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A global characterization of gap solitary-wave solutions to a
coupled KdV system

A. R. Champneys? M. D. Groves' & P. D. Woods*

Abstract

Two coupled KdV equations, depending upon three dimensionless parameters, are inves-
tigated for gap solitary-wave solutions. Normal-form analysis of two degenerate Hamiltonian-
Hopf bifurcations captures small-amplitude envelope solitary waves. Agreement occurs with
numerical continuation to large amplitude, linking solitary waves, kinks, and a ‘snaking’
transition to infinite periodic cores.

PACS: 47.35.+i 05.45 42.65.T 02.30.Hq 02.60.L;j

Keywords: Coupled Korteweg-de Vries equations, solitary waves, reversible 1 : 1 resonance,
normal-form analysis, kinks

1 Introduction

Systems of two coupled Korteweg-de Vries (KdV) equations arise in several contexts, for example
as a general model for strongly interacting nonlinear waves, as a model for second-harmonic
generation in diffractive optical media and in the theory of near-resonant interaction of planetary
waves (see [12, 14, 11] and references therein). In general these coupled KdV equations are non-
integrable, yet mathematically the global well-posedness of the initial-value problems can be
established (cf. [2]). Solitary-wave solutions of such models, if they exist, are important as
they are likely to be attractors (after long times) for a wide range of initial data. This Letter
aims to characterize, in terms of all possible system parameters, the existence of gap solitary
waves. Here the ‘gap’ refers to parameter configurations in which neither component KdV
equation has continuous spectrum. An equivalent condition, which we will adopt here, is that
the system of travelling wave ODEs has a hyperbolic zero equilibrium, that is the eigenvalues
of the corresponding linearized system all have non-zero real part.

Linearly coupled KdV equations have appeared in at least three forms in the literature. Gear
& Grimshaw [12] derived the system of PDEs

r
wy + 3u? + Ugy + PUgg + quu + 5112 = 0, (1)
v+ Av+ 302 + v + A (pum + ruv + gUQ) =0 (2)

as a model for strongly interacting internal wave modes, Grimshaw and Malomed [14] suggested
the equations

Ut — _(u2)w +Uggr = —AVg, (3)

vy — Avg — _('02);6 — QUggy = —PAUg, (4)
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and Gottwald et al [11] proposed slightly different model, namely

Ut + Uggy — OUUL, = Uy, (5)

vt + OVgpe + MUy — Bpvvy = Kug. (6)

In fact all three systems are effectively equivalent: systems (3), (4) and (5), (6) are identical
up to re-definition of various parameters, and system (1), (2) may be put in the form (3), (4)
by a linear change of variables, provided that the coefficients satisfy certain non-degeneracy
conditions (private communication from R. Grimshaw). In this Letter we will consider the form
(5), (6), whose travelling wave reduced system has a freely varying parameter as the coefficient
of a nonlinear term (see below), so that it is therefore well suited to normal-form analysis.
Making the travelling wave substitution u = u(z), v = v(2), 2 = £ — ct in equation (5), (6) and
integrating once, one obtains the equations

i = cu+v+3u? (7)
= su+(c—n)v+ pv? (8)

in which the constant of integration has been set to zero to allow for solitary waves, the scaled
variables

u=At, v=A%, p=(6/3A)a, c=A¢ n=AGH+(1-106)¢), z=VAz

have been introduced and the hats have been dropped for notational simplicity; here A =
V|k|/]6] and s = sgn(k/9).

This Letter concerns the reduced system (7), (8) of ODEs, homoclinic solutions of which
correspond to solitary-wave solutions of the original system (5), (6) of PDEs (in this article the
word ‘homoclinic’ used alone always means ‘homoclinic to the zero equilibrium’). It is readily
verified that the system of PDEs (5), (6) has a Hamiltonian structure, and in keeping with the
general theory given by Benjamin [1, §2], this Hamiltonian structure is inherited by the ODE
system (7), (8), which can be written in canonical form with Hamiltonian

il
2

1 Iz
@ —sqiq2 — s(c—n)g3 — s} — S g3, (9)

H =
KdVv 9 3

i+ %pg -5
where q1 = u, q¢o = v, p1 = su, po» = v. The system is also reversible in the usual sense: it is
invariant under the transformation (z, g1, g2, p1,p2) — (—2, 41,92, —p1, —P2)-

