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ABSTRACT

In this paper we present a study on how to estimate the po-
sition of a mobile receiver using ultrasonic beacons fixed in
the environment. Unlike traditional approaches, the ultra-
sonic beacons are independent, and positioning is performed
by measuring the Doppler shift within their observed peri-
ods. We show that this approach allows us to deduce both
position and velocity, but an analysis of the space indicates
that we can recover the direction of velocity very well, the
magnitude of velocity less well, and that location estimation
is the least accurate. Based on the characteristics of the so-
lution space, we suggest a method for improving positioning
accuracy.

1. INTRODUCTION

Indoor location systems have been developed for a variety
of purposes. Early location systems were developed in or-
der to allow autonomous robots to navigate through build-
ings (for example [3]). More recently, location systems have
been developed to either track people and objects or to al-
low mobile and wearable devices to position themselves and
provide location-based services [8]. For example, a museum
guide application running on a device worn by a tourist, pro-
vides an enhanced service if it is able to position itself with-
out input from a user. Such an application removes the need
for location references in the environment that are usually in
the form of visual markers or maps. A properly designed po-
sitioning system can, therefore, improve the appearance of
displays and give the curator more freedom in the design of
the experience.

There are a large number of decisions affecting the de-
sign of an indoor navigation system. For example, the sys-
tem designer must decide on the sensing technology used
(video, RF, ultrasound), whether or not it is feasible or desir-
able to modify the environment, and on the orientation of the
architecture: infrastructure-centric or user-centric. Camera-
based systems can identify and track features in a scene to
estimate the location of a mobile camera [2, 6]. They are
appealing to some applications because they do not require
modification of the environment. Other systems use a com-
bination of RF and ultrasound to estimate distances between
receivers and transmitters. These systems can be configured
as infrastructure-centric [8] where the transmitter is tracked,
or user-centric [7] where the receiver tracks itself. Most of
these systems use techniques that involve distance or range-
based measurements as the basis for position estimation.
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Figure 1: A receiver at positionX with velocity V moving
relative to beacons positioned atTi

The particular application that motivates us requires the
design of a light-weight, easy-to-install location system that
can be retrofitted to existing installations, such as museums
or art-galleries. We have opted to use ultrasonic beacons that
transmit signals from known locations, and carry an ultra-
sonic receiver with a processing unit to process those sig-
nals. In comparison with other solutions, our beacons are
completely independent with no wiring between them, they
are low power such that they can be run from small solar
cells, and they are made from readily available components
that make them cheap to produce.

In this paper we discuss the signal processing that we
need to perform in order to recover the location and velocity
of our receivers. In particular, we discuss the type of data that
we receive and the limitations of the algorithms that we use.
We explore the solution space, and show that direction of
travel seems to be the easiest to estimate, followed by speed
and location. We have used both a Kalman Filter and Particle
Filter solution and suggest why the latter seems to be more
amenable to this specific problem.

2. LOCATION DETECTION USING USING
DOPPLER PERIODICITY

The approach that we have taken emphasises hardware sim-
plicity. We use off-the-shelf 40 kHz narrow-band ultrasonic
transducers on the beacons and receivers. The beacons are
fixed on the ceilings and walls of a room, while the receiver
is mounted on a mobile device.

The principal mode of operation is that each beacon
“chirps” with a certain periodicity, for example 501 or
507 ms. The receiver classifies chirps arriving at regular
intervals as being transmitted from a particular beacon and
monitors the differences from the expected periodicity in or-
der to establish whether the receiver has moved towards a
beacon, or away from it.
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2.1 Doppler shift

Each beacon is programmed using a PIC micro-controller to
send a 250µs ultrasonic pulse every 500 ms. The precise
periodicity is dependent on the beacon – the period behaves
as a unique signature that allows the receiver to identify the
source of each chirp. Given that our mobile receiver will not
travel faster than 1-2 ms−1, the shift in periodicity will be
limited to a fraction of a percent, allowing us to identify the
signature of the chirp train [5]. The receiver is equipped with
a pick-up, two op-amps, and a PIC micro-controller. When
a signal is received, the PIC records the time and passes this
on to an attached processing unit.

