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We present a detailed study of chaos in an optically injected semiconductor laser. Advanced tools from bifurcation
theory are employed to identify routes to chaos via period-doublings and the break-up of different tori. This allows
us to distinguish between different types of chaos in terms of the output characteristics of the laser. We also find
locking to a periodic solution inside a region of chaos. This information is important for applications requiring

chaotic signals, such as encryption schemes.

As complex nonlinear dynamics are of increasing in-
terest for applications, such as cryptography'? and
computing®, the question arises to locate and study
sources of chaotic output. Laser systems are natural
candidates because they are indeed known to produce
chaotic output and have the additional advantage of op-
erating on very short time scales. Arguably the most
accessible such laser system is a semiconductor laser sub-
ject to external optical injection?. It is known that op-
tical injection produces an enormous variety of phenom-
ena, including chaotic output®1°.

An optically injected semiconductor laser is described
well by the three-dimensional single-mode rate equation
model*10
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Here E is the complex electric field, n is the population
inversion, K is the injected field strength, and w the
detuning of the injected field from the solitary laser fre-
quency. Furthermore, « is the linewidth enhancement
factor, B is the cavity life time, and T is the damp-
ing rate. To keep this exposition simple we restrict to
the case a = 2, but similar routes to chaos are present
for different results are a-values'%. Furthermore, we set
B =10.015 and T = 0.035.

To find and distinguish between different types of
chaos we take the point of view of bifurcation theory
and find and continue bifurcation curves of Eqns. (1) in
the (K,w)-plane!®. The resulting bifurcation diagram
is shown in Fig. 1. Presented are saddle-node bifurca-
tions (SN), Hopf bifurcations (H), period-doubling bi-
furcations (PD), saddle-node of limit cycle bifurcations
(SL), and torus bifurcations (T). Supercritical bifurca-
tions of stable objects are in black, and subcritical bi-
furcations of unstable objects are in grey. Superscripts
in the labeling distinguish between bifurcation curves of
periodic orbits of basic period and those that have al-
ready undergone a period-doubling. We remark, that we

only show the bifurcation curves that are relevant here to
avoid overcrowding in Fig. 1. This bifurcation diagram
is in good agreement with experimental and numerical
studies®?. At the same time it shows more detail, which
allows us to study different transitions to different types
of chaos.
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Fig. 1.  The bifurcation diagram in the (K,w)-plane.

To examine these transitions in terms of the out-
put characteristics of the laser we take cross sections
through the bifurcation diagram in Fig. 1 and present
the respective dynamics in four columns showing: the
three-dimensional attractor of Eqns. (1) projected onto
the complex E-plane, the attractor of the correspond-
ing Poincaré map, the time series of the power, and the
optical spectrum.

First we illustrate in Fig. 2 the well-known period-
doubling route to chaos with a vertical cross section
through the nested islands of period-doublings in Fig. 1.
An attracting periodic orbit (a) undergoes a sequence



of period-doublings (b)-(d) until it apparently becomes
chaotic (e) and (f). This is very clear in the attractors of
the Poincaré map, the power series, and the spectra. No-
tice that the attractor in (e) is already chaotic, but that
it shows the typical almost one-dimensional shape of an
attractor that appears after successive period-doublings.
Large peaks are present in the spectrum, so that it is
hard to decide whether the spectrum is already broad.
The attractor then grows further (f) into a shape that
is not immediately recognizable as an attractor coming
from a transition via period-doublings. The spectrum
becomes broader and the period-doubling peaks are less
prominent, but still present.
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Fig. 2.
from (a) to (f) w takes the values 0.3, 0.5, 0.7, 0.71, 0.78, and
1.1.

Period-doubling route to chaos; K = 0.62 and

An entirely different route to chaos is that via the
break-up of a torus in Fig. 3. An attracting periodic orbit
(a) loses its stability and a smooth attracting torus with
quasiperiodic motion appears (b). This can also be seen
in the power series and in the spectrum. Motion on a
torus can be quasiperiodic or locked, and this is governed

by resonance tongues. In general, a torus starts to break
up when it is followed into a region where resonance
tongues overlap.
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Fig. 3.
w = —1.2 and from (a) to (f) K takes the values 0.15, 0.19,
0.23, 0.25, 0.29 and 0.44.

Transition to chaos via the break-up of a torus;

The smooth torus in (b) starts to lose its smoothness
by forming self-similar protrusions (c) forming a chaotic
attractor as is evidenced by the fractal structure of the
attractor of the Poincaré map, which nevertheless still is
close to the original smooth torus. Also in the spectrum,
which is broad, there is still much left of the previous
dynamics. An important feature we found is locking on
this chaotic attractor. There is a window where there is
no chaotic dynamics observable in the system. Instead
we find locking onto a period-three orbit (d): the power
series is periodic with respective peaks in the spectrum.
When the parameter is changed further the chaotic at-
tractor reappears (e) and it becomes bigger (f) and does
not resemble the original torus any longer. This can also
be seen in the spectrum, which broadens considerably
(e) and then also looses the typical peaks of the torus



dynamics (f). This transition to chaos is rather spectac-
ular, and it results in a ‘much larger’ chaotic attractor
than can be found immediately after an accumulation of
period-doublings.
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Fig. 4.
riod-two torus; K = 0.23 and from (a) to (f) w takes the
values -2.2, -2.0, -1.975, -196, -193, and -1.85.

Transition to chaos via the break-up of a pe-

The two above transitions to chaos can occur in a
mixed way. After a number of period-doublings one en-
counters a torus bifurcation, and the bifurcating torus
of some higher base period then breaks up. An exam-
ple of this is shown in Fig. 4. A periodic orbit (a) loses
its stability and a period-two orbit appears (b), which
then bifurcates to an attracting torus when the curve 72
in Fig. 1 (c) is crossed. This torus surrounds the origin
twice in projection onto the E-plane, the power is modu-
lated, but the frequencies of the period-doubling are still
prominent in the spectrum. The dynamics on the torus
then locks to a period-six orbit (d). After the locking
the torus is already breaking up (e), which is also clear
from the power series and the broadening spectrum. The
chaotic attractor then grows, the power series becomes

more chaotic and the spectrum even broader. Notice
that there is still clear evidence of the frequencies that
appeared in the period-doubling.

In summary we identified and mapped out in detail
different routes to chaos, namely a sequence of period-
doublings, and the break-up of two different tori. The
importance of this work lies in providing clear informa-
tion of where certain types of chaotic dynamics can be
found in a laser system that is experimentally quite ac-
cessible. In particular, we pointed out different output
characteristics of the lasers, corresponding to chaotic
attractors born in different ways. The chaotic attrac-
tor after period-doublings does not have a very broad
spectrum and the frequency peaks typical for period-
doubling are still very prominent. These peaks disappear
and the spectrum broadens only after a further growth
of the attractor. On the other hand, the spectrum after
the break-up of a torus appears to be quite broad. Here,
a possible pitfall for applications is the occurence of lock-
ing on the broken-up torus. We found a loss of chaos over
a certain parameter range due to locking onto a period-
three orbit. We expect this to be observable in experi-
ments. We remark that avoilding a loss of chaos is par-
ticularily important for applications requiring a region
of chaotic output that is stable under certain changes in
the parameter, such as chaotic encryption schemes where
the parameter values provide the encryption key. Inves-
tigating this further remains an interesting challenge for
future research.
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