ZDM for
the system under investigation in the two cases when the vector field is continuous and discontinuous at the
grazing point.

5.1 Case 1: changing the damping or the stiffness term

We now seek to investigate the dynamics of the bilinear oscillator when the damping coefficient, {; or the
stiffness coefficients, k;, change across the switching manifold, while the forcing remain the same. In this
case, we set 31 = 2 = [ in (5.2) and, using the analysis presented above (cfr. egs.(3.5),(3.9), (3.13),(3.22)),
we get for the ZDM:

2 3
) . 5(Ca = C)7i \
vp=ezo+ | [5(CF — ) + 5k — k3)] By? + 2(kY — kd)zaom | €2 + ...
0

where € € R, xo = (219 T20 230)" and 71 = ,/2%@ Hence, as expected, since in this case the vector field

is still continuous across the boundary both the linear and quadratic term in (3.22) disappear and an g3/2

behaviour is predicted by the local theory.

As shown in Figs. 5(a) and 5(b), this analytical result is in perfect agreement with numerical simulations
of the system. These numerical results were obtained by taking a pair of Poincaré sections 3; and Y9 as in
Fig. 3, sufficiently close to the grazing instant. The perturbation € was applied on ¥; so that trajectories
with € > 0 cross S. The difference was then plotted on ¥y between the trajectory computed using system
1 alone and that computed using the true computations of system 1 and 2.

5.2 Case 2: Discontinuous vector field

To test the method further, we shall next investigate the local dynamics of the bilinear oscillator when
the amplitude of the forcing term is varied between two different values across the switching manifold, i.e.
B1 # By while k1 = ko = k, (1 = (3 = ( in (5.2). In this case, the bilinear oscillator is characterized by a
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Figure 5: Theoretical prediction (dashed line) and numerical simulation (solid line) of the local behaviour
of the bilinear oscillator near grazing, when (a) the stiffness term, or (b) the damping term, is varied across
S. In both zy — ez is plotted against e. Grazing occurs at € = 0. The parameters in (5.1) are set to be (a)
ki=1,k=2,=0(=01p=0F=1land (b) k1 =ky=1,(4=0.1,( =02, 06, =0 = 1.
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Figure 6: Local behaviour of the bilinear oscillator near grazing, when the forcing term is switched across
S. x5 — exg is plotted against e. Grazing occurs for ¢ = 0. The parameters in (5.1) are set to be

20



discontinuous vector field at the grazing point (i.e., B1 # Bj) and the local analysis presented in Sec. 3.3.2

yields to lowest order:

0
Tf= —2%% €3 + ... (5.3)

0

Thus, as expected, we now have a £!/2 scaling law for the velocity perturbation. Note that for this to be
true we need 1 # 0 and (2 # 0 and this is guaranteed by the grazing condition (2.6). As shown in Fig. 6,
this is again confirmed by the numerical results.

6 Examples 2: Higher order systems

6.1 A third-order oscillator

We now consider a third-order oscillator described by the equation

d*y d*y dy

I3 T U3y — G2, — 01y + f; cos(wt). (6.1)
This is a non-autonomous system and thus, as mentioned above, we would need to consider time as an extra
state variable. The analysis of the previous section shows that in effect we can for small times treat this as
an autonomous system. Specifically, for t < 1, cos(wt) =~ 1 and hence (6.1) can be recast as a system of

first-order differential equations of the form

Asx + B, 1fH(.’L‘)=CCC<0 '
where
0 1 0 0 1\7
L= 0o o 1 |.,Bs=|0o],c=]0
—ay; —a —a3; Bi 0

Note that this system can also be used to describe the dynamics of so-called relay feedback systems often
used in control applications [Tsypkin 1984].

Firstly, we notice that, when z = 0, system (6.2) is such that:
1. Hz)=Cz=0forz =0
2. VH(0,0)=C #£0
3. (VH,F;i(0,0)) =CB; =0

4. SHOLF, — CA;B; = 0.

Hence, the system does not satisfy all the conditions (2.3)—(2.5), (2.12) and (2.13) required for a grazing to
occur at z = 0; specifically it violates the condition (2.12) on the curvature of the vector fields.