In earlier papers, the present authors used a variety of analytical and numerical techniques to
study solitary-wave solutions of extensions to the so-called fifth-order KdV equation, which first
appeared in the literature around 30 years ago [19, 20| (see refs. [16, 25] for modern derivations).
The extensions take the form of either additional nonlinear terms involving higher derivatives
[6] or competing quadratic and cubic nonlinearities [23]. It was previously known that the usual
fifth-order KdV equation possesses small-amplitude envelope solitary-wave solutions that are
associated with a so-called subcritical Hamiltonian-Hopf bifurcation or reversible 1:1 resonance
in the travelling wave ODEs [13] and are found by normal-form analysis [18]. In this bifurcation
scenario four purely imaginary eigenvalues collide in pairs and become complex as a parameter is
varied. Depending upon the sign of a certain coefficient in the normal form, the resulting hyper-
bolic equation has either a pair of small-amplitude reversible homoclinic orbits (the subcritical
case) or no small-amplitude homoclinic orbits (the supercritical case). The additional parame-
ters introduced via the extra nonlinear terms give rise to the possibilities of further bifurcation
phenomena. In particular, there are two possible cases where the Hamiltonian-Hopf bifurcation
switches between super- and subcriticality. One of these cases arises in the steady-state version
of the generalised Swift-Hohenberg equation [23] and the other in the theory of interfacial waves
[7] (both scenarios are briefly discussed in Section 2 below). In this article we will analyse the
above coupled KdV system in a similar fashion.



In Section 2 below we locate the Hamiltonian-Hopf bifurcation points for the system (7), (8)
in its parameter space. The appropriate normal form is then introduced and certain significant
coefficients are calculated. Two degenerate Hamiltonian-Hopf points are identified at which the
bifurcation switches between super- and subcriticality. One of these points falls into the category
of equations studied in ref. [23], and numerical experiments reported in Section 3 are indeed in
qualitative agreement with those in that reference. The reason for the degeneracy at the other
Hamiltonian-Hopf point is described by a mathematical result stated in Proposition 1. At this
point the system has a two-dimensional invariant subspace located in the zero energy surface,
and this degeneracy is inherited by the normal form. The invariant subspace contains a non-zero
equilibrium connected to itself by a homoclinic orbit, and numerically a branch of such equilibria
is found to emanate from the degenerate Hamiltonian-Hopf point. Since both equilibria lie in
the zero energy surface there is also the possibility of heteroclinic connections between them
(corresponding to kink or front solutions of the original system of PDEs). Numerical experiments
confirm the presence of two such kink solutions along the branch, which acts as a barrier between
parts of parameter space associated with sub- and supercritical behaviour: solitary waves on
branches passing between the two regions interact globally with the kinks (see Section 3).

In this Letter we focus exclusively on primary homoclinic solutions, namely those which
bifurcate from zero at the Hamiltonian-Hopf points. This study includes the solutions into
which the primary solutions evolve along a continuous branch. However, it should be remarked
that there are necessarily infinitely many other geometrically distinct homoclinic orbits to (7),
(8) in a neighbourhood of a subcritical Hamiltonian-Hopf bifurcation that are not described by
the normal-form theory itself. These orbits, as established by rigorous variational methods [4],
are generically multi-bumped solutions that resemble ‘bound states’ consisting of multiple copies
of the bifurcating solutions. Approximate methods for several distinct systems [24, 3] show that
such solutions lie on branches that never reach the Hamiltonian-Hopf point: each branch turns
at a limit point and the sequence of limit points accumulates at the Hamiltonian-Hopf point.
Note also that other bifurcation mechanisms may give rise to homoclinic solutions in other parts
of parameter space, but such solutions will not be examined here.

2 Normal-form analysis

The first step in the normal-form analysis of (7), (8) is to examine the corresponding linearized
system. Its eigenvalues A satisfy the equation

My n—20224+c —cnp—5=0, (10)

the discriminant of which vanishes when 7% +4s = 0, so that repeated eigenvalues (corresponding
to Hamiltonian-Hopf bifurcations if imaginary or node-focus transitions if real) occur when
s = —1 and = £2. Hamiltonian-Hopf bifurcations occur for ¢ < 1/2 and node-focus transitions
for ¢ > n/2; at ¢ = n/2 there is a zero eigenvalue of multiplicity four. A double zero eigenvalue
occurs whenever ¢ — ¢ — s = 0, so that

2 4 1
ey (M tds)e
2 2
the positive sign gives a pitchfork bifurcation and the negative sign a degenerate saddle-centre
bifurcation. Figure 1 summarizes these conclusions for s = —1, the case of interest here since it
admits a Hamiltonian-Hopf bifurcation.

