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Origin of Multikinks in Nonlinear Dispersive Systems

Alan Champneys® and Yuri S. Kivshar?
! Department of Engineering Mathematics, University of Bristol, Bristol BS§ 1TR, UK
2 Optical Sciences Centre, Australian National University, Canberra ACT 0200, Australia

We develop the first analytical theory of multikinks in strongly dispersive nonlinear systems,
considering the examples of the weakly discrete sine-Gordon model and the generalized Frenkel-
Kontorova model with a piecewise parabolic potential. We reveal the existence of discrete sets of
the 2w N-kinks, and also show their bifurcation structure in driven damped systems, in agreement

with earlier reported numerical simulations.

Nonequilibrium dynamics of many physical systems
can be characterized by the creation and motion of topo-
logical excitations or defects. In particular, when a
nonlinear system possesses a degeneracy of its ground
state, such excitations are kinks, the simplest and prob-
ably most studied nonlinear modes. The concept of a
kink is vital for many physical problems such as disloca-
tion and mass transport in solids, charge-density waves,
commensurable-incommensurable phase transitions, con-
ductivity, tribology, Josephson transmission lines, etc
(see, e.g., the recent review [1] and references therein).

In application to problems in solid state physics, the
kink’s motion is strongly affected by the inherent lat-
tice discreteness. Earlier numerical simulations [2] of
the kink’s motion in a lattice described by the discrete
sine-Gordon (SG) equation, also known as the Frenkel-
Kontorova (FK) model [1], demonstrated a number of
interesting features not observed in the dynamics of soli-
tons of integrable (either continuous or discrete) models.
In particular, Peyrard and Kruskal [2] found that a single
kink becomes unstable when it moves in a discrete lattice
at sufficiently large velocity, whereas two (or more) kinks
are stable and propagate as multikinks. The former effect
is associated with the mechanism of resonant interaction
between a kink and radiation [3], and resonances are even
observed experimentally [4]. In contrast, the latter phe-
nomenon, i.e. the formation of multikinks, “.. has no
clear analytical explanation yet” (see [1], p. 25).

Recently, different physical systems have been studied
numerically where multikinks are found to play an im-
portant role since they appear in the region where single
kinks are unstable. For example, multikinks are respon-
sible for a mobility hysteresis in a damped driven com-
mensurable chain of atoms at zero [5] and nonzero [6]
temperatures. In arrays of Josephson junctions, instabil-
ities of fast kinks lead to the generation of bunched fluzon
states also described by multikink modes [7].

The main purpose of this Letter is to provide the
first step towards an analytical theory of multikinks in
strongly dispersive nonlinear nonintegrable systems, in-
cluding the analysis of the existence and codimension of
N —kink states. In particular, we consider a weakly dis-

crete SG model and demonstrate the existence of a finite
number of multikinks due to a higher-order dispersion.
We also find analytical solutions for multikinks and de-
scribe the effect of an external field and damping on their
existence and qualitative features.

As the starting physical model for our analysis, we con-
sider the dynamics of a commensurable chain of atoms
in a periodic substrate potential (see, e.g., [1]). In a nor-
malized form, the equations of motion for the atomic
displacements u,, can be written as

!

fin — Vipg (Un — tn—1) + V;;c (Unt1 —un) + slub(un) =0,

where Vine(u) is the effective potential describing the in-
teraction between neighboring atoms, and Wy, (u) is a
substrate potential with period a. For small anharmonic-
ity, the potential Viys(u) can be expanded into a Taylor
series to yield:

fin — g(Uny1 + Un—1 — 2up) + Wslub(un) =0,

where g = Vi (a). We consider the quasi-continuum
limit of this lattice model and, taking into account a

higher-order dispersion, obtain the normalized equation
Ut — Ugz — Plzzes + Wslub(u) =0, (1)

where, for harmonic interaction, 8 = a?/12.

Equation (1) takes into account the effect of lattice
discreteness through a fourth-order dispersion term, and
for = 0 and W/, (u) = sin u, it transforms into the
well-known exactly integrable SG equation that has an
analytical solution for a single 2w-kink moving with the
velocity v, up, = 4tan~'{exp[(z — vt)/v/1 — v?]}. Similar
kinks exist for a rather general topology of the substrate
potential Wy, (u) [1]. However, our aim in this Letter is
to study a new class of localised solutions of Eq. (1) for
B # 0 in the form of 27 N-multikinks.

First, following the original study of Peyrard and
Kruskal [2], we consider the harmonic substrate potential

Wsup(u) =1 —cos u. (2)

We look for kink-type localised solutions of Eq. (1)
that move with velocity v (v2 < 1), i.e. we assume



ug(2) = ug(z — vt). Linearizing Eq. (1) and taking
u(z) ~ e**, we find eigenvalues A of the form,

3 = g5l0* — 1) £ T =P =48,

so that for 8 > 0 there always exist two real and two
purely imaginary eigenvalues. Thus, the origin u = 0
is a saddle-centre point and hence kinks, which are ho-
moclinic solutions to w = 0 (mod 2), should occur for
isolated values of v for fixed B (see Refs. [8,9]). That is
they are of codimension one. Moreover, this codimension
is only true if the solutions are themselves reversible, that
is invariant under one of the transformations:

R, : wu(mod27) — —u(mod 27), u" — —u",

! ! "t "
Ry: v ——u, v —-—-u", t——t,

where prime stands for differentiation with respect to z.
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FIG. 1. The four 4w-kink solutions of Eq. (1) with

Wi (1) = sin u propagating at the given velocities.

