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Abstract

Lightly damped geared systems have been shown to exhibit unwanted noise and
vibration problems. We present a nonlinear analysis of this behaviour, based on
freeplay. We derive a simple model of a pair of meshing spur gears as a single degree
of freedom oscillator with backlash. We consider the behaviour of such a system
with low damping, and with both large finite and infinite stiffness values. We show
that the solution where the gears remain permanently in contact can coexist with
many other stable rattling solutions which we compute analytically. We calculate
the regions of existence and stability of the families of rattling solutions on two-
parameter bifurcation diagrams, and show that to leading order the large finite and
infinite stiffness models give the same results. We provide numerical simulation to
support our analysis, and we also draw practical conclusions for machine design.

1 Introduction

Play or backlash is an omnipresent reality in engineering. Any mechanical
system with joints may suffer from play between the components, which may
change with temperature or wear. Backlash oscillations have been shown to
give rise to undesirable noise and vibration (N&V) problems in many engin-
eering systems; one particular example is in gearing mechanisms [1–3]. It is
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impossible to operate gears which mesh perfectly. Rather, it is essential to
have a small gap between the trailing face of one tooth and the leading face
of the next, known as the backlash (or freeplay), so as to ensure that gears
do not jam. Because gears can consequently lose contact, there is a range of
relative rotational displacements for which there is no torque transfer between
them.

Indeed, in lightly damped, lightly loaded quasi-steady operation, a small
amount of oscillatory forcing can excite modes where gears rattle by repeatedly
losing and re-establishing contact. The problem of gear rattle excited by para-
metric forcing, due to stiffness varying at the meshing frequency, is well stud-
ied. In contrast, this paper performs a detailed analysis of rattle where right
hand side forcing effects are introduced, and the parametric stiffness effect is
ignored. One particular application of this model is the Roots blower vacuum
pump [4–6], where tiny amounts of eccentricity in the gear mounting introduce
a forcing effect which acts at the gross rotation rate of the gears. In the auto-
motive driveline [7,8], a similar effect occurs in the unloaded (i.e. unselected)
gear pairs of a manual transmission, and is excited by the torque cycle of the
engine.

Backlash oscillations, however, can be found in much more general mechanical
systems, for example, rolling mills [9], rotors [10], aeroelastic control systems
[11], and even electrical relays [12]. Currently there is no full explanation of the
mechanisms leading to the onset of bifurcations and chaos in backlash systems.
It has been shown through extensive numerical simulations that backlash sys-
tems can exhibit complicated behaviour. The occurrence of chaotic behaviour
in a backlash system is discussed in [13] mainly through numerical simulations.
The possible bifurcations are examined in more detail in [14] and [15], with
numerical techniques. Experiments demonstrating the validity of the results
obtained using simple models of backlash oscillators are shown in [16]. The
bifurcation scenarios leading to chaotic behaviour are studied numerically in
[17].

We will model the backlash with a piecewise linear (PWL) restoring force. We
shall present analytical and numerical evidence that this nonlinearity gives rise
to coexisting periodic solutions, both ‘silent’ and ‘noisy’ that can explain the
typical N&V problems of intermittency (a single machine behaves inconsist-
ently) and sensitive dependence on parameters (apparently identical machines
behave differently). It has been pointed out that unwanted dynamics are often
associated with coexisting solutions, which are therefore particularly interest-
ing from a design perspective. Specifically, a large enough disturbance may
cause the system to be perturbed into the basin of attraction of a solution not
accounted for by a linear analysis. This paper shows that there may be large
numbers of these coexisting solutions for typical operating parameters.
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We construct explicit existence and stability criteria for two classes of rattling
periodic orbit, both for a piecewise linear model of backlash with finite stiff-
ness, and for the impacting infinite stiffness limit. We show that, to leading
order in the small damping parameter, the existence and stability criteria for
the two models are the same. Moreover, we perform an analytical bifurcation
analysis in the finite and infinite stiffness cases, considering both standard bi-
furcations [18] as well as those unique to non-smooth systems [19,20], in order
to explore the dynamics as design parameters are varied. Once again, we show
that the two backlash models are equivalent. Further, we support our analyt-
ical calculations with numerical simulation, and draw practical conclusions for
machine design.

The rest of the paper is outlined as follows. In Section 2 we derive the equations
of motion for a simple pair of meshing spur gears, with particular reference
to the Roots blower vacuum pump problem. This application motivates the
small damping, lightly loaded, large stiffness limit which is analysed in the
rest of the paper. However, the model we derive applies across a wide range of
other lightly loaded geared systems and indeed to more general problems with
a backlash nonlinearity. In Sec. 3 we derive bounds on physical parameters
for the existence of a silent solution, where the gears remain permanently in
contact. In Sec. 4 we motivate parameter scalings and discuss two different
ways of dealing with the backlash nonlinearity when the stiffness is large.
The first retains a large finite stiffness value whereas the second takes an
infinite stiffness limit where contact is modelled by impacts. In Sec. 5 we
describe the methods used to construct nonlinear rattling solutions and we
determine their stability. We then proceed to use these methods to construct
analytical existence and stability criteria for two families of periodic solutions.
In Section 6 we consider solutions which contact one side of the backlash once
per period, while in Sec. 7 we consider solutions which contact each side of
the backlash once per period. In each case we compare both the finite stiffness
and the impacting contact model, and we present two-parameter bifurcation
diagrams that summarise our findings. We also interpret the significance of
the results from the point of view of machine design. Finally, in Sec. 8, we
present conclusions and identify areas for further work.

2 Modelling

We shall derive a model with specific reference to N&V problems in the gear-
ing mechanism of Roots blower vacuum pumps. However, we believe that the
equations derived here are applicable to much wider classes of backlash oscil-
lators.

A Roots blower pump [4–6] is made up of two involute steel rotors (denoted by
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X and Y), rigidly attached to two counter-rotating parallel shafts. One shaft
(the X-shaft) is driven by means of a motor, while the other (the Y-shaft)
is driven only by means of a gearing mechanism between the two shafts. A
schematic diagram is shown in Fig. 1. Note that contact is through the gears
only, not through the lobes of the rotors. When the gear teeth are in contact,
we suppose that each assembly deforms according to Hooke’s law, and that the
restoring torque (normal reaction force on the meshing teeth) is proportional
to the relative rotational displacement.