The method that we use for estimating the position and
velocity of the receiver involves measuring the variation in
periodicity of each of the beacons. For example, if the re-
ceiver moves towards a beacon, the observed periodicity of
that beacon will be reduced within the time frame of the pe-
riod. This happens because chirps arriving later do not take
as long to reach the receiver. The reverse is true when the
receiver moves away from a beacon: the period will increase
depending on the velocity of the receiver. As shown in Fig-
ure 1, a moving receiver will move towards a number of bea-
cons while simultaneously moving away from others. The
period shift∆P observed for each of the beacons depends on
the location of a beacon (T) and the position (X) and veloc-
ity (V) of the receiver:

∆P
P+∆P

vs =
X−T
|X−T|

·V (1)

The right part of Equation 1 is the projection of the ve-
locity vectorV onto the unit vectorX−T. This is the mag-
nitude of the receiver velocity in the direction of the beacon,
which is also proportional to the observed periodicity shift.
The relative distance that the receiver moves in the time be-
tween successive observations from a single beacon is∆Pvs,
wherevs is the speed of sound. Dividing by the elapsed time
P+ ∆P gives the magnitude of velocity in the direction of
the beacon expressed in terms of∆P, as is shown on the left
side of the equation. This equation relates six unknowns (X
andV), to a single measurement∆P. Once we receive mea-
surements fromn beacons, we will obtainn equations, with
six unknowns, which can be solved if there are no depen-
dencies between equations, and ifn≥ 6. In practice we use
eight transmitters (n= 8), and we place the transmitters in an
irregular pattern, avoiding dependencies.

2.2 Measurement restrictions

There are two issues that make it difficult to solve the sets
of equations. First, the right-hand side of Equation 1 is ex-
pressed in terms of the instantaneous position and velocity of

the receiver. Therefore, given anX andV, the left-hand side
of the equation should provide a measure of instantaneous
scalar velocity in the direction of the beacon. However, the
left-hand side of Equation 1 measures the Doppler shift over
a periodP. As a result, we measure an “average” position
and velocity over the periodP.

The second problem is that each chirp arrives asyn-
chronously. Hence, then equations will, strictly speaking,
have 6n unknowns; we have to make an assumption thatX
and in particularV do not change dramatically between mea-
surements, which is the case if we sample the system often
enough. Each of our eight beacons chirps at a periodicity of
around 520 ms, giving us an average update rate of 65 ms, or
16 Hz.

The two issues above interact, as the measurement of
each beacon overlaps with the measurement of the other bea-
cons. This is depicted in Figure 2, which shows the arrival
of chirps from four beacons over a 1.5 second period. The
measured periods of each of the four beacons is shown. Note
that the measurements shift relative to each other, because
the beacons transmit asynchronously with unique periods. If
we only use Equation 1 to estimate location and velocity, we
will end up with approximations that are averaged over a,
typically, 2P period of about one second.

3. SAMPLING THE SPACE

In order to explore the nature of the Doppler equation (Equa-
tion 1) we have performed a number of Monte Carlo simu-
lations. In these experiments, we randomly sample position
and velocity pairs and compare their∆P values with a refer-
ence pair. The aim of the experiments is to determine how the
Doppler equation constrains values for position and velocity.
We assume that we can take instantaneous measurements for
∆P, and that we can identify the source of each of the mea-
surements with 100% accuracy.

3.1 Experimental set up

The experiments use two different eight-beacon configura-
tions that cover a virtual room. The first configuration situ-
ates the beacons on the corners of a 4×4×4 metre cube at
locations(−2,−2,−2),(−2,−2,2), ...(2,2,2). The second
configuration simulates the set-up that we have in our lab,
with the eight beacons placed on the walls and ceiling.

The reference pair is placed near the centre of the space,
at location(−0.5,0.5,0.4) m and we assume that it is mov-
ing with a velocity of(0.5,0.7,0.1) ms−1. This allows us to

compute a reference∆Pref
i that corresponds to each beaconi.

For example,∆Pref
0 for the beacon at(−2,−2,−2) is 1.1 ms

and ∆Pref
7 for the beacon at(2,2,2) is -1.2 ms. The col-
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Figure 3: Position and velocity samples withδ less than (a) 2 cm, (b) 4 cm, (c) 6 cm, and (d) 8 cm using the cubic beacon
configuration

lection (∆Pref
0 ,∆Pref

1 , ...∆Pref
7 ) forms a vector of reference

measurements, denoted∆Pref.
For each experiment, we sample a large number of ran-

dom pairs(X,V) j in the six dimensional space spanning
location and velocity. The pairs are uniformly distributed
in location (with bounds[−5..5]) and velocity (with bounds
[−3..3]). For each pair(X,V) j we calculate the∆P j

i for each
beaconi and compare them with the reference measurements
by taking the magnitude of their difference:

δ
j = |∆Pref−∆Pj|

Ideally, position-velocity pairs that are further away from the
reference pair in the 6D space should have higherδ values,
while pairs that are nearby have lowerδ values. However,
it turns out that there are many pockets of local minima that
are distributed over the 6D space. They are widely spread in
the location space, while the velocity space is slightly more
constrained.