To find all solutions of this type, first we fix § = 1/12,
which corresponds to a = 1. Then, we perform numeri-
cal shooting for a range of values of v and find a discrete
family of 4n-kinks at different values of v. We reveal
that there exist only four such solutions at four different
values of v. The first solution has an analytical form [10]

up(2) = 8tan™! exp {(3ﬂ)1/4z} , (3)

where v> = 1 — 2,/8/3, i.e. for our choice of 3,
vfj} = 4/2/3. Other values are: vfj} = 0.59498.. .,

vgi) =0.42373..., and vijr) = 0.21109.... All these solu-
tions are presented in Fig. 1. We may regard this discrete
family as part of an infinite sequence of bound-states of
two 27-kinks that converges to the limit of infinite sepa-
ration at a value of v2 < 0. Actually the key parameter
is p = 1—v?, and further numerical evidence reveals that
the bound states converge to p = —oo at which value a
2m-kink exists only formally.
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FIG. 2. Examples of (a) 6m- and (b) 8w-kinks of Eq. (1)
with the potential (2) at given velocities.

Furthermore, the numerics reveals that there are no
values of v at which 2x-kinks occur. However, there
are v-values at which 27 N-kinks occur for all N > 2.
Figure 2 shows several examples of 67- and 8m-kinks.
According to the theory of the dynamical systems [8],
on the existence of bound states of homoclinic solutions
to saddle-centre equilibria in reversible Hamiltonian sys-
tems, again thinking of the 4n-kinks as bound states of
27-kinks, one should expect to see precisely two 6mw-kinks
for each 4m-kink. These would occur at vég’i satisfying
véz,z_ < vgz < ng"_; all eight of which are depicted in Fig.
2(a). Moreover, there would be two infinite sequences of
8m-kinks at vg;j )% such that véz;;j [ vgz from below as
j — oo and o{"7* — o{Y from above. Our numerical
simulations have revealed precisely this structure of all
multikink families.

Finally, it appears that the above structure is largely
independent of 8. Figure 3 shows the results of contin-
uation (using the method for homo/heteroclinic orbits
[11] in the software AUTO) of the four 47-kinks in the
(v,1/+/B) plane. The curves are similar to the curve ob-
tained numerically in Ref. [2] for the discrete SG equa-
tion. Note that no curve passes through v = 1, they only
reach there asymptotically as § — 0. In the process the
slope of each kink at its midpoint steepens, so that the
solution becomes singular in the limit.
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FIG. 3. Two-parameter continuation of 47w-kink solutions
for the model (1) with the harmonic nonlinearity (2).

The above numerical results may be verified by the
construction of ezact solutions in closed form when
the substrate potential is approximated by a piecewise
parabolic potential that generates in Eq. (1) the effec-
tive force, W) ,(u) =

u—2nm :(2n - D71 +7/2 <u < 2nw+7/2,
Cn+Dr—u :2nr+7/2<u < (2n+ )7+ 7/2.

Looking for kinks moving with velocity v, we solve
the linear equation (1) that defines a four-dimensional
dynamical system in the phase space (u,u’,u”,u"") €
(—7/2,37/2] x R3. The phase space is separated into
two distinct domains:

Region 1:|u| < 7/2, Region 2:7/2 < u < 37/2.

Thus, 4n-kinks can be constructed by first noticing that,
in order for these solutions to be of codimension-one (i.e.
occur at isolated v-values), they should be reversible un-
der the transformation R; above. Hence, we look for
solutions which satisfy, for some unknown 2z, the con-
ditions: u(—o0) — 0, u(z2) = 27, and 4" (22) = 0, so
that u(z) is in Region 1 for all z < 0, in Region 2 for
0 < z < 21, for some unknown 2; < 22, and is in Region
1 again for all 21 < 2z < 2».

