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Desynchronization of pulse—coupled integrate—and—fire neurons

S. Coombes, G.J. Lord
Department of Fngineering Mathematics, Bristol University,
University Walk, Bristol, BS8 1TR, UK.
To appear in Phys. Rev. E, Rapid Communications, 1997
(December 23, 1996)

Bifurcation analysis of two pulse—coupled integrate—and—fire neurons is used to determine the im-
portance of pulse width, propagation delay and shunting for periodic firing patterns. In contrast to
models lacking these simple biological features, stable asynchronous behaviour is easily established
for reciprocal excitatory coupling between neurons.
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The nonlinear dynamics of coupled oscillators consist-
ing of biologically plausible neuron models has recently
attracted much interest in neurobiology due to the dis-
covery of synchronized oscillations in the cat visual cor-
tex [1]. Moreover, many biological thythms, ranging from
breathing to walking, are programmed in part by central
pattern generating (CPG) networks built from neurons.
In many cases, reciprocal synaptic connections between
pools of interneurons exist and asynchronous rather than
synchronous behaviour is the norm [2]. The rhythmic
activity of such networks results from an interplay of
synaptic interactions and intrinsic membrane properties,
belying the need for any persistent external influences.
Much of the theoretical work in this area uses the analy-
sis of phase—coupled oscillators developed by Kuramoto
[3]. Typically, however, no direct link with electrophysio-
logical data obtained at the cellular level is made. Hence,
the role of intrinsic neuromodulation in rhythmic pattern
generation cannot be uncovered from such an analysis.
Furthermore, neurons (often quiescent in isolation) are
modelled as intrinsic oscillators, interacting weakly via
their phase differences rather than signalling with action
potentials.

Modelling the dynamics of biologically realistic pulse—
coupled neurons in which details of individual spikes are
included has recently received much attention (see [4]
for a review). The integrate-and—fire neuron may be re-
garded as an abstraction that captures the essentials of
a sptking neuron [5]. Indeed, it has been shown that a
globally pulse—coupled population of such neurons with
excitatory synaptic connections always synchronizes with
zero phase difference [6-8]. However, in real neurons,
spike communication is not instantaneous. The exten-
sion of the Mirollo and Strogatz return map formalism
[6] has recently been extended to incorporate the effect
of small transmission delays [9,10]. Interestingly, for ex-
citatory spike—coupling, the presence of delays can lead
to desychronization. This particular analysis lacks the
important notion that the effective input current to a
postsynaptic cell has some temporal duration due to the
synaptic transmission process. Once again, the inclusion
of synaptic currents with realistic rise and fall times can
lead to asynchronous behaviour in a pair of pulse—coupled
integrate—and—fire neurons [11]. Hence, there is growing
evidence that the inclusion of more biologically plausi-
ble detail into the integrate—and—fire neuron model can
have important consequences for modelling neurobiolgi-
cal CPGs.

A further level of well established neurobiological real-
ity that is missing from these integrate—and—fire models
is the effect of shunting currents. Real neurons possess
voltage dependent ionic currents with specific membrane
reversal potentials. The incorporation of such currents
induces a time dependent cell membrane decay for an
integrate—and—fire neuron. In this communication we
propose to analyze the consequences of such temporal
cell membrane properties, in conjunction with realistic
postsynaptic currents. Moreover, we incorporate axonal

propagation times and extend the work in [9,10] to the
case of arbitrary delays. Specifically we show that intrin-
sic modulation of parameters representing all three of
these biological features can lead to stable asynchronous
behavior in a pulse—coupled system of two integrate-and—
fire neurons with excitatory synapses. To generate os-
cillations in a system with inhibitory coupling requires
an extra physiological factor such as post-inhibitory re-
bound [12] or the inclusion of an external driving current.
A more detailed account of this work, together with a
study of electrical synapses and the effects of dendritic
structure will be presented elsewhere.