Let us now concentrate on the Hamiltonian-Hopf bifurcation at s = —1, 7 = 2, ¢ < 1 and
introduce the bifurcation parameter &« = n — 2. According to the transformation theory given
in [10, 22], equations (7), (8) can be transformed into the new Hamiltonian system

OH . O0H
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Figure 1: The eigenvalues of (7), (8) for s = —1; the numbered curves show the location of

pitchfork, degenerate saddle-centre, Hamiltonian-Hopf and node-focus bifurcations respectively.

where

H =iw(AB — AB) + |B|* + Hxr(|A|?,i(AB — AB),a) + R(A, B, a), (12)

A, B are complex coordinates, +iw are the double eigenvalues at o = 0, Hyp is a real polynomial
function of its first two arguments with coefficients which depend analytically upon « and R
is a higher-order remainder term. In these coordinates the reversibility is represented by the
invariance of (11) under the transformation (z, A, B) +— (—z, A, —B). We refer to the system
obtained by omitting the remainder term in (12) as the normal form for (7), (8). This normal
form is completely integrable (the quantities H and K = %(AB — AB) are independent first
integrals) and has been studied in detail by Iooss & Pérouéme [18]. They showed that along
orbits in the surface {H = K = 0} (upon which homoclinic orbits lie) the quantity z = |A|?
satisfies the equation

2
(Cdl_:> =4f(z),  f(z) = —zHxr(z,0,0), (13)

and periodic orbits correspond to double zeros of f(z). Information about the existence of
homoclinic orbits may then be obtained from the graph of f(z) in an elementary fashion by
regarding equation (13) as the law of conservation of zero total energy for a particle with unit
mass and position z moving in a potential —4f(x).
Write
L 5 1 3

Hyr(z,0,0) = oz — 5422° — gz’ + ..., (14)
where ¢; > 0, so that Hamilton’s equations are hyperbolic for @ < 0. Iooss & Pérouéme
demonstrate by a scaling argument that generically it suffices to approximate f(z) by a cubic
polynomial; they distinguish between subcritical and supercritical codimension-one behaviour
via the sign of the coefficient gs. For ¢o < 0 a circle of small-amplitude homoclinic orbits
bifurcate from zero at @ = 0 into negative «, two of which are reversible and survive the
introduction of the remainder term R in (12). The orbits consist of harmonic waves modulated
by a slowly decaying exponential envelope (e.g. see the bottom right inset in Figure 2 below);
the two reversible solutions differ in phase by w. On the other hand no homoclinic bifurcation
takes place for gs > 0. When g5 is small it is necessary to use a different scaling and to retain the



quartic terms in f(z); a complete unfolding of this codimension-two situation can be obtained
using ¢2 and « as independent small parameters [7, 23]. For g4 > 0 a subcritical bifurcation of
homoclinic orbits from zero occurs at o = 0, g2 < 0. These homoclinic orbits disappear as « is
decreased from zero to

3¢5

164144

by colliding with a periodic orbit and forming a heteroclinic connection between the zero equi-
librium and the periodic orbit [23, Fig. 2]. A heuristic argument given in ref. [23, §5] shows that
introduction of the remainder term R generically causes a heteroclinic connection to persist in a
small region of parameter space around the critical curve (15) and to be approached by ‘snaking’
branches of homoclinic orbits (see Figure 5 below). For ¢4 < 0 homoclinic bifurcation again takes
place for @ = 0, g2 < 0, but now the homoclinic solutions exist for all negative values of o and
can be followed up to a = 0, g2 > 0, where they decay algebraically rather than exponentially
[23, Fig. 3|. It is known that the two reversible homoclinic orbits with algebraically decaying
tails also survive the introduction of the remainder term R [17].