Fig. 2 shows schematics of the possible modes of gear operation. In ‘quiet’
operation, the gears remain in contact, and the system resides permanently
in regime (a). However in ‘noisy’ operation, the gears lose contact, and an
audible noise is generated by the impact when the gears re-establish contact.
There are in fact two broad types of noisy operation.

Starting from regime (a) in Figure 2(a), the gears can lose contact (passing
into regime (b)), and then re-establish contact in regime (a) again; this corres-
ponds to X driving Y, occasionally slipping in and out of the freeplay region.
Alternatively, the system may include torque reversal (regime (c)); in this
situation, X drives Y and Y drives X alternately with periods where the gears
are not in contact. Both modes are known as backlash oscillation. We believe
that the latter oscillations are the noisiest (certainly torque reversal is highly
undesirable), while the former, although not silent, result in quieter operation.

We shall model each shaft with its attached gear and rotor as a single rigid
body. This is a simple ‘lumped’ approach; we do not attempt to model the
elastic deformation of individual components, nor do we model the spatial
distribution of strain via, for example, Navier equations. In order to derive
the equations of motion for the system, we must consider the forces acting on
the two shafts, as shown schematically in Fig. 3. We now outline the notation
introduced in Fig. 3, which portrays more general ratios than 1:1:

• rX and rY denote the radii of the pitch circles at which the X and Y gears
mesh. In the remainder of this paper we restrict attention to the choice
rX = rY.

• θX and θY denote the angular displacements of the two gears, with directions
chosen so that both coordinates increase in time.

• IX and IY denote the moments of inertia of the fully assembled shafts.
• cX and cY are linear damping coefficients. Both the X and Y-shafts suffer

resistive torques against the direction of motion, given by cXθ̇X and cYθ̇Y
respectively. The linear damping terms arise from lubrication losses, friction
in the seals, and a crude attempt to model the force applied in pumping the
gas load.

• The relative rotational displacement is defined generally by rXθX − rYθY.
Here, where rX = rY, we work with the non-dimensional relative rotational
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displacement Θ := θX − θY.
• The stiffness coefficient k is a measure of the lumped torsional rigidity of

the shaft assemblies. Each gear experiences a restoring normal reaction force
B, which we suppose for simplicity acts normal to the shafts, and which is
dependent on the relative position of the gear teeth (and hence the relative
rotational displacement). Here B is a nonlinear backlash function that is
made up of three linear components. We have

B(Θ, β, k) =















k(Θ − β), Θ > β, (X drives Y)

0, |Θ| < β, (freeplay)

k(Θ + β), Θ < −β. (Y drives X)

(1)

In practice, of course, nonlinear effects such as lubrication, preloads or bend-
ing stiffnesses modify the form of the backlash function, but we take only
the simplest approach here.

2.1 Eccentricity

We shall be primarily interested in forcing mechanisms that operate at the
gross rotation rate of the machine (or multiples thereof); possible candidates
are torque ripple and eccentric mounting of the gears. Eccentric mounting is
where the axis of rotation does not coincide with the centre of the gear (note
that the entire shaft assembly is balanced so that the centre of mass is at the
centre of rotation). Even very small eccentricities can give rise to a sufficiently
large forcing to drive noisy operation.

We now describe the mechanism by which eccentricity introduces an oscillat-
ory term into the equation of motion of the gears. The key point to note is
that for an eccentrically mounted gear, the coordinate Θ which describes the
rotational displacement about the shaft is not the same as the angle which
parametrises the pitch circle of the gear, where meshing occurs. Whereas the
rate of change of angular momentum should be expressed about the shaft,
the relative rotational displacement involved in computing the meshing force
should be computed at the pitch circle. We must therefore relate the two
angles.

For the case of two circular gears of equal radii, it can be shown that

Θouter = Θshaft + ǫ cos(2πΩτ), (2)

where Θouter and Θshaft are the relative rotational displacements measured
at the outer radii and the shaft respectively. Here Ω is the gross rotational
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frequency (assumed constant), and ǫ is an effective eccentricity given by

ǫ =
√

ǫ2X + ǫ2Y − 2ǫXǫY cos ζ, (3)

where ǫX and ǫY are the non-dimensional eccentricities of the X and Y shafts
respectively, and the phase angle ζ describes the relative orientation of the
eccentricities.

2.2 Equations of motion

For simplicity, we shall assume for the rest of this paper that the two shafts are
identical; namely that the inertias, damping and radii of the X and Y-shafts
are equal to I, c and r respectively. We will also neglect torque ripple, and
assume that the driving torque T (τ) is a constant, T . By applying Newton’s
second law of motion in angular coordinates, we can derive equations of motion
of the two shaft assemblies; namely for the X-shaft we have

Iθ̈X + cθ̇X + rb(θX, θY, τ) = T , (4)

and for the Y-shaft assembly, we have

Iθ̈Y + cθ̇Y − rb(θX, θY, τ) = 0, (5)

where b(θX, θY, τ) is the interaction force between the gears given by

b(θX, θY, τ) = B(θX − θY + e(τ), β, k), (6)

where e(τ) is the oscillatory correction for eccentricity, of magnitude ǫ and
frequency 2πΩ. Here B is the backlash function described by (1).

Note that if the gears are turning at a constant speed then the mean drive

must balance with the dissipation. Hence, if we define θ̇X, θ̇Y and b to be the
average values of θ̇X, θ̇Y and b respectively, we have

c

I
θ̇X +

r

I
b =

T

I
, (7)

c

I
θ̇Y − r

I
b = 0. (8)

Adding (7) to (8) and assuming the average rotational speed is θ̇X = θ̇Y = 2πΩ,
we then obtain

T = 4πcΩ. (9)

Now, let y(τ) = θX(τ) − θY(τ) + e(τ) then, from (4) and (5), we obtain

ÿ +
c

I
ẏ +

2r

I
B(y, β, k) =

4πcΩ

I
+
c

I
ė+ ë. (10)
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For lightly loaded gears, we may neglect the (c/I)ė term on the right-hand
side of (10); the eccentricity and damping are both typically very small so
this term is much smaller in magnitude than the other two, and hence we may
approximate the forcing in (10) for simplicity by

4πcΩ

I
+ Ω2ǫ cos(2πΩτ). (11)

Thus, if we define a dimensionless time t as t = Ωτ , denoting differentiation
with respect to t by an apostrophe, we can recast (10) as

y′′ +
c

IΩ
y′ +

2r

IΩ2
B(y, β, k) =

4πc

IΩ
+ ǫ cos(2πt). (12)

Finally, setting the new parameters

δ =
c

ΩI
, κ =

rk

Ω2I
, (13)

we obtain
y′′ + δy′ + 2B(y, β, κ) = 4πδ + ǫ cos(2πt), (14)

with B(y, β, κ) as given by (1).