The boundary condition can be satisfied by noticing
that such solutions at z = 0 (the first point of tran-
sition between Regions 1 and 2) satisfy u(0) = 7/2,
u'(0) = An/2, 4"(0) = X27/2, and u"'(0) = A37/2,
where A2 = 6(/p? + 2/37— p) is the unique real positive
eigenvalue of the linear system in Region 1. Hence the
asymptotic boundary condition at z = —oo in Region 1
becomes an initial condition at z = 0 for u in Region 2.
The general solutions in Regions 1 and 2 are:

uy(2) = A1e? + Bie?* + Oy cos(wz) + D; sin(wz)
and, providing g > pmin := 1/2/3m,
uz(z) = Ag cos(wrz + Ba) + Ca cos(waz + D3)

where w? = 6(\/p?+2/31 + p) and wi, = 6(p %

V12 —2/3n), A;, B;, Cj, and D; are unknown coef-
ficients. Therefore, we can explicitly solve for the co-
efficients to find us(2) in closed form. This expression

defines an implicit equation for z;; ua(z1) = 37/2. The
value of us(z1) and its derivatives then defines initial con-
ditions at z = 21, hence determining the constants Aj,
By, (1, and D;. This in turn defines 25 implicitly as
u1(22) = 27. To have a 4w-kink we additionally require
uy(22) = 0, and so should only expect to find zeros of this
final quantity by varying v. Hence we can define a ‘test
function’ for 4w-kinks K (v;21,22) := uf(22). Using the
above construction, this K can be written in closed form
in terms of v, 21, and 2. The unknown transition points
21,2 are the solution to given transcendental equations,
in each case only the first solution of which has meaning.
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FIG. 4. The function K(v) for multikinks of Eq. (1)
with piecewise parabolic potential. Inset: the corresponding
47-kinks and their associated v-values.

Figure 4 shows a graph of K as a function of p =1 —
v? € (fmin, 1), which has been computed using MAPLE
with the implicit equations solved for their smallest pos-
itive solutions. The five zeros of K correspond to 4m-
kinks, graphs of which are shown in the insert to the fig-
ure. These zeros occur for v = 0.64064609, 0.49870155,
0.37835717, 0.26634472, 0.14477294. 1t is also possi-
ble to construct solutions for g < pmin in a analogous
manner, but with the solution in Region 2 replaced by
one corresponding to complex eigenvalues. This gives
the additional solution given in the insert to Fig. 4 for
v = 0.833706.

In this way, we find analytically a finite set of v-
values giving 47-kinks for the piecewise parabolic poten-
tial model, having qualitatively the same structure as the
solutions found numerically for the sinusoidal nonlinear-
ity (2). One could go on to construct 2wN-kinks for
N > 2, but the calculations presented already serve to
corroborate the earlier numerical results.

To analyse the robustness of multikinks in realistic
physical systems, we add to the right-hand side of Eq.



(1) the driven damped term F — éu,, where F is an ex-
ternal DC force and § is a damping coefficient (see, e.g.,
[5,6]). Importantly, for each of the kinks so far found, it
is possible to use numerical continuation to trace curves
that lie on sheets in the parameter space (v,d, F') cor-
responding to the existence of multikinks. For example,
taking the explicit 47-kink solution given by Eq. (3), a
curve was computed at 8 = 1/12 in the (F, §)-plane with
fixed v = \/2/_3, reaching a maximum with respect to §
at 6 = 0.069326. Taking the fixed value § = 0.05 from
this curve the locus of kinks in the (v, F')-plane can then
be traced out, as depicted in Fig. 5.
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FIG. 5. The kink’s velocity v and maximum amplitude
against external force F' for the simplest 47 kink with
6 = 0.05. Note that each limb of the curve spirals back on
itself. The insets illustrate example solutions on the locus.

Two interesting features can be noted from this curve.
First, all kinks have developed oscillations around the
equilibrium close to w = 4x. This is because, for § > 0,
the corresponding equation for travelling waves is no
longer Hamiltonian or reversible, and the linearization
around the asymptotic value u, = sin~' F now has three
stable eigenvalues, two of which have non-zero imaginary
part. These oscillations may be regarded as radiation
that travels at the kink’s velocity, as was earlier observed
in direct numerical simulations [7]. The second interest-
ing feature of the computed curve is that it ends at a
point where a transition takes place involving a hetero-
clinic connection with u = 57. This suggests that 7-kinks
are possible for sufficiently large values of F'.

Finally, we mention that the case 8 < 0 in Eq. (1)
can also occur in generalised nonlinear lattices provided
we take into account the next-neighbor interactions, e.g.
due to the so-called helicoidal terms in nonlinear models
of DNA dynamics [12]. In this case, the analysis is much
simpler and, similar to the nonlocal SG equations [13],
leads to existence and stability of continuous families of

multikinks parameterized by v. ;From the mathemati-
cal point of view, for 8 < 0 the origin changes from a
saddle-center to a saddle-focus, and rigorous variational
principles [14] give families of stable 27 N-kinks for all
N> 1.

In conclusion, we have developed the first analytical
theory of multikinks in strongly dispersive nonlinear sys-
tems, considering the important examples of the weakly
discrete SG model and the generalized FK model with
a piecewise parabolic potential. We have revealed the
existence of a discrete set of 2w N-kinks, and also found
exact analytical solutions for the multikinks. The analy-
sis of a driven damped system has shown that multikinks
exist in a wide region of the physical parameters above a
certain threshold in the applied force amplitude. We be-
lieve that general features of multikinks and the physical
mechanism for their formation are similar in many other
strongly dispersive nonlinear models.
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