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Aspects of symmetry in lasers with optical feedback
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ABSTRACT

This paper discusses a fundamental difference between the symmetry properties of a laser with conventional optical
feedback and that of a laser with phase-conjugate feedback. As a consequence, the possible dynamics and bifurcations
for these two types of laser systems differ considerably, a fact that has not been noted in earlier comparisons between
these two systems.
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1. INTRODUCTION

Conventional optical feedback (COF) is unavoidable in many applications of lasers, and semiconductor lasers in
particular are very susceptible to external influences because of the low reflectivity of their cleaved facets'. For this
reason and because of their complicated dynamics, lasers with COF are a topic of much research, both experimental
and theoretical? .

Phase conjugate feedback (PCF) on the other hand has recently received a lot of attention because of possible
practical applications. A lot of interesting dynamics has been found® *®, including mode locking, phase and frequency
locking, and different routes to chaotic dynamics.

Both the COF laser and the PCF laser are examples of delay systems, and from a mathematical point of view
the rate equations describing their dynamics are very similar. The main difference is that the feedback term for
COF contains the electric field directly, but that for PCF contains the complex conjugate of the electric field, owing
to the phase conjugation of the light during reflection. In the literature PCF has been considered a combination
of COF (because of the delay) and optical injection (because of the presence of detuning). A comparison between
(semiconductor) lasers with COF and PCF was conducted recently® with the aid of bifurcation diagrams.

In this paper we show that the possible dynamics of a COF laser differ fundamentally from that of a PCF laser
because of different underlying symmetry properties. The COF laser is invariant under any phase shift of the electric
field. Physically this means that the phase of the COF laser is ‘not important’, a fact that has been noted in the
literature'®, but was not stated explicitly as a symmetry property. As a consequence of this, the COF laser cannot
phase-lock. On the other hand, the PCF laser is invariant only under a phase shift of 7. In particular, it does
phase-lock for a suitable feedback strength. What is more, as was recently shown the PCF laser undergoes symmetry
breaking and restoring bifurcations of limit cycles and even chaotic attractor!?>'®. This shows that the dynamics and
bifurcations of these two systems are fundamentally different. This fact had been overlooked so far.

The paper is structured as follows. In Section 2 we describe the rate equation models for COF and PCF lasers.
Sections 3 and 4 discuss their symmetry properties, and Section 5 is a summary of the results.
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2. SINGLE-MODE RATE EQUATIONS

In the semiclassical approach, the dynamical interaction between the single mode of the electric field and the popu-
lation inversion in the laser medium is adequately described by the classical Maxwell’s equations and the quantum
mechanical Bloch equations'®. Thus one obtains three dynamical equations for the electric field, the medium polariza-
tion, and the laser inversion. For many laser materials, the dynamics of the medium polarization can be adiabatically
eliminated2%-21. After applying the slowly-varying envelope and rotating-wave approximations one ends up with first-
order ordinary differential equations for the complezr electric field amplitude £ and for the inversion N. The complex
amplitude E is related to the true electric field £ by £ = 3(E exp(iwot) + c.c.), where wy is the center frequency of
the single mode under consideration.

Without specifying the details of the laser medium, one can write these two equations in their general form as
follows??:

dE 1

92 = JIG(N,|EP) - To(]E, (1a)
T =70 — 7 — Relo(V, [P (1b)

Here J is the generation rate of inversion through a pump mechanism, G is the complex optical gain, T'y is the loss

rate, and T; is the inversion lifetime. We allow these essential parameters to have various dependencies, to keep
the analysis as general as possible. Note that the complex optical gain G remains largely unspecified, but is only
dependent on the inversion N and the electric field intensity |E|*> (and higher powers |E|?* thereof).

When the external resonator is much longer than the laser itself, the effect of feedback can be included in the field
equation by means of a difference scheme??. For a single mode laser subject to COF one needs to add the following
feedback term to the equation for the electric field (1a):

2 M
% ZZI (—r1r3)™ exp (—imwoT)E(t — m71). 2)

Here 71 is the amplitude reflection coefficient at the opaque side of the facet facing the external cavity, rs the
amplitude reflection coefficient of the external resonator. Furthermore, 74, is the round-trip time of the light inside
the laser cavity, 7 is the round-trip time of the light in the external cavity, and m is an integer denoting multiple
round-trip times, where up to M round-trips are taken into account.