As it stands, our model (14) is a nonlinear second order ordinary differential
equation, with the nonlinearity arising from the backlash term B. However,
(14) can be split into the three linear regimes of B:

(a) y > β (X drives Y)

y′′ + δy′ + 2κ(y − β) = 4πδ + ǫ cos(2πt), (15)

(b) |y| < β (freeplay)
y′′ + δy′ = 4πδ + ǫ cos(2πt), (16)

(c) y < −β (Y drives X)

y′′ + δy′ − 2κ(y + β) = 4πδ + ǫ cos(2πt). (17)

The three equations (15), (16) and (17) are linear ordinary differential equa-
tions, which can each be solved explicitly for y using standard techniques. The
nonlinearity arises because the motion y(t) will typically not be confined to
any one of the regions for all time, but will swap whenever y passes through
the values ±β.

For typical machines, the stiffness κ is very large, and so we can also think
of taking an impacting model of backlash (limκ→∞B(y, β, κ); see Fig. 5), in
which the system evolves only according to (16), with an instantaneous im-
pact condition applied whenever y = ±β. In what follows, we will model the
contacts in both ways.

7



Firstly, we will seek a condition for the existence of silent solutions that are
confined to the linear stiffness regime y > β for all time. We will then focus
on various families of periodic rattling solutions, and show their regions of ex-
istence and stability in parameter space, comparing the results of the analysis
with the piecewise linear (PWL) contact model (κ < ∞) with those of the
impacting model of backlash (limκ→∞). We will show that systems with back-
lash can exhibit both standard bifurcations, as well as bifurcations unique to
non-smooth systems (known as discontinuity-induced bifurcations) [19]. We
derive two-parameter bifurcation diagrams (including novel codimension-two
[20] phenomena) analytically, and validate them through numerical simula-
tions.

3 Permanent contact solution

Geared systems should be designed to operate so that the gear teeth remain in
contact for all time, with no rattle. It is straightforward to derive a condition
for such a solution to exist. For the gears to remain in contact, the solution
must be confined within the phase-space region where y > β (see Figure 4)
where the system is described by the equation

y′′ + δy′ + 2κ(y − β) = 4πδ + ǫ cos(2πt), y > β. (18)

The change of variable ŷ = y − β − 2πδ/κ gives

ŷ′′ + δŷ′ + 2κŷ = ǫ cos(2πt), ŷ > −2πδ

κ
. (19)

If we assume u(t) = cos(2πt) to be the external input to the dynamical system
described by (19), we can derive its transfer function as

G(s) =
L(ŷ(t))

L(u(t))
=

ǫ

s2 + δs+ 2κ
. (20)

where L is the Laplace transform operator.

Thus neglecting transients, the system response to the sinusoidal forcing input
cos(2πt) is a sinusoid centred at ŷ = 0 with magnitude determined by

|G(2πi)| =
ǫ

√

(2κ− 4π2)2 + 4π2δ2
. (21)

For the permanent linear contact (ŷ(t) > −2πδ/κ for all t) solution to exist,
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we must have |G(2πi)| < 2πδ/κ, namely

ǫ <
2πδ

κ

√

(2κ− 4π2)2 + 4π2δ2. (22)

In the κ→ ∞ limit of large stiffness, the condition for silent operation reduces
to

ǫ < 4πδ. (23)

There is a range of anecdotal evidence to suggest that satisfying this bound
in real geared systems is a major challenge. However, choosing parameters
such that (22) is satisfied is not enough to guarantee silent operation; stable
rattling solutions may also coexist, as we shall see in the following sections.
Throughout, we suppose that (23) holds so that in particular the RHS of (18)
is positive for all time — this assumption simplifies the subsequent analysis
considerably.

4 Backlash model and parameter values

The model we have obtained so far is a single degree of freedom system in-
volving a small set of non-dimensional parameters. An important issue is to
decide the parameter ranges to be analysed. Motivated by the Roots blower
application, the setting on which we will focus is one where the stiffness is
very large, while the damping, backlash and eccentricity are very small. We
therefore make the simplifying assumption that δ, ǫ and β all have similar
(small) magnitudes, i.e.

δ ∼ β ∼ ǫ. (24)

It remains only to choose a scaling for κ. Henceforth, we adopt

κ ∼ O(1/δ2), (25)

although we believe that our asymptotics will also work for other similar scal-
ings.

For the purposes of asymptotic expansions, it is convenient to express all
parameters in terms of a single small parameter. To this end we may write

β = β1δ, (26)

ǫ = ǫ1δ, (27)

and for the PWL contact model

κ =
κ1

δ2
, (28)
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where ǫ1, β1, κ1 ∼ O(1).

In what follows, we will examine the existence, stability and bifurcations of
periodic rattling solutions of (14) with two different stiffness models, illus-
trated schematically in Fig. 5. The first is an impacting model, described by
a simple coefficient of restitution law, while the second is based on a piecewise
linear stiffness law. The advantage of the impacting model is that it is consid-
erably simpler to analyse, and as we shall show, it has equivalent dynamics to
the piecewise linear model for large finite κ.

In the impacting model, the parameters that can be varied are δ, ǫ and β. By
assumption (23), we need only derive results in the transformed cross-section
of parameter space shown in Fig. 6. Since our calculations are analytical rather
than numerical, the variation with β will turn out to be clear.

4.1 Impacting contact model

In the systems we consider here, the motion of the gears is mostly free as
they are affected by only a small amount of damping. During rattling motion,
we expect therefore that the gears are in contact for small periods of time,
quickly bouncing back to the region characterised by y < β, whenever it comes
in contact with the backlash boundary. Note that the impacting model, shown
in Fig. 5, can be seen as the limit of the piecewise linear one when the stiffness
becomes infinitely large, i.e. when κ→ ∞.