Let us now carry out the above normal-form analysis for the Hamiltonian-Hopf bifurcation
that occurs in (7), (8) at s = —1, 7 = 2, ¢ < 1. The vector

(15)

1 i 1 i
€= IS 1a |0
(2\/1—0 2" 2v/1—-¢ 2)
is an eigenvector of the linearized system corresponding to the eigenvalue iy/1 — ¢ and

= i(=3+2¢) 1-2¢ i(-1+2¢) —-3+2c
S\ 4(1-¢) 4/T=¢ 4(1-¢) "4/1-c¢
is a generalised eigenvector; their counterparts for the eigenvalue —iy/1 — ¢ are therefore & and

f. These vectors have been chosen so that {e, f, &, f} is a symplectic basis with respect to the
canonical symplectic 2-form associated with (9). It follows that

(91ap17QZ7P2)=A€+Bf+Aé+Bf7 A7B€(C7

defines a change of variable which transforms (7), (8) into the form (11) with

H = Hxkav(q1,92,p1,p2)
- o)i _\?
= iV1—c(AB - AB) + B + ( 2\/—( +A)+%(3—B))
(=34 2¢)i ~\°
o= +A)+W(B_B)>
- o)i _\?

and Hamilton’s equations are given explicitly by the formulae

A = i\/EAJrBJr(ZC_l)ai (— ! (A+A)+7(_1+26)i(B—B))

41 —¢) 2v/1—¢ 4(1—¢)
3(2¢ — 3)i 1 (=34 20)i _ 0\ 2
LAPTERS (wm(A A S B B))

(=14 2¢)i 1 o (=1+20)i _\?
41— o) (‘zm(“‘“)*mw—f’)) : (17)

. a 1 _ o (~142¢)i _
B = 1\/1—cB+4m<—2m(A+A)+m(B—B))




3 ( 1 (A+A)+(—3+20)i(B_B))2

T 2/T-c\2vVI—c 41— ¢)
7 1 o (=1+20) _\?
T oioe (_zm(“A) t i B B)> : (18)

The Hamiltonian (16) can be transformed into the form (12) using a sequence of near iden-
tity canonical transformations, and standard methods in normal-form theory show that the
coefficients in equation (14) are

_ 1
T oqa—e
=B+ p)(102 +15¢(=3 + p) +4p)
&= 18(1 — ¢)? )
1 4., 2 2 3 9
= 20736(1 —o \ - 24¢°(9 — p”)(122 2040 + 1
“= 50736(1 —C)S( 3600 (u” — 9)* + 24¢%(9 — u?)(12267 + 11(2040 + 16311))

— 4(3 + p)(1293921 + (445527 + 281(1332 + 25p)))
— 12¢(3 + p)(—558441 + pu(—42750 + 12(20829 + 11624)))

— 9¢2(3 + 1) (383697 + p(—26955 + pu(—5001 + 2003@))).

Observe that ¢ vanishes at u = —3 and at g = po = 3(—34 + 15¢)/(15¢ + 4). Clearly po < —3
for —4/15 < ¢ < 1 (e.g.po = —42/5 for ¢ = 2/5, the case investigated numerically in Section 3
below) with pg — —oo as ¢ | —4/15; on the other hand py > —3 for ¢ < —4/15 with yg — +o00
as ¢ 7 —4/15. The coefficient g2 is however always positive in the interval between —3 and pug
(the supercritical case) and negative outside this interval (the subcritical case). Note also that

Q4|u:—3 = 0)
| _405(7072 + 15675¢(2 — ¢))
Wlu=po = (1= )4 + 15¢)"

> 0,

so that the degenerate Hamiltonian-Hopf point at 7 = 2, u = po falls into the category studied
in [23]. The fact that g4|,——3 = 0 is a consequence of the following mathematical result,
whose proof is established by a careful examination of the sequence of coordinate changes which
transforms the Hamiltonian into its form (12); it is a particular instance of the observation that
in general normal-form transformations preserve symmetries and invariances.

Proposition 1 Consider the reversible Hamiltonian system

A = iwA+ B+ f(o, A, B, A, B),
B = iwB+g(o, A B, A B),

in which f and g are real functions of their arguments of order |(a, A, B)||(A, B)| (so that a
Hamiltonian-Hopf bifurcation takes place at o = 0). Suppose that (0, A,0, A,0) is identically
zero, so that {B = 0} is an invariant subspace when o = 0. The normal-form transformations
preserve this degeneracy; in particular Hxp(z,0,0) = 0 in the above notation and {B = 0} is

an invariant subspace for the normal form when o = 0.