In detail, we consider two identical integrate—and—fire
neurons with mutual excitatory coupling. The state vari-
able ¢;, i = 1,2, is used to represent the cell membrane
potential at neuron 1 and 2 respectively. Leakage cur-
rents drive ¢; toward a value that depends upon the
synaptic input current and some resting potential (taken
as 0). Cell membrane properties determine a time con-
stant 7 for each neuron. The neurons are assumed to fire
whenever ¢; reaches some threshold h, after which ¢; is
reset to some level ¢. At this time, the effect of firing
is communicated as a spike of electro—chemical activity.
When this spike arrives at a synapse, neurotransmitter is
released and triggers a current in the postsynaptic cell.
By denoting the time at which neuron 7 fires for the nth
occasion as T, the potentials ¢; evolve according to the
linear ordinary differential equation

=-_+LM(s-6) te(Tn) (1)
with the strongly nonlinear reset conditions

lim ¢i(T; —e)=h, lim ¢(Ti+e)=0.  (2)
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Here, I;(t)(s— ¢;) represents the shunting synaptic input
current from neuron j to neuron i. The membrane re-
versal potential, s, is positive for an excitatory synapse
and negative for an inhibitory one. The extension of (1)
to larger populations than two is easily achieved, but
at the expense of analytical tractability. However, large
coupled populations of the type (1) simplify considerably
when 7 is much larger than the mean inter—spike interval
and shunting terms are dropped. In this case a Lyapunov
function exists and a discussion of the rate of approach to
periodic solutions is possible [13]. Furthermore, an anal-
ysis of the effect of delays is also possible under these
assumptions [14].

We restrict attention to the case in which the coupled
system (1) fires with a period A and relative phase # and
choose the times at which neuron 1 and 2 last fired as 0
and —0A respectively. For example, we may now write
the input to neuron 2 as a sum of delayed pulse—functions

0
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with ¢4 representing some axonal propagation delay time.
Choosing a biologically plausible pulse shape such as the
a—function [15], H(t) = ga’te™*!, the infinite sum in (3)
reduces to a convergent geometric progression such that
Iy(t) = I(t) with t € [tq,tq + A) and I(¢) periodic in A
such that

—a(t—ta) Ae—aA

{(t—td)+m}. (4)

In a similar fashion one may establish that 7;(¢t) =
I(t + 0A). The evolution of the membrane potentials
in a periodic firing pattern, ¢;(t + nA) = ¢;(¢), n € Z,
now takes the form

dg;
dt

10 = sy

= Ai(t)¢i + Fi(t), t€(0,4) (5)

with

Az(t) = —% — [(t + mgA), FZ(t) = Sf(t + HZQA) (6)
and 71 = +1 and 52 = —1. The quantities A;(¢) may be
regarded as time dependent cell membrane decay func-
tions. For a single neuron receiving constant high rates
of spike stimulation, the effective cell membrane decay
rate is increased so that the steady state value of cell
membrane potential is lower than would occur in the ab-
sence of shunting. Hence, in this context shunts can act
to limit the firing rate of a neuron.
The formal solution of (5) is

i(t) = /0 Gi(t,t)Fi(t)dt (7)

1"

Gi(t,t) :exp/ Ag(t)dt",

tl
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(with ¢ = 0 for simplicity). The self-consistent solution
of the equations for the somatic potentials given by (7)
and (8) determines both the phase and period for the
steady state periodic behaviour. Two obvious phase so-
lutions are § = 0 (or equivalently # = 1) and § = 1/2.
Moreover, if § is a solution, then (1—46) is also a solution.

A simple condition on the phase and period 1s formed
from the expression

9(6, A) = ¢1(A) - ¢2(A) =0 (9)

and hence ¢2(A) = h — G(0,A). To determine the sta-
bility of a given solution suppose that 8 is slightly larger
than a stable equilibrium value. Then neuron 2 should
fire later to restore the correct value of #. This re-
quires that ¢(A) be smaller than A, or equivalently, that
G(#,A) should be an increasing function of § near the
equilibrium value. Otherwise a reset will occur, causing
a dramatic change in the network dynamics. Hence, the
condition for stability of a solution is defined by

aG (6, A)