In fact, at the grazing point we have 1 =y = 0, 2 = = 0 and solving (6.1) we get:

T3 =§ = —Bi/as;.
Thus, for the oscillator described by (6.1), the grazing point is located at z* = (0,0, — 1 /a31).

In order to apply the local theory we have presented above we need therefore to consider an appropriate
change of coordinates to shift the grazing point from = xz* to x = 0 as required. Specifically, let z = x — z*
so that system (6.2) becomes

(6.3)

Aiz+ By, ifCz>0
Asz+ By, ifCz<0
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where, in this case:

0 1 0 0 0 1\
A= 0 0 1 |,B= A By = A c=(0] . (6.4)
—a1; —ay% —a3; asiA + b1 aza\ + B2 0

with A = —f;/a31. Note that system (6.3) satisfies all the properties required for a grazing to occur at
z = 0. Thus, according to the local theory derived in the previous section, we will observe a £'/2 behaviour
if the vector field is discontinuous i.e.:

B # Bs.

From (6.4), we can deduce that this is verified if and only if a3; # a3y or uy # ug, i-e. if the amplitude of the
forcing term or the coefficient of 4 varies across S. For all other cases, By = By and a £3/2 local behaviour
should instead be expected.

In fact, assuming a1 # age while a1 = a19,a91 = a9, 31 = [ in (6.4) we get from (3.22)
0 1
‘,‘Cf = 0 85 + ..
2[Xazz —a31) + (B2 — B1)lm
Thus the third component of the state perturbation exhibits £% behaviour as expected.
If, instead, we assume a3; = azs = «, f1 = P2 = [ but suppose that a11 # a19,a91 # a2, then the ZDM
analysis yields:
0 3
.Z‘f:ELEO—f- %(azl—azg)’)/% €2 + ...
3 [a11 — a1 + 2a(ag — a2)] M} + 2(a11 — ar2)z10m

3/2

Hence, in this case, we have a €%/ variation as anticipated by the theory.

6.2 A general third-order system

We next consider the case of a more general third-order system of the form

- AQ.’E-I-BQ, 1fH($):C£E<O )
where
0 1 0 P 1\"
Ai=|qi i g |:,Bi=|pu |, C=[0] . (6.6)
T T2 T3 Bsi 0

Following the same approach outlined above, the ZDM is derived to be

2’)’1%(ﬂ11 — B12)
Ty = 271%(ﬂ21 — Ba2) €3 4 O(e) (6.7)
—2’71%(531 — (32)
Note that if f99 = 0 then there is no contradiction suggested by the formula (6.7) because in this case

C A3 B> would be equal to zero, thus breaking the assumption that the system has a grazing at = 0. Also
note that we must have (31 # 0 by the definition of grazing, otherwise condition (2.6) is violated.

This example is similar to that of a second-order oscillator in that grazing occurs when the first component
of z (the ‘position’) passes through zero, with the second component of z acting like velocity. However,
note that the vector field may be continuous in these two variables (811 = S12 and [21 = [Ba2), yet if it is
discontinuous in the third component (31 # (32) then we still see a non-zero square-root singularity.

Similarly to what was found in thse previous example, the ZDM for a general third-order system such as
(6.5) can also be shown to be O(e2) to leading order when By = Bs.
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6.3 An autonomous system

Finally, let us end with an example where we compute a PDM. Specifically we shall take a constructed
example of an autonomous three-dimensional system which can be solved in closed form. Then we can
compare the PDM calculated using the above theory with that calculated by solving the equations directly
(up to implicit transcendental equations defining the a priori unknown times that a trajectory hits the
switching manifold).