It is shown in [21] that, as κ→ ∞, it is valid to approximate the contact as a
pure impact through a classical coefficient of restitution law. The problem to
address is to find the value of the coefficient of restitution. Namely, we assume
that whenever |y| = β, y′ changes sign and is multiplied by a constant r, the
coefficient of restitution. We estimate r heuristically as detailed below.

The general solution to our differential equation (14) in the contact region
y > β is given by

y(t) = exp

(

−δt
2

)



C1 cos



t

√

2κ− δ2

4



+ C2 sin



t

√

2κ− δ2

4







+ β + P (t),

(29)
where C1 and C2 are constants of integration and P (t) is the particular solution
of our linear equation, given by:

P (t) =
2πδ

κ
+

ǫ

2(κ− 2π2)2 + 2π2δ2

(

(κ− 2π2) cos(2πt) + πδ sin(2πt)
)

. (30)

We can see that P (t) ∼ O(1/κ), therefore limκ→∞ P (t) = 0.
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Moreover, when κ→ ∞, we have

√

2κ− δ2

4
∼

√
2κ. (31)

Therefore the solution in the limit κ→ ∞ becomes

lim
κ→∞

y(t) = exp

(

−δt
2

)

(

C1 cos(
√

2κt) + C2 sin(
√

2κt)
)

+ β, (32)

At the point where we make contact we assume w.l.o.g. that t = 0 and y(0) =
β, y′(0) = v0 > 0. Therefore we have

lim
κ→∞

y(t) =
1

2
exp

(

−δt
2

)

v0√
2κ

sin(
√

2κt) + β. (33)

We leave contact again when y(t) = β, i.e. when

t =
π√
2κ
, (34)

which tends to zero as κ→ ∞. The velocity at this time v1 is given by

v1 = −v0 + O(δ2), (35)

Therefore to second order in δ the velocity is reversed and hence the coefficient
of restitution is unity to good approximation.

4.2 Piecewise linear contact model

As mentioned in the introduction, we are interested in the analysis of solutions
(associated to rattling) that can coexist with a perfectly meshed solution, i.e.
where y > β for all t (sufficiently large). When using the impacting model, we
remove the possibility for such a solution to exist (as a trajectory cannot enter
the region |y| > β). Therefore, we also consider a backlash model characterised
by the piecewise linear stiffness law described by B(y, β, κ) as given by (1).

Now, suppose κ is a finite large value satisfying (25). We then have P (t) ∼
O(δ3). However, this is not of low enough order to discard and still accurately
find the Floquet multipliers of the solutions we will construct. Therefore when
dealing with solutions in the piecewise linear contact model case we have to
deal with the full general solutions of our differential equation.

Currently, it is not clear in the existing literature to what extent the two
modelling approaches yield the same result. An important open problem is
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to understand whether the impacting model can be seen as the singular limit
of a family of finite stiffness ones. In what follows, we shall take a practical
approach, seeking to compare the dynamics predicted by the two models,
providing both analytical and numerical evidence for their similarities and
differences.

5 Methodology to determine existence and stability of periodic

solutions

As a first step, we describe methods to determine analytically the regions of
existence and stability of different orbits by using both the impacting and
piecewise linear models of the contact force. We introduce an appropriate
notation to classify the different possible types of orbits.

5.1 Classification of periodic orbits

For convenience we introduce a notation to identify periodic orbits charac-
terised by different phase-space itineraries. If we let T be the period of the
external forcing (note that in our case T has been rescaled to unity), a periodic
solution is denoted by P (m,n+, n−) where

• m is the periodicity of the solution, in the sense that y(t) = y(t+mT ).
• n+ is the number of times per period the orbit makes contact with the

boundary at y = +β.
• n− is the number of times per period the orbit makes contact with the

boundary at y = −β.

For example, an orbit of type P (2, 1, 1) is a solution that repeats itself every
2 cycles of the forcing and hits each boundary once per period; see Figure 7
for further examples. We further distinguish between ‘in-phase’ and ‘out-of-
phase’ solutions. In-phase solutions have their maxima at times close to the
times of the maxima of the forcing (i.e. t = 0, 1, 2, 3 . . .), whilst out-of-phase
solutions have their maxima close to the times of the forcing minima (i.e.
t = 1/2, 3/2, 5/2, . . .).

5.2 Existence of periodic orbits

The system under investigation is described by a piecewise linear differential
equation. We can therefore find its solutions analytically in between boundary
events that determine changes from one system configuration to another. To
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obtain conditions for the existence of a given periodic solution, we then have
to ‘glue’ sections of trajectories belonging to different phase-space regions,
by computing accurately the times at which the boundary events occur. It is
worth mentioning here that the conditions of existence obtained by following
this approach are only necessary. Hence, we will have to check a posteriori that
the orbit satisfying the conditions is indeed described by the correct itinerary,
i.e. the correct sequence of boundary events.

As will be shown later, we obtain a set of implicit transcendental equations of
the form f (x,p) = 0,where p is a vector of parameters;

• p = [δ, β, ǫ, κ]T with the PWL contact model,
• p = [δ, β, ǫ]T with the impacting model,

and x is a vector of unknowns. We will seek approximate solutions of such
equations by using appropriate asymptotic expansions. Writing each para-
meter in terms of the small parameter δ, (26)–(28), we can expand the un-
knowns x as a series in δ

x = . . .+ x−1δ
−1 + x0 + x1δ + . . . , (36)

where the terms xi ∼ O(1), and hence obtain solutions of f(x,p) = 0 for
small δ. It is these solutions which lead to the conditions of existence.

The assumption that the external forcing term is positive, implied by (23),
allows us to draw some important information about turning points in the
region |y(t)| < β. At a turning point y′(t) = 0, |y(t)| < β we have

y′′ = 4πδ + ǫ cos(2πt). (37)

The acceleration y′′(t) must therefore be positive at such a turning point.
Therefore we cannot have a maximum in the region |y(t)| < β. This allows
us safely to ignore some of the constraints on our sections of trajectory. If we
have a trajectory starting at y(t) = −β, y′(t) > 0 then the next boundary
hit has to be the boundary y(t) = β. However, trajectories that start at
y(t) = β, y′(t) < 0 may next hit either the boundary y(t) = β or y(t) = −β.