An examination of equations (17), (18) shows that the condition in Proposition 1 is satisfied
precisely when p = —3, so that the system has a two-dimensional invariant subspace {B = 0}
at the degenerate Hamiltonian-Hopf point (7, #) = (2, —3). This invariant subspace is given by
{v = —u} in the original coordinates, and it is readily confirmed that it lies in the zero energy
surface. The flow in the invariant subspace is described by the system

i = cu —u + 3u?, v = —u,
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Figure 2: Branches of primary homoclinic solutions to (7), (8) for s = —1, ¢ = 0.4 which approach
the Hamiltonian-Hopf point at = 2 for three different values of p. The ordinate ||(u,v)| in
this and subsequent bifurcation diagrams is a scaling of the vector L2-norm of (u,u’,v,v").

which can be solved by elementary methods. One finds that it contains the non-zero equilibrium

point
l1—cc—1
= 19
o = (5557, (19)

which is connected to itself by the homoclinic orbit

1- 1-— V1-— -1 -1 V1-—
= 3C+—6 Csech2(72 cz)’ v—c3 +—66 sechz(i2 cz).

U

A straightfoward application of the implicit function theorem shows that a branch (u*, v*, p*) =
(u*(n),v*(n), u*(n)) of non-zero equilibrium solutions of (17), (18) lying in its zero energy surface
emanates from the Hamiltonian-Hopf point n = 2, 4 = —3. An explicit calculation shows that
the equilibrium (u*(2),v*(2)) at p = p*(2) = —3 is hyperbolic, and one would therefore expect
its homoclinic connection to persist along the branch. There is also the possibility of heteroclinic
connections between the zero and nonzero equilibria (kinks). These matters are explored in detail
in the numerical results that follow, which confirm that a homoclinic connection to (u*(7),v*(7))
exists at each point of the curve y = p*(n) together with two heteroclinic connections between

0 and (u*(n),v*(n))-

3 Numerical results

This section presents the conclusions of a numerical investigation inspired by the above normal-
form theory. We concentrate upon the ‘primary’ homoclinic orbits that are created by a



0.6

25 0 25 r \ 1
/ j

S \\.\ 1%
¢ (22, )l o L
02 03 F 25 0 %5 |
v | ]
08 i \
25 0 25 0 L L L L
2 0 2
<
w
Figure 3: Continuation in p of two distinct homoclinic solutions to (7), (8) for s = —1, ¢ = 0.4

and 7 = 1.6, towards a kink solution at p ~ —1.02.

Hamiltonian-Hopf bifurcation at = 2, ¢ < 1; for these orbits we have performed a range
of path-following experiments in the parameters 7 and p using the homoclinic continuation part
of the software AUTO [9]. The parameter ¢ will henceforth be fixed at the illustrative value 2/5
since the numerics show that the behaviour of solutions at this value is typical for values of ¢
in the range (—4/15,1) for which 9 < —3. The above normal-form theory therefore predicts a
subcritical bifurcation of two small-amplitude reversible homoclinic orbits at n = 2 for u < pg
and p > —3.

3.1 The degenerate Hamiltonian-Hopf point at 4 = —3

Figure 2 shows numerical computations of branches of homoclinic solutions near n = 2 for three
different values of 4. The curve for p = 0 shows behaviour typical of a subcritical bifurcation
from the Hamiltonian-Hopf point at 7 = 2 and is indicative of the behaviour for all g > —3: as
7 approaches 2 the amplitude of the solitary wave decreases to zero, and during this process the
core of the wave spreads out so that more and more large-scale oscillations become visible. Note
that the solution along this branch is a solitary wave of elevation in the u-component (having a
positive maximum at z = 0) and of depression for the v-component (having a central negative
minimum).

The normal-form analysis predicts no such subcritical bifurcation for y < —3, since then
g2 > 0. This prediction is indeed confirmed by the numerics. Consider, for example, the branch
in Figure 2 with g = —5. Here the L2-norm of the solution remains finite as 1 approaches 2 and
the central disturbance does not decay to zero. It follows that this branch, despite its existence
right up 7 = 2 (where its solitary-wave tails decay algebraically rather than exponentially) does
not bifurcate from zero at n = 2, and hence is not captured by the normal-form analysis for a
Hamiltonian-Hopf bifurcation. Furthermore, as is clear from the insets in Figure 2, solutions
along the branch with g = —5 are qualitatively different to those on the y = 0 branch; they
are now such that both u- and v-components are waves of depression. It is therefore clear that
these two branches cannot be smoothly continued into each other, and there must some global
bifurcation that causes the transition between these branches at y = 0 and p = —5.