In the same way, for a single mode laser subject to PCF from a non-degenerate Four-Wave Mixing (FWM) set-up
the following feedback term needs to be added!? to (1a):

(13 = 1) f
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[(—rl \/RPCM)%W1 exp [(2m — 1)i(@popr + 67) — (m + 1)ibt + i(p12 — 7/2)] E*(t — (2m — 1)7)

+ (—n \/RPCM)Zm exp [—2m(@'pops + 07)] E(t — 2mT) (3)

Here Rpcowm is the reflectivity of the phase conjugate mirror, ¢poy is its phase shift, § is the detuning, and @12
expresses the complex nature of the product of the two pump-fields that drive the phase-conjugation. Due to phase
conjugation the complex conjugate E* of the electric field enters exactly for odd numbers of roundtrips.

Note that Eqgs. (1a,1b) with the feedback terms (2) or (3) added to (1a) are of a very general form, allowing
for different expressions for the gain and for any number M of external round-trips. Since we are interested in
deterministic effects, spontaneous-emission Langevin-noise terms are intentionally left out. These equations are
examples of delay—differential systems?425. We denote a trajectory from time ¢y to ¢; by

(B,N)g = {(BE(t), N(t)) | t € [to, t:]}- (4)

The trajectory (E, N)j! is determined by the values of E and N in the time interval [to—MT,to]. (Recall that M is the
number of external round trips taken into account.) In other words, after prescribing (E, N)? ;. as initial condition



the trajectory (E, N)i is determined for any #; > 0, and can be obtained by numerical integration. Formally, the
delay system is an operator that describes how the continuous function (E, N)%,, with values in (E, N)-space is
transformed into the continuous function (E, N)}7. The interval [0, M7] specifies a new initial condition and can
be thought of as being shifted back to [-M7,0]. In other words, delay equations define an operator on the space of
continuous functions over the interval [— M, 0] with values in (E, N)-space. This infinite dimensional function space
is the phase space of this delay-differential system. Physically one usually looks at trajectories in (E, N)-space as
defined above, but one should keep in mind that (E, N)-space is not the phase space of the system. Rather one is
looking at a particularily useful projection.

For concreteness we introduce now two examples for a semiconductor laser with COF and PCF, respectively, which
were also used to produce the figures in this paper. A well-studied set of equations are the famous Lang-Kobayashi
equations® for a semiconductor laser subject to COF?2:23:26, The feedback is assumed to be so weak that only one
external round-trip needs to be taken into account (M=1). Suitably scaled and normalized, the equations can be
written as'4:

% = S (1 + i) N()B(t) + KE(t — 7) exp (~ior), (52)
G = N - AlL+ NOUEQP - 1), (50)

where time is measured in units of the cavity photon lifetime Iy !« is the linewidth enhancement factor, the

electric field amplitude E is scaled with respect to its feedback free value /Py, the inversion N = gy (n — n,)/Tp is
the scaled excess carrier density (gn is the differential gain and ny, is the feedback-free threshold carrier density),
A = gnPy /Ty accounts for the pump, v = (ToT1) ! + gnPo/T is the dressed carrier relaxation rate (with 77 the
bare carrier life time), and £ = (1 — 7?)r3/(r17:,) is the feedback rate.

Similarily, lasers with PCF are also usually modeled by taking into account only a single roundtrip'*. For the case
of instantaneous PCF one obtains!'"18:

dE 1

— = 5(1 TN E(t) + £E*(t — 1) exp(2i6(t — 7/2)) (6a)
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In the feedback term k is again the feedback rate, ¢ is the detuning, and 7 is the external-cavity round trip time.

3. SYMMETRY OF THE COF LASER

The COF laser, as described by Egs. (1a,1b) with the feedback term (2) added to (1a), is invariant under the
symmetry transformation

(E,N) — (cE,N) for any ¢ € C with |c| = 1. (7)

If we write E = Re'” we have invariance under the equivalent symmetry transformation

(R,o,N) — (R, + ®,N) for any ® € [0, 27). (8)

In other words, the equations are invariant under any phase shift of the electric field E. Because we consider (E, N)—
space to be the natural space, we will discuss the symmetry mainly in the form of Eq. (7). In spite of a large number
of papers devoted to the dynamics of (semiconductor) lasers subject to optical feedback, this symmetry was never
stated explicitely. It is the aim of this paper to investigate this symmetry further, and to contrast it with that of the
PCF laser discussed in the next section.