5.3 Stability of periodic orbits

We have to take special care when investigating the stability of periodic solu-
tions in our system, in particular to account for possible jumps in the Jacobian
due to trajectories crossing the boundaries defined by |y| = β.

For both models of the backlash considered here, we have to investigate how
perturbed solutions behave in the differentiable region of phase-space |y| < β
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(Section 5.3.1). When using the piecewise linear contact model, we must also
consider the behaviour of the system under perturbations in the differentiable
regions |y| > β (Sec. 5.3.2). This involves the use of classical Floquet analysis
(see e.g. [22]).

At the non-smooth boundaries there may be jumps in the Jacobian matrix of
the solution, which must be taken into account. This is only important when
the backlash is modelled by an impacting law, as the discontinuity induced by
the piecewise linear one is in terms of order higher than linear and therefore
we do not need to add any correction. The correction in the impacting case is
calculated using the so-called discontinuity mapping [23–25].

In conclusion, to determine the overall stability of a given periodic solution,
we can multiply the Jacobians associated to small perturbations in each of the
phase-space regions visited by the solution of interest with the discontinuity
mappings accounting for the occurrence of boundary events.

5.3.1 Stability: freeplay region |y| < β

We consider a trajectory that enters this region at t = t0 and leaves at t = t1.
Thus, if we let y1 = y and y2 = y′ we have for t ∈ (t0, t1)

d

dt







y1

y2





 =







y2

−δy2 + 4πδ + ǫ cos(2πt)





 . (38)

Let Y 0 be the section of trajectory lying in this region. We wish to investigate
the effects of a small disturbance z(t) on Y 0. Namely, we have

y(t) = Y 0(t) + z(t). (39)

Substituting this into (38), expanding in a Taylor series about Y0 and retaining
only the linear terms we find

z′(t) = Az, (40)

where A is the Jacobian of our system (38), given by

A =







0 1

0 −δ





 . (41)

(Note that, in general, this matrix is a function of time.)

The two-dimensional linear system (40) has two linearly independent solutions

14



z1 and z2. We write these as a fundamental matrix solution

Z(t) = [z1 z2] , (42)

which satisfies

Z ′ = AZ. (43)

This equation describes the evolution of the perturbation between the times
t0 and t1. In particular, solving (43) for a general initial condition Z(t0), we
find

Z(t1) = Φ1(t1 − t0)Z(t0), (44)

where

Φ1(t1 − t0) =







1 1
δ
(1 − e−δ(t1−t0))

0 e−δ(t1−t0)





 . (45)

The matrix operator Φ1 can be thought of as the mapping that needs to be
applied to the perturbation Z(t0) at time t0, when the perturbed trajectory
enters into the region |y| < β. Therefore, if the eigenvalues of Φ1 are all inside
the unit circle, the perturbation would decrease. Note that the determinant of
Φ1 is e−δ(t1−t0) and the eigenvalues are 1 and e−δ(t1−t0). This means that that
there is a contraction in one eigendirection and no contraction or expansion
in the other.

To assess the stability of the entire periodic solution of interest we need now
to compose the operator describing the stability of the trajectory in the region
|y| < β with the operators describing the trajectory in the other phase-space
regions. As stated above, this varies according to the backlash model being
considered. In what follows, we discuss first the case of the piecewise linear
model and then the impacting model, showing that in both cases it is possible
to obtain appropriate stability conditions.

5.3.2 Stability: piecewise linear contact model (|y| > β)

If backlash is modelled by a piecewise linear contact law, then the trajectory
will have segments lying in the regions |y| > β. To investigate the effects of
small perturbations on these sections of trajectory, we can use the same ap-
proach presented in Sec. 5.3.1. Here the fundamental matrix solution satisfies

Z ′ =







0 1

−2κ −δ





Z, (46)
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and we can solve to get Z(t1) = Φ2(t1 − t0)Z(t0), where

Φ2(t1 − t0) =







λ2

2κ
λ1

2κ

1 1













eλ1(t1−t0) 0

0 eλ2(t1−t0)













λ2

2κ
λ1

2κ

1 1







−1

, (47)

with

λ1 = −δ
2

+

√

δ2

4
− 2κ, λ2 = −δ

2
−
√

δ2

4
− 2κ. (48)

The determinant of Φ2(t) is then given by e(λ1+λ2)t = e−δt, and the eigenvalues
are eλ1t and eλ2t. As we have assumed that κ≫ δ, these eigenvalues will always
be within the unit circle and perturbations will contract in these regions.

5.3.3 Stability: impacting contact model

To investigate the stability of orbits when an impacting model is used to
describe the backlash in the system, we use the method based on so-called
discontinuity mappings; for further details see [26].

Use of the discontinuity mapping allows us to correct for changes in the Jac-
obian matrix of the solution at a boundary event. It is derived by considering
perturbations from a reference solution. The Jacobian of the complete orbit is
derived by multiplying the Jacobians of the smooth sections by the derivative
of the discontinuity mapping.

Suppose that the trajectory hits the impacting boundary at the point y
in

=
[yin, y

′

in
]T at time tin, and is mapped under the coefficient of restitution law to

the point y
out

= [yout, y
′

out
]T.

As detailed in [26], the matrix to correct the Jacobian of the solution is given
by

D(tin,yin
) = g

y
(y

in
) +

(f
out

− g
y
(y

in
)f

in
)hy(y

in
)

hy(y
in
)f

in

, (49)

where

• g(y) is the mapping that is applied to the flow at the discontinuity boundary,
in our case

g(y) =







1 0

0 −1





y, (50)

such that y
out

= g(y
in
).

• h(y) is the scalar function that defines the boundary between the areas of
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phase-space. In our case we have two,

h±(y) =
[

1 0

]

y ± β. (51)

• f
in

and f
out

are the values of the vector field at y
in

and y
out

respectively.