The transition between these two types of behaviour occurs at u = —3, yet Figure 2 shows
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Figure 4: Two-parameter continuation in the (7, u)-plane of kink solutions to (7), (8) with
s=—1and c=0.4.

that the corresponding branch for this critical u-value is qualitatively similar to that for y = —5.
Figures 3 and 4 shed more light on this matter: the global bifurcation that causes the transition
between the ‘depression-elevation’ and ‘pure depression’ solitary waves occurs as both approach
a pair of heteroclinic connections to the non-zero equilibrium point found in Section 2. Figure 3
depicts the results of numerical continuation in p for 7 fixed at a value slightly less than 2
(the Hamiltonian-Hopf point). Note the spike at y = p* ~ —1.02; the ‘pure depression’ and
‘depression-elevation’ solitary waves are respectively to the left and right of this spike. Taking
the solution branch on the right, one finds that it reaches a critical state as u | p*. Here
the solution has infinite L2-norm as it develops into a pair of heteroclinic connections (kinks)
between the zero equilibrium and the nonzero equilibrium at (u,v) = (u*,v*) = (0.34, —0.49).
The solution on the branch to the left develops into a pair of kinks and a homoclinic connection
to (u*,v*) as p T p*. Numerically the branch has been truncated in the Figure 3, but its infinite
slope at y = u* is apparent, as is the form of solutions shown in the insets which depict the
profiles of the homoclinic solutions on either side of the transition. To the right the solutions
resemble a concatenation of a heteroclinic orbit connecting 0 at z = —oo to (u*,v*) at z = 400
and a heteroclinic orbit connecting (u*,v*) at z = —oo to 0 at z = +00; to the right the solutions
take the same form with a homoclinic connection to (u*,v*) sandwiched in the middle.

Figure 4 shows the branch y = p*(n) of non-zero equilibria (u*,v*) found in Section 2
along which the numerics indicate the presence of two heteroclinic connections between 0 and
(u*,v*) and a homoclinic connection to (u*,v*). Recall that this branch terminates at the
degenerate Hamiltonian-Hopf point (1, #) = (2, —3). Reversible homoclinic solutions are created
at a subcritical Hamiltonian-Hopf bifurcation for ¢ > —3, » = 2 and can be followed to the
curve p = p*(n), where they undergo the qualitative change described above. Below the curve
= p*(n) they can be followed to n = —2, p < —3, where they have finite amplitude.

3.2 The degenerate Hamiltonian-Hopf point at u = uo

Let us now examine the other parameter interval where the normal-form analysis gives a sub-
critical Hamiltonian-Hopf bifurcation, namely p < pg.
Figure 5 shows a bifurcation at gy = —13.35 of the two reversible homoclinic orbits that
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Figure 5: Continuation in 7 of the two bifurcating primary homoclinic solutions to (7), (8) with
s=—-1,¢c= 0.4 and p = —13.35, showing the disappearance of the homoclinic solutions for 5
close to 2 via a ‘snaking’ bifurcation diagram. Note from the insets that the homoclinic solutions
develop long periodic cores with the u-component having a positive mean and the v-component
a negative mean.
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Figure 6: Asin Figure 5 for 7 close to 2, but for 4 = —15.35 and now showing a new ‘supercritical’
solution (solid line) in comparison with one of the primary solutions (dashed line).

originate from the Hamiltonian-Hopf point at n = 2. The bifurcation diagram shows how the
branches ‘snake’ back and forth, the solution gaining an extra pair of ‘bumps’ close to a periodic
solution as it traverses between each successive pair of limit points. In this fashion a homoclinic
solution with arbitrary large norm and arbitrarily many finite-amplitude bumps is created. The
successive limit points converge rapidly to two distinct 7-values. Notice how the bifurcation
branches become intertwined and their limit points converge to the same two 7-values. The first
branch creates solutions with odd numbers of bumps close to a periodic orbit while the second
creates homoclinic solutions with an even number of bumps close to the same periodic orbit. In
this periodic solution the variables u and v have respectively a negative and a positive mean.