The importance ofδ lies in the fact that our location
hardware has limited accuracy and precision. As such, mea-
surements for∆P contain errors. In an ideal situation, small
measurement errors will cause small perturbations in posi-
tion and velocity estimates. However, if there are pockets of
solutions that have smallerδ values than our measurement
error, then our estimators could easily move into those pock-
ets. In the two succeeding sections we present results from
our experiments on the cubic and real-world configurations
of the beacons. We use a varying threshold forδ to observe
how deep the local minima are relative to the measurement
errors.

3.2 Results on cubic layout of beacons

Figure 3 depicts the results of the cubic beacon experiment.
Each plot in the figure shows the X-Y placement of posi-
tion (in the top row) and velocity (in the bottom row). The

Z-axis has been left out for simplicity. The dot surrounded
by a circle is the reference point, while all other dots are the
randomly generated position-velocity pairs. For the plots de-
tailing position, the stars depict the position of the beacons in
the X-Y plane. For this experiment, only four beacons can be
seen since the other four have the same X and Y coordinates
with different Z coordinates.

The figure has been separated into columns (a) through
(d), which correspond to different thresholds onδ . Column
(a) includes all pairs that haveδ values less than 2 cm, and
Column (d) includes all pairs that haveδ values less than
8 cm. We use distance values (cm) to describeδ (by dividing
by the speed of sound) to make it easier to compare with
our observed sensor noise (which we commonly describe in
terms of distance). Nevertheless, it can be seen that, as the
threshold forδ increases, there is more of the 6D space that
is covered by local minima.

Viewing the location space, one can see that the local
minima seem to occupy, roughly, a plane (which extends in
the Z direction – not visible in the plots). It appears that
the plane is perpendicular to the velocity of the receiver. In
the velocity space, the local minima appear as an ellipsoid
of velocities that have the same direction as the reference
velocity, but with higher magnitude (speed).

From the simulation we can also get a rough idea on the
fraction of the 6D space that contains local minima that are
lower than the measurement error. The number of pairs with
a δ of 15 cm or less (which is a very conservative estimate
for the maximum sensor noise we observe; the standard de-
viation of the sensor noise measured in our lab is around 1 to
2 cm), is less than 0.0005%. For a 64 m3 room, that corre-
sponds to a space approximately 6.7 cm cubed.

3.3 Results on laboratory layout of beacons

The results from the experiment using the beacon configura-
tion employed in our lab is given in Figure 4; we provide two
thresholds forδ , 4 and 8 cm. In this configuration, there is
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Figure 4: Position and velocity samples withδ less than (a)
4 cm, (b) 8 cm using the lab beacon configuration

only a small variation in the Z-coordinates for the location of
the beacons. As a result, we observe a much more unpleasant
distribution of local minima. Specifically, the local minima
are widely distributed over the X and Y axes. We believe that
the higher dilution of precision of the beacons in the Z-axis,
means that many ghost solutions are created under the floor,
and are widely spread over X and Y.

As with the previous configuration, the ghost solutions
in velocity are approximately constrained to an ellipsoid ex-
tending in the same direction of the reference velocity. How-
ever, compared with the previous experiment, the error in
position seems to be determined by the relative positions of
the reference point and the beacons. The fraction of solutions
that fall under the 15 cm threshold is less than 0.0186%, or
23 cm cubed in terms of a 64 m3 space.

3.4 Results along a line in space

In order to further explore the presence of the local minima
in the cubic beacon experiment, we have made three one-
dimensional cuts through the 6D space and plotted the error
against the distance traversed along these cuts. This is shown
in Figure 5. Each cut follows the same path through the 3D
location space, intersecting the reference point. The lines
follow the diagonal band of points displayed in Figure 3(d).
The horizontal line in Figure 5 is the corresponding 6 cmδ

threshold. Each of the three lines depicting the path through
the 6D space have a fixed but different velocity. We observe
that one of the lines reaches zero-error. This is the line with
velocity set to the reference velocity and, as expected, it hits
zero when it goes through the reference point. We notice that
the other lines have local minima at other points on the diag-
onal path traversed. In the next section, we detail our experi-
ence of using the Doppler model with two types of estimator,
a Kalman Filter and a Particle Filter.
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4. APPROXIMATION METHODS

We have explored two methods to retrieve the location and
velocity using Equation 1: one uses a Kalman Filter and the
other uses a Particle Filter. Details of these two filters are in
two companion papers [4, 5].