The correction matrix is therefore given by

D(tin,yin
) =









−1 0
8πδ

y′
in

+
2ǫ

y′
in

cos(2πtin) −1









. (52)

Now we show how the results obtained for different phase-space regions can
be combined to investigate the stability of a particular solution. Namely, we
need to multiply the matrices Φ1, Φ2 and D in the appropriate order to find
the Floquet multipliers of the whole solution. We illustrate the procedure by
investigating in detail the existence and stability of the two simplest types
of ‘noisy’ periodic orbit: those that have one contact per period with the
boundary at y = β, of type P (m, 1, 0), and those with one contact per period
with each boundary y = ±β, of class P (m, 1, 1). As these are the simplest
periodic orbits, we expect them to have larger basins of attraction than orbits
with many contacts per period.

6 P (m, 1, 0) periodic orbits

We use the methods presented in Sec. 5 to investigate solutions that contact
only the boundary y = β once per period, i.e. of type P (m, 1, 0). In Sec. 6.1,
we investigate these solutions when the impacting contact backlash model is
considered (see Figure 8). Then, in Sec. 6.2 we investigate the same type of
solutions but with the piecewise linear contact model (see Fig. 11). We show
that these have the same leading order behaviour, and present our findings on
two-parameter bifurcation diagrams, shown in Figs. 9 and 10.

6.1 Impacting contact model

6.1.1 Existence

Here we should point out that we can only have P (m, 1, 0) solutions that
contact the boundary at y = β. We cannot have solutions that only impact
the boundary y(t) = −β, as shown in Sec. 5.2.
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Our first step is to construct the unknown part of our solutions. With reference
to Fig. 8, we construct the solution such that immediately after impact

y(φ) = β, (53)

y′(φ) = −v, (54)

for some unknown initial time φ and velocity −v. The periodicity conditions
then imply that immediately before the next impact

y(m+ φ) = β, (55)

y′(m+ φ) = v. (56)

Solving these equations without resorting to expansions, after a few algebraic
manipulations we obtain

β = 4πφ− ǫ

2π
√
δ2 + 4π2

cos

(

2πφ+ arctan

(

δ

2π

))

+ c1 + c2 e−δφ, (57)

−v = 4π +
ǫ√

δ2 + 4π2
sin

(

2πφ+ arctan

(

δ

2π

))

− c2δ e−δφ, (58)

β = 4π(φ+m) − ǫ

2π
√
δ2 + 4π2

cos

(

2πφ+ arctan

(

δ

2π

))

+ c1 + c2 e−δ(φ+m),

(59)

v = 4π +
ǫ√

δ2 + 4π2
sin

(

2πφ+ arctan

(

δ

2π

))

− c2δ e−δ(φ+m), (60)

where c1 and c2 are the undetermined integration constants. From (59) and
(57), we have

0 = −4πm+ c2 e−δφ(1 − e−δm), (61)

and, using (60) and (58), we obtain

−2v = −c2δ e−δφ(1 − e−δm). (62)

Hence we find that

v = 2πδm, (63)

c2 =
4πm eδφ

1 − e−δm
. (64)

Substituting these values for v and c2 into (60) and solving for φ, we have

φ =
1

2π

(

arcsin

(√
δ2 + 4π2

ǫ

(

4πmδ e−δm

1 − e−δm
+ 2πδm− 4π

))

− arctan

(

δ

2π

))

.

(65)
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There are two admissible solutions to (65). We can expand these solutions in
terms of our small parameters,

φ =























m2πδ2

3ǫ
− δ

4π2
+ O(δ3) : in-phase solution,

1

2
− m2πδ2

3ǫ
− δ

4π2
+ O(δ3) : out-of-phase solution.

(66)

Note that these solutions cannot exist if the argument of the arcsin function
in (65) becomes greater than one. Thus, expanding the argument in terms of
our small parameters δ and ǫ, we find

√
δ2 + 4π2

ǫ

(

4mπδ e−mδ

1 − e−mδ
+ 2mπδ − 4π

)

=
2m2π2δ2

3ǫ
+ O(δ2). (67)

Hence, for this to be less than one we require that, to leading order,

ǫ >
2π2m2δ2

3
+ O(δ3). (68)

We also must consider whether our trajectory will have the correct itinerary,
i.e. that it will not hit the boundary at y = −β. To show this, we must find
the minimum displacement, and to do this we must again resort to approx-
imate methods. To find the minimum displacement we first find the point at
which the velocity is zero, i.e. t̂ such that y′(t̂) = 0. We try a power series
approximation

t̂ = φ+
m

2
+ t̂0 + t̂1δ + t̂2δ

2 + . . . , (69)

and solve for the coefficients t̂i by comparing terms of O(δk) in turn. We then
substitute this series expression for t̂ into our ODE solution y(t), and expand
this as a series as well to find the minimum displacement of the candidate
periodic orbit ŷ = y(t̂). For existence of the periodic orbit, we must satisfy
ŷ > −β. After algebraic manipulation, we find that, for the in-phase solution
(φ = O(δ)) not to contact the lower boundary we require

β >























m2πδ

4
+

ǫ

4π2
−O(δ2) : m odd,

m2πδ

4
+ O(δ2) : m even,

(70)

and for the out-of-phase solution (φ = 1
2

+ O(δ)) not to contact the lower
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boundary we require

β >























m2πδ

4
+

ǫ

4π2
+ O(δ2) : m odd,

m2πδ

4
+ O(δ2) : m even.

(71)

6.1.2 Stability

We can construct our stability conditions using the techniques described in
Secs. 5.2 and 5.3. We consider the eigenvalues of the matrix A1 defined by
A1 = Φ1(m)D(φ+m, 2πmδ),

A1 =







−1 1
δ
(e−δm −1)

4
m

+ ǫ
πmδ

cos(2πφ) −1
δ
(e−δm −1)

(

4
m

+ ǫ
πmδ

cos(2πφ)
)

− e−δm





 , (72)

where φ is defined by (65).

The eigenvalues of this matrix are the Floquet multipliers of the orbit. For
stability these multipliers must be within the unit circle. The bifurcations
that may occur as these eigenvalues cross the unit circle are considered in the
next section.