Let us now be more mathematical?”?8. The rotational symmetries form a group denoted by S* = {c € C | |¢| = 1}.
The group S! acts on a trajectory by

co(E,N)jl = (cE,N);* forall c€ S*. 9)



Because of the symmetry of the COF laser, (cE, N )ﬁé is also a trajectory. Physically this means that if one shifts
the phase of a trajectory by any prescribed amount then the resulting set of points is also a trajectory. In other
words, if one rotates the prescribed initial condition (E,N)°,,, to (cE,N)°,,, and integrates the equations one
obtains (cE, N)i' as a trajectory instead of (E, N)i'. Consequently, the trajectories for these two initial conditions
run entirely parallel, meaning that at any moment in time the only difference between them is the phase-shift arg(c)
of the electric field.

Consider now the group orbit of a solution

S'o (E,N)it = {(cE,N)j} | c€ S'}, (10)

the image of the trajectory (E, N )2(1) under all rotations in S'. We choose the two-dimensional half-plane ¥ = {(E, N) |
Im(E) = 0 and Re(E) > 0}, which we identify with the (R, N)—(half)plane. Then we can consider the intersection
of a group orbit with ¥, which we call the trace of the trajectory. The trace gives important information about the
trajectory we started off with and is easy to compute in practice. It is by definition the set of intersection points
of any rotation of the given trajectory with ¥. Instead of rotating the trajectory one can rotate X and keep the
trajectory fixed. As a direct result the trace is

(R, N)is = {(R(),N(1)) | t € [to, ta]} - (11)

Note that no extra computation is necessary to obtain the trace; all one needs to do is plot N versus R.
We now discuss how the rotational symmetry can be used to describe different kinds of dynamics of the COF laser.
For concreteness, this is illustrated with trajectories of the Lang—Kobayashi equations (5a,5b).
3.1. CW states and their stability
A CW state is a trajectory with constant intensity and inversion, and a phase which depends linearly on time. In

other words, such a trajectory is of the form

(R, exp (iw,t), N2/« (12)

for fixed values of R, and N,. A CW state is rotationally symmetric, that is, invariant under the group action of S*.
The trace of the CW state in Eq. (12) is simply the single point (Rs, Ny) in the (R, N)-plane (which we identified
with ¥).

The CW states for the Lang-Kobayashi equations (5a,5b) are given by5:

(ws — wo)T = —C'sin (wsT + arctan ), (13a)
N = =2k cos (wsT), (13b)
|Es|[* =1 = [yN,/A(1 + N,)], (13c)

where C' = k7v/1 + @2 is the effective feedback parameter. (Recall that wg is the central frequency of the single
mode we are considering.) An important question concerns the stability of the CW states given by (13a,13b,13¢). It
follows immediately from our symmetry considerations that a perturbation in just the ¢-direction does not grow or
decay and, hence, is the eigenvector for the eigenvalue zero in the stability analysis!'6:23:29:30,

3.2. Periodic trajectories

Suppose we found a trajectory (E, N)I such that R(0) = R(T) and N(0) = N(T), where we assume that 7T is the
smallest number with this property; an example is shown in Fig. 1(a). Note that ¢(t) is not periodic; see Fig. 1(b).
We call this trajectory (R, N)-periodic or simply periodic with period 7. Because of periodicity the trace of (E, N )&
is the closed curve (R, N)I with period T in Fig. 1(e).
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Fig. 1. For a periodic trajectory (E, N)J the intensity R and the inversion N are periodic (a), but the phase ¢ is not (b).
Any orbit (E, N)§ can be constructed by glueing together copies of the original orbit that are phase shifted over consecutive
multiples of ©(0) — o(T) (c). The orbit (E, N)} is a torus (d) that intersects the fixed half-plane {Im(E) = 0; Re(Z) > 0} in
the trace (R, N)§ (e).

