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ABSTRACT

We report a rich spectrum of isolated solitons residing inside (embedded into) the continuous radiation spectrum in
a simple model of three-wave spatial interaction in a second-harmonic-generating planar optical waveguide equipped
with a quasi-one-dimensional Bragg grating. An infinite sequence of fundamental embedded solitons are found,
which differ by the number of internal oscillations. Branches of these zero-walkoff spatial solitons give rise, through
bifurcations, to several secondary branches of finite-walkoff solitons. The structure of the bifurcating branches suggests
a multistable configuration of spatial optical solitons, which may find applications in photonics.

Recent studies have revealed a novel class of embedded
solitons (ESs) in various nonlinear-wave systems. An ES
is a solitary wave which exists despite having its inter-
nal frequency in resonance with linear (radiation) waves.
ESs may exist as codimension-one solutions, i.e., at dis-
crete values of the frequency, provided that the spectrum
of the corresponding linearized system has (at least) two
branches, one corresponding to exponentially localized
solutions, the other one to delocalized radiation modes.
In such systems, quasilocalized solutions (or “generalized
solitary waves” [1]) in the form of a solitary wave resting
on top of a small-amplitude continuous-wave (cw) back-
ground are generic [2]. However, at some special values of
the internal frequency, the amplitude of the background
may exactly vanish, giving rise to an isolated soliton em-
bedded into the continuous spectrum. Examples of such
embedded solitons are available in water-wave equations
[3] and in several nonlinear-optical models, including a
Bragg grating incorporating wave-propagation terms [4]
and second-harmonic generation in the presence of the
self-defocusing Kerr nonlinearity [5] (the latter model
with competing nonlinearities was introduced earlier in a
different context [6]).

ESs are interesting because they naturally appear
when higher-order (singular) perturbations are added
to the system, which may completely change its soli-
ton spectrum. Optical ESs have considerable potential
for various applications, due to the very fact that they
are isolated solitons, rather than occurring in continu-
ous families. The stability problem for ESs was solved in
some generality in Ref. [5]. There it was demonstrated
that an ES is a semi-stable object which is stable to lin-
ear approximation, but subject to a slowly growing (sub-
exponential) one-sided nonlinear instability. In the pre-

viously studied models, only a few branches of ESs were
found, and only after careful numerical searching, which
suggest they may be hard to observe in an experiment.
The present work investigates ESs in a recently intro-
duced model of a three-wave interaction [7]. It will be
found that ESs occur in abundance in this model, hence
it may be much easier to observe them experimentally.

The model describes spatial solitons produced by the
second-harmonic generation in a planar waveguide, in
which two components of the fundamental harmonic
(FH), v; and v, are linearly coupled by Bragg reflection
on a grating in the form of a system of scores parallel to
the propagation direction z (for a more detailed descrip-
tion of the model see [7]):

Z'(’Ul)z + i(Ul)z + vo + 113’1}; = 0, (1)
i(’l)z)z - ’I:(’Uz)z + v + ’U3’UT = 0, (2)
2i(v3), — qus + D(v3) gz + v1v2 = 0. (3)

Here w3 is the second-harmonic (SH) field, z is a normal-
ized transverse coordinate, ¢ is a mismatch parameter,
and D is an effective diffraction coefficient (the diffrac-
tion terms in the FH equations may be neglected, as the
artificial diffraction induced by the Bragg scattering is
much stronger, while the SH, propagating parallel to the
grating, undergoes no reflection).

Experimental techniques for generation and observa-
tion of spatial solitons in planar waveguides are now well
elaborated ( [8]), and the waveguide carrying parallel
scores can be easily fabricated. Hence the present system
provides a medium in which experimental observation of
ESs are most plausible (simple estimates [7] show the
necessary size of the experimental sample is just a few
cm). As mentioned above, the observation of ES in this
system should be further facilitated by the fact that it



supports a multitude of distinct ES states, see below.

Egs. (1)—(3) have three dynamical invariants: the mo-
mentum and Hamiltonian, which will not be used below,
and the energy flux (norm)

+oo
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The norm played a crucial role in the analysis of the ES
stability carried out in [5].
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FIG. 1. The (k, q) parameter plane of the three-wave model
(1)-(3). The linear analysis (the results of which are summa-
rized in the inset boxes) shows that ES with ¢ = 0 may occur
only in the region inside the solid bold lines. The bundle of
curves emanating from the point (k = 1, ¢ = —4) are branches
of embedded-soliton solutions with ¢ = 0.