We consider the stability of the in-phase and out-of-phase solutions we have
found corresponding to the two values of φ from (65). For the in-phase solution
(φ = O(δ)) we find the leading order term of the Floquet multipliers to be

λ1,2 = 1 +
ǫ

2πδ
± 1

2πδ

√

ǫ(ǫ+ 4πδ) + O(δ), (73)

of which one is outside the unit circle for ǫ < 4πδ. For the out-of-phase (φ =
1
2

+ O(δ)) solution the Floquet multipliers are

λ1,2 =

(

1 − mδ

2

)

f1,2 + O(δ2), (74)

where

f1,2 = 1 − ǫ

2πδ
± i

2πδ

√

ǫ(4πδ − ǫ). (75)

It is clear that |f1,2| = 1, therefore |λ1,2| ≈ 1 −mδ/2 and this solution is thus
stable for ǫ < 4πδ and ǫ ∼ δ. We consider in more detail how stability can
change in the next section.
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6.1.3 Bifurcations

Using the results obtained so far on the existence and stability of orbits of
type P (m, 1, 0) we can now attempt to investigate the bifurcations that such
solutions can undergo under parameter variations.

We first consider (classical) bifurcations where we will have a Floquet multi-
plier on the unit circle. We denote our two Floquet multipliers as λ1 and λ2.
There are three possibilities for a bifurcation of this type;

(1) Complex conjugate Floquet multipliers on the unit circle: λ1,2 = e±iθ.
This cannot occur for δ > 0 as we require λ1λ2 = 1 = e−δm (product of
the eigenvalues of A1 is det(A1)). This implies that there are no secondary
Hopf or Neimark bifurcations in our region of interest.

(2) A Floquet multiplier on the unit circle on the negative real axis: λ1 = −1
(and therefore λ2 = − e−δm). We can then use the fact that tr(A1) =
λ1 + λ2, giving

−1 − 1

δ
(e−δm −1)

(

4

m
+

ǫ

πmδ
cos(2πφ)

)

+ e−δm = −1 − e−δm, (76)

which reduces to the condition

cos(2πφ) = −4πδ

ǫ
. (77)

This equation can only have solutions for ǫ > 4πδ, i.e., outside our region
of interest. A Floquet multiplier at −1 is the condition for a period-
doubling bifurcation. Therefore we can have no period-doubling here.

(3) A Floquet multiplier on the unit circle on the positive real axis: λ1 = +1
(and therefore λ2 = e−δm). Again we use the tr(A1) = λ1 + λ2 condition
to find

cos(2πφ) = −2πδ(δm− 2 + e−δm(δm+ 2))

ǫ(e−δm −1)
. (78)

We can substitute expression (65) for φ into this to find the location of
this bifurcation in the ǫ− δ plane. To leading order the bifurcation line is

ǫ =
2π2m2δ2

3
+ O(δ4). (79)

An eigenvalue at +1 implies that we are at a transcritical, cyclic fold or
symmetry-breaking bifurcation. Our solution is not symmetric so we can
eliminate symmetry-breaking. Our solutions (in this form) cannot exist
past the bifurcation point (see (68)) so we cannot have a transcritical
bifurcation. Therefore we have a cyclic-fold bifurcation, where unstable
and stable solutions meet and disappear.

In addition to the classical bifurcations highlighted above, backlash oscillators
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can also undergo so-called discontinuity induced bifurcations [19,20] associ-
ated to tangential intersections of the system trajectory with the backlash
boundaries defined by |y| = β, called grazings. The P (m, 1, 0) orbits can only
become tangential to the boundary at y = −β. It is clear that the locus of the
grazing bifurcation is the same as the locus of the condition for the existence
derived in Section 6.1.1, conditions (70) and (71).

We present these findings on our two-parameter bifurcation diagrams Figures
9 and 10. These figures contain the conditions of existence that correspond to
grazing bifurcations and also the changes in stability that correspond to the
classical bifurcations described above. We see a plethora of stable impacting
solutions, all of which coexist with the silent permanent contact solution.
Provided that 4πδ− ǫ < 16β, as we increase ǫ from zero while keeping 4πδ− ǫ
constant (following the dash/dotted lines in Figs. 9 and 10), we first (at ǫ =
2π3m2δ2/3) see a cyclic fold bifurcation that simulatanously gives birth to
a pair of solutions that hit y = β once per period (m), one stable and one
unstable. Increasing ǫ by an order of magnitude then destroys the solutions
through grazing bifurcations: in the case of odd m, the stable solution grazes
first (at ǫ = 4π2β − π3m2δ), followed by unstable one (at ǫ = π3m2δ − 4π2β);
while in the case of odd m, both graze simultaneously (at δ = 4β/(m2π2)).

Thus according to this model, there are infinitely many stable rattling solu-
tions coexisting with the silent permanent contact solution, unless one reduces
ǫ to O(δ2). However, in real machine design, other factors that have been omit-
ted from our model, such as lubrication, may invalidate this conclusion. As
we might expect, increasing damping, whilst similarly reducing the oscillatory
forcing and tightening the backlash, will destroy the rattling solutions. We
now turn our attention to the effect of the large finite (rather than infinite)
torsional stiffness κ.

6.2 Piecewise linear contact model

We now move to the analysis of periodic solutions of type P (m, 1, 0) when
modelling the backlash with a piecewise linear contact characteristic (see Fig.
11). We will outline how it may be shown that the dynamics in the κ → ∞
limit are the same as those derived with the impacting contact model.

6.2.1 Existence

We again use the method presented in Section 5.2. When the piecewise linear
model is used, the orbit of interest has the form sketched in Figure 11.
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We write our parameters in terms of the single small parameter δ (see Sec. 4),

p =





















δ

ǫ

β

κ





















=





















δ

ǫ1δ

β1δ

κ1/δ
2





















. (80)

We have the unknowns x = [va, vb, φ, σ]T which we write as a series in δ

x =





















va0

vb0

φ0

σ0





















+





















va1

vb1

φ1

σ1





















δ +





















va2

vb2

φ2

σ2





















δ2 + . . . , (81)

giving us a set of four equations to solve. These are the matching conditions on
each section of the trajectory, ‘gluing’ each section to the next. Each is derived
from the four equations from the solutions of our linear ODEs (15) and (16),
for displacement and velocity. The first equations are from the solution of the
ODE for y > β,

y′′ + δy′ + 2κ(y − β) = 4πδ + ǫ cos(2πt), (82)

with initial conditions y(φ) = β, y′(φ) = va. We then have two matching
conditions to glue the trajectory segments together at time t = φ+ σ, namely

y(φ+ σ) = β, (83)

y′(φ+ σ) = −vb. (84)

