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Resonant homoclinic flip bifurcations: a numerical investigation
Bernd Krauskopf, Bart E. Oldeman, and Alan R. Champneys

Engineering Mathematics, University of Bristol,
Bristol BS8 1TR, UK
(Applied Nonlinear Mathematics Preprint 99.13, July 1999)

Abstract. We report on a numerical study of codimension-three resonant incli-
nation flip homoclinic orbits. Two cases of unfoldings are presented: one with
a single homoclinic doubling, and the other containing a homoclinic-doubling
cascade. Our results confirm the unfoldings given in Ref. [3].

We consider a homoclinic orbit to a hyperbolic equilibrium, the origin for convenience, in
a three-dimensional vector field. The origin is assumed to have two stable and one unsta-
ble eigenvalue, which can be scaled to be —\;;, —As and A, = 1 with —)\;; < =Xy < 0.
Our interest is in homoclinic orbits of higher codimension. One speaks of an orbit flip
if the homoclinic orbit approaches the origin along the strong stable manifold W?**, and
of an inclination flip if the stable manifold W*%* intersects the manifold W** nontrans-
versely along the homoclinic orbit. In both bifurcations W*** changes orientation. These
homoclinic flip bifurcations are of codimension-two, provided certain non-resonance con-
ditions on s and A, are satisfied; for details see [3] and references therein. Depending
on \;; and A, there are three different cases: A where no extra bifurcations occur, B
with a single homoclinic-doubling bifurcation, and the complicated case C involving n-
periodic and n-homoclinic orbits for arbitrary n and a region with horseshoe dynamics.
If a non-resonance conditions for Ay, and A, fails, we speak of a resonant homoclinic flip
bifurcation. This constitutes a transition between two codimension-two homoclinic flip
bifurcations, and there are two such transitions, namely from A to B and from B to C.
Assuming cone structure close to the codimension-three central singularity, unfoldings for
resonant homoclinic flip bifurcations were given in [3] on a sphere around this singularity.

It is the aim of this paper to study these unfoldings numerically. To this end we
computed bifurcation curves in the model of Sandstede [4] (which was constructed to
contain homoclinic flip bifurcations) with the continuation package AuTO/HOMCONT
[1]. We work on spheres in the ‘world map’ representation

vi =rcosTocosTh, vy =rsinmh, v3=rsinmTeocoswl, (1)

where 6 € [—0.5,0.5], ¢ € [0,2], r € R" and (v, s, v3)-space is the original parame-
ter space with the resonant homoclinic flip bifurcation point at the origin. Note that
(v1, V9, v3) needs to be matched for each case to the unfolding parameters in Sandstede’s
model, the details of which will not be given here. We present the results for the inclina-
tion flip; those for the orbit flip are similar. A detailed exposition of all of our results will
appear elsewhere.

The transition from A to B. The central singularity for this transition is an inclination
flip bifurcation with the resonance A; = 1. In the spherical coordinates (1) for a suitable
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Figure 1: The numerically computed transition from A to B for the inclination flip for
r=0.25 (a) and r = 0.4 (b); notice the difference in scale.

choice of (v, 14, v3) we obtained the numerical results in figure 1. The basic 1-homoclinic
orbit changes from oriented to twisted at the points A and B. Note that at A there are
no extra bifurcations, which is why it is not shown in figure 1. For a radius of » = 0.25 the
period doubling curve PD! and 2-homoclinic curve H? were calculated in the (¢, #)-plane
in panel (a). These curves PD' and H? connect B with a resonant homoclinic point Ry
of a twisted homoclinic orbit. In this and the next figure limit cycles are indicated by
their basic period, together with a superscript showing whether they are stable (s) or not
(u). It turns out that for » = 0.25 the saddle-node curve (known to exist near B) is so
close to the main homoclinic curve H, in parameter space that it cannot be followed, and
instead we produced panel (b) for 7 = 0.4. The curve SN* connects B with a resonant
homoclinic point R, of an oriented homoclinic orbit. Together panels (a) and (b) confirm
the unfolding in [3]. Notice that even for r = 0.4 the curve SN' is very close to the
curve H!. Tt turns out that for r = 0.4, the curves PD' and H? are involved in extra
bifurcations, so that there is a clear trade-off: when the radius r of the sphere is too small
one is not able to resolve curves, but when it is too large extra bifurcation structures
appear on the sphere.

The transition from B to C. The central singularity we consider for this transition is
an inclination flip bifurcation with the resonance A\; = 1/2 for ;s > 1. In the spherical
coordinates (1) for a suitable choice of (v, v, v3) we obtained the numerical results in the
(¢, 0)-plane for » = 0.2 shown in figure 2. The 2-homoclinic curve H, 02/75 emerging at B,
changes its orientation in an inclination flip bifurcation (of type B), and can be followed
to C. From there a 4-homoclinic curve H?, emerges, changes its orientation in another
inclination flip bifurcation, and can also be followed to C, and so on. In other words, by
following H? we encounter a homoclinic-doubling cascade, which was recently shown to
exist near the codimension-three bifurcation studied here [2, 3]. At each of the inclination
flip points a period-doubling curve of the respective multiple of the basic period emerges.
The curve PD' starting at B can be continued to C, and the same is true for the curves
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Figure 2: The numerically computed transition from B to C for the inclination flip
involving a homoclinic-doubling cascade.

PD? and PD* emerging from the inclination flips of the homoclinic-doubling cascade. The
saddle-node curve SN' starting at B continues through a cusp to C, whereas the saddle-
node bifurcation curves emerging from the inclination flips of the homoclinic-doubling
cascade (which are too small to be visible in figure 2) connect to period-doubling curves
PD?", which then cross the curves H?"" [2]. Figure 2 confirms the unfolding for the
transition from B to C in [3]. The banana-shaped region between the homoclinic and the
period-doubling curves is known to contain complicated dynamics [3], namely ‘bubbles’
of homoclinic-doubling cascades with any odd base period and horseshoe dynamics.

Conclusions. The unfoldings presented in [3] were numerically found and computed in the
three-dimensional vector field model from [4] for the case that the central singularity is
a resonant inclination flip. A homoclinic-doubling cascade was found numerically as pre-
dicted by the theory. The bifurcation structures discussed here, in particular homoclinic-
doubling cascades, are expected to be of importance in models from applications with
resonant homoclinic flip bifurcations. A more detailed presentation of all cases of transi-
tions and of the homoclinic-doubling cascade is in progress.

References.

[1] E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Yu.A. Kuznetsov, B. Sandstede, and
X. Wang. AUTO 97: Continuation and bifurcation software for ordinary differential
equations (with HomCont) (1997), see http://indy.cs.concordia.ca/auto

2] A.J. Homburg, H. Kokubu, and V. Naudot. Homoclinic-doubling cascades. DANSE
preprint, 45/97, (1997).

(3] A.J. Homburg, B. Krauskopf. Resonant homoclinic flip bifurcations. DANSE preprint,
53/98, (1998).

[4] B. Sandstede. Constructing dynamical systems having homoclinic bifurcation points
of codimension two. J. Dyn. Diff. Eq., 9:269-288, (1997).