The group orbit S* o (E, N)I is a torus in (E, N)-space; see Fig. 1(d). There are exactly two possibilities for the
dynamics on this torus, depending on the phase difference &1 := ¢(0) — ¢(T') over the period T'; see Fig. 1(b). If
&1 /(2m) is rational then the torus consists of an infinite collection of closed orbits in (E, N)-space. (The period
of each of these closed orbits in (E, N)-space is a multiple of T'.) If &7 /(2x) is irrational then the dynamics is
quasiperiodic, meaning that (E, N)§° never becomes periodic in (E, N)-space, but lies dense in the torus. There can
be no locking on the torus: two trajectories that are rotated with respect to one another will stay parallel on the
torus for all times.

The symmetry allows us to construct the orbit (E, N)KT for any k > 0 as follows. If we let ¢z := €!®7 then the
rotated trajectory (czE, N)I can be ‘glued’ to the old trajectory (E, N)I because (R(T), N(T)) = (R(0), N(0)). In
this fashion we obtain (E, N)2T. Tterating this process gives

(B, = | (E,N). (14)
0<5<k



Fig. 2. Low frequency fluctuations in (E, N)-space (a) and their trace in the (R, N)-plane (b).

In other words, it is enough to produce data over one period 7. The entire orbit can then be reconstructed as
described and further, expensive, integration can be avoided. This is illustrated in Fig. 1(c), where (E, N)2*T was
constructed in this way from the boldface (E, N)I.

3.3. Nonperiodic trajectories

Suppose a trajectory (E, N)i is not (R,N)-periodic, that is, (E(t), N(t)) # (E(0), N(0)) for all t € (0,;]. Then we
can still rotate (E, N)&' by any angle, but no such rotation will ‘glue’ to the original trajectory (E, N)§ to produce a
longer trajectory. Nevertheless, the group orbit St o (E, N )31 is a collection of ‘parallel’ orbits of the form (cE, N )f]l.
Each individual orbit may have complicated dynamics, but two rotated orbits run parallel, that is, at any given
moment they differ only in a fixed phase shift of the E-field. The key information is again contained in the trace
(R, N)f)1 in the (R, N)-plane. An example of a nonperiodic trajectory in (E, N)-space is shown in Figure 2(a). If it is
rotated through ¥ it produces the trace in Figure 2(b). This figures shows an example of low frequency fluctiations
(LFF) where the trajectory comes very close to the N-axis at irregular intervals, which correspond to the typical
intensity dropouts of LFF.

An important open problem is to explain the transition from simple dynamics like in Fig. 1 to LFF like in Fig. 2.
Because the COF laser is an infinite dimensional system, the question arises in which framework one should study the
bifurcations in this transition. Of particular interest are global bifurcations, in which stable and unstable manifolds
of CW states change their relative positions. These manifolds exist in the infinite dimensional space of continuous
functions with values in (E, N)-space, the phase space of the system. It appears to be possible to reduce the system
to a suitable lower dimensional subspace, but this is beyond the scope of this paper. Any of these manifolds is
foliated by images of trajectories under the group S'. As a consequence, stable and unstable manifolds project down
nicely to the (R, N)-plane, which makes this a good space in which to look for global bifurcations.
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Fig. 3. Symmetry breaking bifurcation of a symmetric limit cycle (a) to a nonsymmetric limit cycle (b). On the left is
shown the time series of the power, and on the right the orbit projected onto the complex E-plane. Notice that the frequency
of the power is halved in this bifurcation because successive maxima develop different heights.

4. SYMMETRY OF THE PCF LASER

The PCF laser, as described by Egs. (la,1b) with the feedback term (3) added to (1la), is invariant under the
symmetry transformation

(E,N) — (-E,N). (15)

If we write E = Re’® we have invariance under the equivalent symmetry transformation

(R,o,N)— (R,p+m,N). (16)

This means that the PCF laser is invariant under the phase shifts by 0 and 7 only. This can be explained by the
fact that multiplying E with a complex number ¢ of modulus one is a counterclockwise rotation of E, but a clockwise
rotation of E*. The PCF laser is therefore invariant only under rotations over angles that have the same effect when
applied clockwise or counterclockwise, which gives the angles 0 and 7 as the only possibilities.