Consider a system defined by

7 = gr(a—r)
0 = w; , (1=1,2) where z=r7rcosf, y—1=rsinb, (6.8)
e = Piz+i

where 7 = 1 corresponds to y > 0 and ¢ = 2 corresponds to y < 0. Then the switching manifold is given by
S = {('T:y: z)' Y= 0}7 and VH = (07 1, 0)7
ST is the region ¥ > 0 and S~ is y < 0, and a suitable choice of Poincaré section is

II={(z,y,2)| z =0}, sothat =« =(1,0,0).

For simplicity we shall henceforth assume that w;y =1 and 73 = 0, &1 > 0 and ;1 < 0. Then, for a = 1,
by construction the system (6.8) possesses a limit cycle r = 1, # = ¢ of period 27 which grazes with S.
Moreover, as ¢ — 17 this solution is the limit of a continuous branch of stable 27-periodic solution r = a
contained within region ST. The linearization around this periodic orbit for @ = 1 evaluated on II (ignoring
the trivial direction along z) is given by

—2e1m
Y Y e 0
[ z ] — N [ . ] , where N = [ 0 o261 (6.9)
and the linearization with respect to the bifurcation parameter y = (a — 1) is
_ 21T
M= [ 1 eO ] ) (6.10)

Note that an explicit solution can be found for any point in regions ST or S~ with initial conditions
(10,60, 20):

. ary
) = ro + (a — ro)eacit’
0(t) = 6y + wit, (6.11)
z(t) = ﬂl ((c — Bizo)elit — c) .

Let us stick to the case ¢ = 1. The exact Poincaré map for initial conditions on II with ¢y > 0 is then just
given by the solution of (6.11) with ¢« = 1 and ¢ = 27. For initial conditions on II with yo < 0, equations
(6.11) can be solved in region S~ (i = 2) until the implicitly defined time ¢; at which y = 0. Next we solve
in region S until the next time #3 at which y = 0 whereupon we switch back to solving the system in S
until ¢3 which is the first subsequent time that z = 0. This then defines an ‘exact’ Poincaré mapping. In
fact, the times t; 23 are defined by the solution of implicit equations, which we implement in Maple using
accurate root-finding to find the first positive root in each case.

This exact map can be compared with the approximate map evaluated using the preceding analysis. In
particular we find for the case that the vector field is discontinuous at the grazing point (assuming ¢; =
1w =1):

T
wﬂ=(0,2\/§£> .
w2
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Then, given the definition of N and M, which define the linearization of the global Poincaré map, according
0 (4.4) the PDM in this case is

+ O(y,z) for y<0.

0
Y
HperOHPDM: [Z :| l 2\[’)’2 72b17r\/_

Note that it is similarly possible to define the topologically equivalent map IIppar o Ipe,. Figure 7(a)
compares both of these two global PDMs with the exact expression in each case plotting the z-component
of the map as a function of the y-component of the initial condition. Note how the exact map lies exactly
between IIppas o e and Il o Ilppas each of which clearly has a square-root behaviour.

This now raises a subtle point. The PDM in fact only describes something that is topologically equivalent
to the leading-order expression for the true Poincaré map from IT — II. This is because the PDM as defined
first makes a correction and then solves all the way around the trajectory using the flow 1. The alternative
IIper oIl ppar performs these two operations in reverse. Whereas the true flow makes only half of its passage
through S~ to begin with, and half at the end. Perhaps a better method, to overcome this difficulty, is to
work with a new Poincaré section II5 that is away from the grazing point. For the present example we could
take IT5 to be the local Poincaré section that is defined by II in a neighbourhood of (z,y,2) = (0,2,0). Then
the linearization around the periodic orbit at the grazing point can be composed of two pieces
e, = 12 o 1)

per per
where Hg?r : Il — 11, and H%)T : IT — II;. Then we can construct a global PDM from Iy to Iy via

pom = T3 0 Tppps o I,

In fact for (6.8) we have that H;E,le%« = Hz(,Ze)r = (Hper)% and thus we obtain

0
* . Y
HPDM . [ 2 ] — l 2\{‘}52’726ﬁ1t7r |ei€17‘_y| +O(y, Z) fOI‘ y < 0 (6.12)

Figure 7(b) shows the comparison between this map and the equivalent exact expression for the same map.
The agreement is perfect.