Bifurcation diagrams are produced using AUT094 [16],
a numerical continuation code for differential and alge-
braic equations. The code implements Keller’s pseudo
arc-length continuation and in particular for algebraic
systems such as considered here:
$i(A)—h=0, i=12 (11)
detects simple bifurcations and performs branch switch-
ing. Note that due to the solution structure of the ¢;,
each of the equations in (11) is in fact an integral equa-
tion. The use of numerical quadrature allows the re-
duction of the two integral equations to two nonlinear
algebraic ones. For the purposes of this letter a standard
composite Simpson’s rule was chosen for evaluation of all
integrals. All computations were performed with ¢ = 0.4,
h = 0.25 and a time scale was chosen such that 7 = 1.
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FIG. 1. Bifurcation diagram of § vs a with s = 1. The
three branches above and below the anti-synchronous state
(8 = 1/2) correspond to three differing values of the time
delay tq. The branch bifurcating from § = 1/2 at the lowest
value of o corresponds to the case with no delay, t4 = 0.
Successive bifurcations for progressively larger a correspond
to the case with delays, t4 = 0.0025 and t4 = 0.1 respectively.
Solid (dashed) lines represent stable (unstable) solutions.

For small values of the synaptic rate constant a there
are two possible states showing either complete syn-
chrony, § = 0,1, or anti-synchrony, 0§ = 1/2 (see
figure 1). Only the anti-synchronous state is stable.
With increasing «, corresponding to progressively faster
synapses, there is a pitchfork bifurcation at a critical
value of & = a° and two additional equilibria are born.
The anti—synchronous solution loses stability and con-
tinues as an unstable branch. The two new states are
stable and have intermediate phases 1.e. are neither syn-
chronous nor anti—synchronous and will be termed asyn-
chronous. Also shown in this figure are phase solutions in
the presence of small delays (¢4 < 0.1). Once again there



is a pitchfork bifurcation from a stable anti—synchronous
solution leading to the creation of two new stable states
for some critical a. Note however, that in comparison to
the solutions with zero delay, desynchronization occurs.
With increasing #4, a. occurs at progressively larger val-
ues and for a > a, solution branches move closer to the
anti—synchronous solution.

In figure 2 we explicitly follow the anti—synchronous
solution and plot the period of oscillation, A, for both
this solution and the asynchronous one that is born from
it at a.. The lower set of curves in figure 2 corresponds
to a system with weaker shunting currents than those
plotted above. This confirms the idea that shunts can
act to limit the firing frequency of the two neuron system.
Furthermore, delays lead to a decrease in the period A
for @ < a, and an increase in the period of all solutions
with a > a., for a fixed value of s.

tions as pattern recognition and memory storage devices.
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FIG. 2. Bifurcation diagram of A vs «. Line key defined
with (ta,s). The upper set of curves correspond to a system
with stronger shunting current than the lower set. Each set is
plotted with three varying delays defined in the key. Beyond
the bifurcation point (for each (t4,s), a increasing) a new
asynchronous solution (with a lower value of A) appears, born
from the anti—synchronous solution shown.

There is also a pitchfork bifurcation in the phase 6
as a function of the shunt parameter s. For s less than
some critical value s. the system fails to oscillate since
the threshold condition can never be reached in this pa-
rameter regime. With s > s. three solutions exist, and
for larger values of s two new stable solutions are cre-
ated. For small delays (¢4 < 0.075) the bifurcation point
and branches shown in figure 3 do not vary significantly.
Larger delays, however, lead to a more complex bifur-
cation picture which will be presented in further work.
Interestingly, for a large range of s and «, the presence
of delays leads to the existence of multiple stable solu-
tions with the same phase but differing period. Note that
multi—stable dynamical systems have important applica-

s
FIG. 3. Bifurcation diagram of 8 vs s for t4 = 0 and o = 6.
Solid (dashed) lines represent stable (unstable) solutions.

In the limit @ — oo an a—function approximates the
¢ pulse shape considered in the seminal work of Mirollo
and Strogatz [6]. In the absence of shunting currents
and time delays, the only stable periodic solution is the
synchronous one as expected. Importantly however, we
have shown, with realistic forms of postsynaptic current,
that the introduction of shunts and the presence of even
arbitrarily small delays leads to the creation of a stable
asynchronous solution. With the inclusion of an external
input, Iy > h/7, an integrate—and—fire neuron intrinsi-
cally oscillates and rhythmic behaviour is possible in a
purely inhibitory network. In this case bifurcation dia-
grams are qualitatively the same as those presented here,
but with a reversal of stability for all solution branches.
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