Soliton solutions to (1)—(3) are sought in the form

v1,2(2, 2) = exp(ikz) u1,2(§), vs(z, z) = exp(2ikz) us,
(5)

where £ = z — ¢z, with ¢ being the walkoff (slope) of the
spatial soliton’s axis relative to the light propagation di-
rection z. The substitution of (5) into Eqs. (1)—(3) leads
to an 8th-order system of ordinary differential equations
(ODEs) for the real and imaginary parts of v1 2,3 (primes
standing for d/d¢):

—kuy +4(1 = c)uy + uz + uguy =0, (6)
—kusy — i(1 + e)ub + uq + uzui =0, (7)
—(4k + q)us + Duj — 2icuy + uyuz = 0. (8)

Before looking for ES solutions to the full nonlinear
equations, it is necessary to investigate the eigenvalues
A of their linearized version, in order to isolate the re-
gion in which ESs may exist. Substituting wi,us ~
exp(AE), us ~ exp(2XA€) into Egs. (6)—(8) and lineariz-
ing, one finds that the FH and SH equations obviously
decouple. The FH equations give rise to the biquadratic
characteristic equation,

1= +2[A+AD-(1-A)] X+ (K -1)? =0,
)

and the SH equation produces another four eigenvalues
given by

[DA? — (4k + @) + 4¢*)? = 0. (10)

A necessary condition for the existence of ESs is that
the eigenvalues given by Eq. (9) should have non-zero
real parts - this is necessary for the existence of exponen-
tially localized solutions - while the eigenvalues from Eq.
(10) should be purely imaginary (otherwise, one will have
ordinary, rather than embedded, solitons). This discrim-
ination between the two sets of the eigenvalues is due to
the fact that Egs. (6) and (7) for the FH are always
linearizable, while the SH equation (8) may be nonlin-
earizable which opens the possibility of existence of ESs
[5]. From (9) and (10), these two conditions imply

4+ <1;4k+qg<c®/D. (11)

For the case ¢ = 0, the parametric region defined by the
inequalities (11) is displayed in Fig. 1.
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FIG. 2. Typical examples of the fundamental embedded
solitons with the zero walkoff: (a) the ground-state for k£ = 0;
(b) the same solution for £ = —0.95; (c,d) the first and eight
“excited states” for k = 0.

In Ref. [7], numerous regular (gap [9]) soliton solutions
to the present model were found by means of a numeri-
cal shooting method. To construct ES solutions, we ap-
plied the same method to Egs. (6), (7) and (8), allowing
just one parameter to vary. From each such solution,
branches were continued in the parameters k, ¢ and c,
by means of the software package AUTO [10]. Note that
¢ = 0 solutions admit an invariant reduction uy = —uj,
u3 = w3, which reduces the system to a 4th-order ODE
system, thus making numerical shooting feasible. We
confine ourselves to fundamental solitons, which implies
that the SH component us has a single-humped shape



(a distinctive feature of gap solitons in the same system
is that not only fundamental, but also certain double-
humped bound states appear to be stable [7]). Multi-
humped ESs must exist too as per a theorem in Ref. [11],
but leaving them aside, we still find a rich structure of
fundamental ESs.
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FIG. 3. A diagram of the ¢ = 0 embedded solitons on the
(energy-flux, mismatch) plane. The inset zooms the most in-
teresting part of the diagram.

We begin with a description of the results from the re-
duced case ¢ = 0, when an additional scaling allows us
to set D = 1 without loss of generality. The results are
displayed in Figs. 1-3. There is strong evidence for ex-
istence of an infinite “fan” of fundamental ES branches.
The ground-state soliton has the simplest internal struc-
ture (Fig. 2a). The next “first excited state” differs
by adding one (spatial) oscillation to the FH field (Fig.
2c). Adding each time an extra oscillation, we obtain an
indefinitely large number of “excited states” (as an ex-
ample, see the 8th state in Fig. 2d). In Fig. 1, the first
nine states (branches) are shown in the (k,¢) parametric
plane. Note that the whole bundle of branches originates
from the point (k = 1, = —4), which is precisely the
intersection of the two lines which limit the ES-existence
region (see Eq. (11) with ¢ = 0). At this degenerate
point, the linearization gives four zero eigenvalues. More
branches than those depicted have been found, the nu-
merical results clearly pointing towards the existence of
infinitely many branches, accumulating on the ES-region
border ¢ + 4k = 0. In the accumulation process, each us
component is successively wider and the u; » have more
and more internal oscillations.