Similar expressions can be derived for the case when the vector field is continuous at the grazing point. But
for brevity we leave out such expressions here. Figure 7(b) shows the exact map in this case, showing how
the y-component varies as a function of an initial perturbation in y. Figure 7(c) then shows the difference
between this map and the map obtained by solving the flow as if the boundary were not there, together with
an approximate fit to the data. Clearly we are seeing £%/2 behaviour precisely as predicted by the theory.

7 Conclusion

In this paper we have presented an effective method for the derivation of local maps to describe the dynamics
of n-dimensional piecewise-smooth dynamical systems near grazing. Using asymptotics and formal power
series expansions we have shown that discontinuities in the system vector field at the grazing point yield
normal forms characterized by square root singularities. A (3/2)-type singularity is instead detected in maps
associated with vector fields which are continuous at the grazing point.

Contrary to what has often been assumed in the literature (e.g. [Feigin 1970]), our results rule out
the possibility of piecewise linear normal forms unless the switching manifold is itself non-smooth
[di Bernardo, Budd & Champneys 20005).

An interesting open problem is that of characterizing the local behaviour of PWS systems undergoing grazing
bifurcations in regions were sliding motion is possible (i.e., when (2.9) is not satisfied — the situation depicted
in Fig. 1(b)). In such cases, the dynamics are likely to be very different. Preliminary numerical results are
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Figure 7: Agreement between the ‘exact’ Poincaré map calculated by solving the implicit equations and
the ‘calculated” PDM using the theory for the example (6.8) witha =1, )y =1 =1/2, w3 =1, 71 = 0;
and (a)—(b) fo = €9 = 1/2, 79 = 1 and w = 3/2; (¢)~(d) B2 = €2 = 1/5, 72 = 0 and w = 0. In (a),
the final value of the z-coordinate is plotted against initial perturbation in y < 0 for the exact map (solid
line), Iy, o HIppas (dashed line) and Hppas o e, (dotted line). (b) Then compares the exact map with
IT%, 5 defined by (6.12). (c) Shows, for a case with continuity of the vector field at the grazing, the exact
expression for the Poincaré map (solid line) against the unperturbed map as if the boundary were not there
(dashed line). Plotted is the final y-value against initial perturbation in y. Finally, (d) shows the difference
between these two maps (solid line) together with the curve —0.02 y%/? (dotted).
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Figure 8: Global behaviour of a second-order bilinear oscillator when the damping coefficient is varied
across the switching manifold. As with previous figures x5 —exg is plotted against . Despite the local (3/2)
behaviour, a piecewise linear global behaviour can be observed.

reported in [di Bernardo, Johansson & Vasca 2000]. In particular it was demonstrated that novel bifurcations
can occur which cause the transition to sliding and to so-called multi-sliding periodic solutions. A complete
analysis is the subject of ongoing research.

It is worth mentioning here that our analysis is purely local and it captures only the dynamics associated
with trajectories that are sufficiently close to the grazing one in both phase and parameter space. This is
entirely equivalent to the situation for the analysis of local bifurcations of periodic orbits in smooth systems
of ODEs. The power of this approach is that it allows the easy comparison of local maps associated with
different vector fields and thus can be used as a general tools for the analysis of grazings in n-dimensional
PWS systems.

An unsolved issue remains the global analysis of periodic orbits (or other attractors) in n-dimensional PWS
systems away from a small neighbourhood of the grazing point. Preliminary results for a second-order
oscillator are reported in Fig. 8. Here we see that the global map is piecewise linear to leading order even
though the local map is 0(53/ 2). The derivation of a consistent theory explaining this global behaviour
and its relationship to the local analysis reported in this paper is under investigation and will be reported
elsewhere [di Bernardo, Budd & Champneys 2000q]. Undoubtedly, this will solve the problem, mentioned
in the introduction, of studying analytically the convergence to square root behaviour of a bilinear oscillator
characterized by an increasingly stiff wall.