The group of symmetries is the discrete group of rotations over 0 and 7, denoted by Zs = {1,—1}. Any attractor
is either symmetric under a rotation of E by 7, or has a symmetric counterpart, which can be found by changing
the phase of an appropriate initial condition by 7. (The group orbit of an attractor consists either of one or two
elements.)

This symmetry allows for the possibility of symmetry breaking and restoring bifurcations. In symmetry breaking,
a symmetric attractor becomes unstable, creating two nonsymmetric attractors. In symmetry restoration, two
nonsymmetric attractors merge and give rise to a symmetric attractor. These bifurcations have important physical
consequences, as we discuss below. Furthermore, this possibility of symmetry breaking and restoring bifurcations
fundamentally distinguishes a laser with PCF from a laser with COF.
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Fig. 4. Symmetry restoring bifurcation of a nonsymmetric chaotic attractor (a) to a symmetric chaotic attractor (b).
From left to right is shown the time series of the power, the orbit projected onto the complex E-plane, and the strange
attractor of the Poincaré map in a plane {N = const}.

4.1. Symmetry breaking of a limit cycle

When the feedback strength is increased or decreased in Egs. (6a,6b), a symmetric periodic orbit can lose its stability
and create two symmetric stable limit cycles'”'8. This situation is depicted in Fig. 3. We now discuss the physical
relevance of this bifurcation. If we denote the period of the symmetric limit cycle by 7', then it is of the form
(E(t),N(t))T. Because the limit cycle is symmetric, it surrrounds the origin in the E-plane, so that the phase is
unbounded; see Fig. 3(a). Rotating the symmetric limit cycle by 7 around the N-axis is equivalent to waiting for
half a period. This means that the dynamics on the limit cycle has the spatio-temporal symmetry

(E,N,t) — (—E,N,t —T/2). (17)

As a consequence, the time series of the power is periodic with period 7'/2, even though the period of the limit cycle
itself is T'; see Fig. 3(a).

In symmetry breaking this spatio-temporal symmetry is lost and the time series of the power has the same period
T as the limit cycle itself. In this bifurcation consecutive maxima of the power start to differ, which changes the
period of the power from T/2 to T. As a consequence, symmetry breaking may be mistaken for a period doubling,
in particular, when one considers bifurcation diagrams only.

If the feedback strength is decreased through the bifurcation value, then symmetry restoration takes place as
follows. Two attracting nonsymmetric limit cycles move closer to each other as they approach a symmetric unstable
limit cycle. In the bifurcation the nonsymmetric limit cycles disappear and the symmetric limit cycle becomes stable.
Consecutive maxima of the power become equal, leading to a halving of the period of the power.



4.1. Symmetry restoration of a chaotic attractor

After a series of period doublings one can find a nonsymmetric chaotic attractor of Egs. (6a,6b), which collides with
its symmetric counterpart as the feedback strength is increased'™ 8 to create a symmetric chaotic attractor. The
situation is shown in Fig. 4. The phase of each of the nonsymmetric chaotic attractors is bounded. In the bifurcation
the time series of the power practically does not change, still being chaotic. However, the attractor becomes much
larger and now visits both parts of the previously distinct attractors. As a result, the phase is not bounded any
longer. The sudden merging of the two chaotic attractors can best be seen in the plots of the attractors of the
Poincaré map in the right column of Fig. 4. When one follows one of the nonsymmetric attractors through the
bifurcation, it suddenly appears to include its symmetric counterpart. This is an example of a symmetry increasing
bifurcation of a chaotic attractor.

5. CONCLUSIONS

We have shown that the COF laser is symmetric under any shift of the phase of the electric field, while the PCF laser
is symmetric only under a phase shift over w. This implies that the dynamics of these two systems are fundamentally
different, because any symmetry imposes restrictions on the possible dynamics and bifurcations. In particular, we
gave examples of symmetry breaking and restoring bifurcations in the PCF laser, which do not occur in the COF
laser.

The underlying symmetry has direct physical meaning. For the COF laser it explains the fact that there is no
phase locking. In the PCF laser the symmetry implies that the time series of the power in the presence of a symmetric
limit cycle has exactly half the period of the limit cycle itself. This property is lost in symmetry breaking, which
should be clearly observable in experiments.
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