4.1 Kalman Filter

For this algorithm, the receiver uses a Kalman Filter to model
position and velocity in three dimensions. Each measure-
ment is incorporated using Equation 1 as it arrives; this
method is known as “single constraint at a time” filtering [9].
In order to deal with collisions and ambiguities, the algo-
rithm uses a multi-hypothesis [1] approach. For example,
when a chirp arrives that could possibly come from multiple
sources, the algorithm createsm hypotheses, wherem is the
number of possible sources (including noise or reflections).
Each hypothesis contains a Kalman Filter that uses a unique
guess as to the source of the ambiguous measurement. The
idea behind this approach is that, as more chirps arrive, in-
correct hypotheses can be eliminated.

4.2 Particle filter

The particle filter models the 6D space for location and ve-
locity, where each particle models a point in this space. The
particle state is progressed by changing the particle location
in line with the particle velocity, and by adding a random
variation to both. Variation in the X and Y components of the
velocity has a standard deviation of 2 ms−2, and the variation
on the Z component is assumed to be 0.2 ms−2; we assume
that our receivers are mounted on humans and, hence, sudden
variations in X and Y are possible, but only minor variations
in Z are expected.

4.3 Results

To date we have managed to get the Kalman Filter approach
to work with simulated data and are in the process of config-
uring it to work with real data. Initial observations have sug-
gested that it may be difficult to determine which hypothe-
ses are stronger than others and we have yet to find a set of
metrics to provide this evidence consistently. It may also be
the case that ambiguous measurements do not actually make
enough of a difference to warrant the branching of separate
hypotheses. For example, an ambiguous measurement could
be ignored, used as a chirp from the most likely beacon, or
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Figure 6: Position estimation with particle filter: (a) the
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interpreted as coming from both. If this is true, it may explain
the lack of evidence to support “stronger” hypotheses.

The Particle Filter works on real data, and results are
detailed in Figure 6. Figure 6(a) shows fragments of paths
that the particle filter recovered on five separate runs with
the same recorded measurements. The plot highlights the
variation in position that the filter produces, independent of
the input data. We observe that the tracks have slightly odd
shapes (due to the particles being updated with a single mea-
surement at a time), but we also notice that the direction of
the tracks mostly agree.

Figure 6(b) shows the positions that the particle filter es-
timates on 1000 separate runs over the set of recorded mea-
surements. The two clouds of points are the location for two
separate time snapshots in the test track, three seconds apart.
Each point in the cloud is the location produced by one run of
the particle filter. The 50% CEP (circular error probability)
is around 25cm, but the error seems to be less pronounced in
the direction of travel. For example, the receiver was moved
clockwise along the green line. One can see that on arriving
at the bottom left-hand corner, the error in the X-direction
is about half the error in the Y-direction. Similarly, arriving
at the top left-hand corner produces errors in the Y-direction
that are about half the error in the X-direction. These results
support the observations in Section 3, where position error is
largest perpendicular to the direction of travel.

5. DISCUSSION

Despite the presence of many local minima, we think it is
feasible to track location using just Doppler information. We
expect that it is easier to get the particle filter to work than
the Kalman Filter because of the large number of local min-
ima. In the case of our particle filter, some particles will get
tracked into the local minima, but in case of the Kalman Fil-
ter, all hypotheses might be tracking local minima.

Even though the Doppler shift allows us to recover lo-
cation and velocity, the accuracy will be severely limited.
In particular, in the case with ceiling mounted transmitters,
there are many ghost solutions that are “almost right”.

Unlike ranging solutions that are common to ultrasonic

positioning, errors in measurements used with the Doppler
equation will have pronounced effects on the positioning ac-
curacy. However, there is nothing that stops us from re-
introducing ranging: we can use the Doppler equations to
give us an estimated velocity and location, which we can use
to build a model of the transmitter clock, using that model,
we should then be able to retrieve our location with a higher
accuracy.

The shape of the space with the almost right solutions is
shaped according to the speed and distribution of beacons.
We postulate that if we move around through space with
varying speeds, the space with pseudo solutions will be mov-
ing around wildly, while the space with the real solutions will
follow the point. An averaging filter could work out where
the real solution is. Hence, we propose to use a Equation 1 to
give us a rough solution, but then to model the actual trans-
mission times of the beacons in order to be able to work out
where the right solution is.
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