These numerical results are in complete accordance with the heuristic explanation and nu-
merical results presented for different systems in refs. [23, 15]. The premise in that work was
that these structures should emerge in an unfolding of the heteroclinic connection between the
zero equilibrium and a periodic orbit predicted by the Hamiltonian-Hopf normal-form analysis
for —1 < g3 < 0 and g4 > 0. In Section 2 it was shown that this situation arises in the present
context at the degenerate Hamiltonian-Hopf point n = 2, u = uop.

The situation for our coupled KdV system is, however, more complicated. Not only do
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Figure 7: Two-parameter continuation in 1 and u of the left and right-hand limit points of large
norm in Figures 5 and 6. The inset shows the curves near n = 2 which at the scale depicted
contract onto the single solid line (connecting data points which were calculated indirectly via
continuation in 7 only). The dashed line in the inset represents the formula (15) evaluated using
the normal-form coefficients at y = py.

the branches of primary homoclinic orbits terminate in a ‘snake’, but so do a pair of branches
of larger-amplitude homoclinic solutions that approach from smaller values of 1. For reasons
that will become apparent we shall refer to these now solutions as ‘supercritical’. Figure 6
depicts a branch of one of these new solutions and compares it with one of the primaries. This
branch also snakes, creating a homoclinic solution with arbitrary large norm and arbitrarily
many large-amplitude bumps. The successive limit points converge rapidly to the same two 7-
values as the primary snaking branches. It would appear that supercritical homoclinic solutions
form a continuous branch with those homoclinic orbits that exist for u* < p < pg (see above).
Recall that these solutions can be continued up to the supercritical Hamiltonian-Hopf point at
n =2, -3 < u < po (hence the name), and of course via the global bifurcation along the curve
p = p*(n) to a subcritical bifurcation at n =2, p < —3.

Note that Figures 5 and 6 are plotted for different p-values. In fact the picture remains
qualitatively valid over a large range of u < pg. As p is decreased the width of the snake widens
and its centre moves way from n = 2. Conversely, as u T g, the whole structure shrinks into a
neighbourhood of the degenerate Hamiltonian-Hopf bifurcation at n = 2. Figure 7 shows how
the left and right limit points of the snaking primary branch vary with 7 and u. These curves
were computed by tracing the limit points of the branch for homoclinic orbits with sufficiently
large norm. Similar curves computed for the supercritical solutions appear numerically to be
identical with those for the primaries. Note how the width of the snake becomes very thin as the
curves approach the degenerate Hamiltonian-Hopf point at (1, u) = (2, up). Analytical evidence
to be presented elsewhere suggests that the width of the snake is an exponentially small function
of 4 — o The inset in Figure 7 shows a comparison between the limit points on the snake and
the expression (15) where the normal form predicts a heteroclinic connection between the origin
and a periodic orbit. Note that the normal-form prediction, which only gives the quadratic part
of the curve, is at best only valid for a tiny range of n-values just less than 2.

4 Conclusion
In summary, this Letter has demonstrated how gap solitary waves in coupled systems of wave

equations may be generated and destroyed in the neighbourhood of degenerate Hamiltonian-Hopf
bifurcation points. Specifically, via scaling we have reduced a class of systems which includes
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models derived from different physical applications to the analysis of a three-parameter system
of coupled second-order equations. For such a system we have identified two degeneracies in
the normal form of the Hamiltonian-Hopf bifurcation which occurs for n = 2; at u = pg and
at g = —3. The normal-form unfolding of the former shows agreement with the analysis and
numerical results for a higher-order KdV equation in ref. [23]: there is a delicate ‘snaking’
back and forth in a bifurcation diagram of a pair of intertwined branches of solitary waves. The
bifurcation at gy = —3 is entirely new and Proposition 1 above explains why it occurs for systems
of this type. Moreover, we have shown how this bifurcation leads to the creation of kink solutions
which play an organizing role in bounding parameter regions containing qualitatively distinct
solitary waves. Finally, our numerical results indicate how these small amplitude solutions
involved with the two degeneracies fit together globally in the (7, u)-parameter plane.

An important feature not discussed in this Letter is the question of PDE stability of the new
solitary-wave solutions. This question is not straightforward since the equations are in general
nonintegrable. Any investigation is left for future work, but it is worth remarking that there is
analytical and numerical evidence available for various fifth-order KdV models [21, 5, 8] which
suggest that some of the more complex solitary-wave solutions akin to those found here may
indeed be stable.
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