Finally, in this paper we have not investigated the dynamics of the piecewise-smooth maps we have derived.
Clearly in view of the literature reviewed in the introduction for piecewise-linear maps and the Nordmark
map, the dynamics of our n-dimensional maps are likely to encompass a wide range of phenomena, including
period-adding bifurcations and sudden jumps to chaos. These issues on the dynamical implications of our
results will be the subject of future work.
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A Expressions for map coefficients

In what follows, we present the expressions for (3.26) and (3.35) written solely in terms of the vector field
and its derivatives evaluated for the case of continuity at the grazing point, i.e. F) = FY := F. Specifically,
from (3.26) we get

3
Ezpm = (MY + mvi +13)e? (A.1)
where
m = 8cy—c1+ (61 — 462)F + (2d2 — dl)F2 (A2)
N2 = (2b2 —b1)x2 +2(a2 — a1)re,
3 = x3+Fys. (A.3)
We observe now that e;F = d;F? + b;a; and ¢; = %diF + %biai, thus (A.2) yields:
2 1 4 2
m = =doF? — —diF? — —byay + - bia;. (A.4)

3 3 3 3

Moreover, using (3.9),(3.10), (3.6), (3.11), (3.14) and recalling that, if F; = Fy := F, v1 = 27, b;F; = 2a;,
we also get:

M = a17i + (A.5)
where
c
o = (2b2 — bl)(al — 2 1H F) — 2(0,2 — al)\IJ,
a1H
b b b1z0
4y = (2b — b)(mo — LIEOH py o, gy [B220)H _ (B120)n
a1y Q2H a1g
and 1
U = @ [(bgal)H — 2(b2a2)H +4coyg — g — (d2F2)H] . (Aﬁ)
Finally, from (A.3), we get:
13 = P1yi + Pam (A7)
where
a
pr = —lclH — (1,
a1H
a
By = ——(bizo)m — bizo.
a1H

Hence, (A.1) can be rewritten as:

(bazo)H

m)e (A.8)
a2H

Ezpm = (G173 +2(by — b1)zoy1 — 2(az — a1)
where

2 2
Cl = m + o1 + ,31 = —(d2 — dl)F2 + 2b20,1 — g(blal —+ 2b20,2)

3
2
—E(@ —a1) [4com + (b2ar — 2bra2) g + (2 F) g .
2
Therefore, using (3.5), we get :

= | S 20— b)rondy — (0 — ) oz gy | € (A.9)
= = ——z —b1)zozl;, — —(az —a To)HT .
ZDM \/m am 0H 2 1)4040H aom 2 1)\V2L0/HLyg
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Note that if the vector field is supposed to be C, i.e. F; = F, and % = % then a1 = a9, by = by and
(A.8) becomes

(SN

9 _3
Ezpm = 50113(612 — d1)F?(ex0) (A.10)

Thus, from the definition of d; in (2.15) we get that the O(E%) is still the leading order term in the ZDM if
the vector field is continuous together with its first derivative but

0*Fy y 0% F,
Oz? or?

By similar manipulations, it is possible to show from (3.35) that

3
Eppm = Ezpm + €2 (A.11)
where
i = —— |CuaVi +2[(b2 — b1)wo], 71 — —— (a2 — a1x)(bazo)H
F17r a2H
with
2 , 2
Cir = 3 [(dy — d1)F?]_+2(baa1)r — 5(61(11 + 2b2a2)
2
—@(a% — air) [deam + (b2a1 — 2bsa2) g + (doF?) ]

Notice that, in this case, if the vector field is supposed to be Cl, i.e. a1 = a3, by = by, (A.11) yields

3
5 3
2 2

2 _ F
EppMm = 30H (dy — dq)F?* — ol [(dy — d1)F?] _| (ez0) (A.12)
™

Thus, even in this case, the O(s%) is still the leading order term of the PDM if the vector field is continuous
together with its first derivative but

O*Fy 2 0% F,y

or? or?
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