Since k is an arbitrary propagation constant, from
physical grounds, the results obtained for the ¢ = 0 so-
lutions are better summarized in terms of energy flux £
vs. mismatch ¢ (Fig. 3). Note that all the branches
shown in Fig. 3 really terminate at their edge points,
which correspond to hitting the boundary & = —1, see
Fig. 1. It is also noteworthy that all the solutions are
exponentially localized, except at the edge point k = —1,
where a straightforward consideration of Eqs. (6)—(8)

demonstrates that, in this case, ES are weakly localized
as |z| — oo (cf. Fig 2b):

up & /=@ + )zl ™", uz & (1/2)y/~ @k + g)la| 7,

us ~r 2.

Finally, observe from Figs. 1 and 3 that the first “excited-
state” branch has the remarkable property that it corre-
sponds to a nearly constant value of ¢q. This means that
while, generally, ES are isolated (codimension-one) so-
lutions for fixed values of the physical parameters, this
branch is nearly generic, existing in a narrow interval of
g-values between —4.0 and —3.74.

Now we turn to walking ESs, i.e., those with ¢ # 0.
These were sought for systematically by returning to the
full 8th-order-ODE model and allowing AUTO to de-
tect bifurcations (of pitchfork type), while moving along
branches of the ¢ = 0 solutions. It transpires that all
bifurcating branches have ¢ # 0, i.e. they are walking
ESs. Such solutions are of codimension-two in the pa-
rameter space (i.e. the solutions can be represented by
curves k(q), ¢(q)), which can be established by a simple
counting argument after noting that the 8th-order lin-
ear system has two pairs of pure imaginary eigenvalues.
We present results only for the walking solutions which
bifurcate from the ground and first excited ¢ = 0 states.

It was found that the ground-state branch has exactly
two bifurcation points, giving rise to two distinct walk-
ing solutions (up to symmetry). These new branches are
shown in terms of the ¢(q) and E(q) dependences in Fig.
4. Note that they, eventually, coalesce and disappear. As
the inset to Fig. 4b shows, this process is reminiscent of
a tangent (fold) bifurcation.

The first excited state has three bifurcation points.
One of them gives rise to a short branch of walking solu-
tions that terminates, while two others appear to extend
to ¢ = —oo (their apparent “merger” in Fig. 5 is an arte-
fact of plotting). It is known that, in the large-mismatch
limit ¢ — —oo, the present three-wave model with the
quadratic nonlinearity goes over into a modified Thirring
model with cubic nonlinear terms [12]. This suggests that
the latter model may also support ES. However, consid-
eration of this issue is beyond the scope of the present
work.
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FIG. 4. Two branches of “walking” (c # 0) embedded soli-
tons bifurcating from the ground-state ¢ = 0 branch: (a) the
walkoff ¢, and (b) the energy flux E vs. the mismatch q. The
horizontal segment in (a) shows the ¢ = 0 branch. The inset
in (b) shows that the two branches meet and disappear via a
typical tangent bifurcation.

Fig. 4 clearly shows that, in a certain interval of the
mismatch parameter ¢, the system gives rise to a mul-
tistability; i.e. coexistence of different types of spatial
solitons in the planar optical waveguide (for instance,
taking account of the fact that each ¢ # 0 branch has
symmetric parts with the opposite values of ¢, we con-
clude that there are five coexisting solutions at g taking
values between about —8 and —11). This situation is of
obvious interest for applications to photonics, especially
in terms of all-optical switching [8]. Indeed, switching
from a state with a larger value of the energy flux to a
neighboring one with a smaller flux can be easily initiated
by a small perturbation, in view of the above-mentioned
one-sided semistability of ES, shown in a general form in
[5]. Switching between the two branches with ¢ # 0 can
be quite easy to realize too, due to the small energy-flux
and walkoff differences between them, see Fig. 4.

The stay of B.A.M. at the University of Bristol was
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FIG. 5. Three branches of walking (¢ # 0) embedded soli-
tons bifurcating from the ¢ = 0 branch corresponding to the
first “excited state”, depicted similarly to Fig. 4 The inset in
(a) shows in detail the central part of the diagram.
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