In full these equations are

a1 eλ1(φ+σ) +a2 eλ2(φ+σ) +a3 cos(2π(φ+σ))+a4 sin(2π(φ+σ))+
4πδ

2κ
= 0, (85)

and

λ1a1 eλ1(φ+σ) +λ2a2 eλ2(φ+σ) −2πa3 sin(2π(φ+σ))+2πa4 cos(2π(φ+σ))+vb = 0,
(86)
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where

λ1 =
−δ + i

√
8κ− δ2

2
, λ2 =

−δ − i
√

8κ− δ2

2
, (87)

a1 =
eλ1φ

λ1 − λ2
((λ2a3 − 2πa4) cos(2πφ) + (2πa3 + λ2a4) sin(2πφ) − βλ2 − vb) ,

(88)

a2 =
eλ2φ

λ1 − λ2
((−λ1a3 + 2πa4) cos(2πφ) − (2πa3 + λ1a4) sin(2πφ) + βλ1 + vb) ,

(89)

a3 =
ǫ(2π2 + κ)

2(4π4 + 4π2κ+ π2δ2 + κ2)
, (90)

a4 =
πǫδ

2(4π4 + 4π2κ+ π2δ2 + κ2)
. (91)

Note that the expressions above are lengthy but straightforward to find; for
convenience and accuracy they were derived using the algebraic software pack-
age Maple [27]. For the sake of brevity, we will not report explicitly all the
formulas derived in this way except when it is strictly necessary for the un-
derstanding of the methodology.

A similar technique generates the second pair of equations: first the ODE
in the freeplay region (16) is solved with initial conditions y(φ + σ) = β,
y′(φ+ σ) = −vb, and then we apply the matching conditions

y(φ+m) = β, (92)

y′(φ+m) = va. (93)

The four equations (83), (84), (92) and (93) now form a system f(x,p) = 0

for the unknowns x = (φ, σ, va, vb)
T. We substitute (80) and (81) (with the

additional assumption that, to leading order, the trajectory in the region y > β
is a sinusoid, which implies that σ = π/

√
2κ + σ2δ

2) and expand in terms of
our remaining small parameter δ. This enables us to find solutions for our sets
of coefficients in turn.

The coefficient of δ0 in the expansion of f(x,p) is





















0

vb0 − va0

−mvb0

−vb0 − va0





















= 0, (94)

which gives us va0 = vb0 = 0. Now if we consider the coefficients of δ from the
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expansion we have





















0

vb1 − va1

m
2π

(4mπ2 − 2πvb1 + ǫ1 sin(2πφ0))

4mπ − va1 − vb1





















δ = 0, (95)

from which we obtain va1 = vb1 = 2πm, and hence that φ0 ∈ {0, 1/2}. We
continue in a similar manner by solving the coefficients of δ2 and δ3 to find
that to O(δ3) we have, for the in-phase solution φ0 = 0,

va = 2πmδ − π(4πδ + ǫ)

2
√

2κ
+ O(δ3), (96)

vb = 2πmδ − π(4πδ + ǫ)

2
√

2κ
+ O(δ3), (97)

φ =

(

− π

2
√

2κ
+
πm2δ2

3ǫ
− δ

4π2

)

+

(

−π
2mδ2

2ǫ
√

2κ
− 1

mκ
− ǫ

4πmκδ

)

+ O(δ3),

(98)

σ =
π√
2κ

+
4πδ + ǫ

2πmκδ
+ O(δ3), (99)

and for the out-of-phase solution φ0 = 1/2,

va = 2πmδ − π(4πδ − ǫ)

2
√

2κ
+ O(δ3), (100)

vb = 2πmδ − π(4πδ − ǫ)

2
√

2κ
+ O(δ3), (101)

φ =
1

2
+

(

− π

2
√

2κ
− πm2δ2

3ǫ
− δ

4π2

)

+

(

π2mδ2

2ǫ
√

2κ
− 1

mκ
+

ǫ

4πmκδ

)

+ O(δ3),

(102)

σ =
π√
2κ

+
4πδ − ǫ

2πmκδ
+ O(δ3). (103)

Examining these expressions leads to the conclusion that they are identical,
to leading order, to the corresponding quantities obtained using the impacting
contact model. Firstly,

va − vb = O(δ3), (104)

for both the in-phase and out-of-phase solutions; so to O(δ3) the impacting
model with coefficient of restitution equal to one is appropriate. Furthermore,
as κ→ ∞,

va, vb → 2πδm = vimp, (105)
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where vimp is the impact velocity predicted by the impacting contact model
(63).

Moreover, the impact times predicted by the two models also match; the ‘mid-
impact’ time φ+σ/2 is equal, to order δ2, to that given by the impacting model,
φimp (66), for both the in- and out-of-phase solutions:

φ+
σ

2
=























(

πm2δ2

3ǫ
− δ

4π2

)

+
π2mδ2

2ǫ
√

2κ
+ O(δ3) : in-phase solution,

1

2
−
(

πm2δ2

3ǫ
− δ

4π2

)

− π2mδ2

2ǫ
√

2κ
+ O(δ3) : out-of-phase solution,

(106)

= φimp + O(δ2). (107)

Additionally, as κ→ ∞,

σ → 0, (108)

as we might expect.

Thus the necessary conditions for the existence of P (m, 1, 0) periodic orbits
in the impacting and piecewise linear contact models are identical, to leading
order, as are the solutions themselves. We now have to check a posteriori
whether the solution has the correct itinerary, that is whether each of the
trajectory sections remain in the assumed region of phase-space; namely y(t) >
−β. It may be shown [7] that the condition for this to hold is again the same
to leading order as that found with the impacting contact model.

6.2.2 Stability

Here the stability is given by the eigenvalues of the matrix A2 = Φ1(m −
σ)Φ2(σ). Finding expansions for the eigenvalues is cumbersome; upon numer-
ical investigation of the formula for the eigenvalues we can show that, as in
the impacting case, we have a stable out-of-phase solution and an unstable
in-phase solution. The locations of changes in stability are now summarised.

6.2.3 Bifurcations

We have grazing bifurcations whose locus is defined by the conditions of exist-
ence derived in Sec. 6.2.1. Here we also consider the possible types of classical
bifurcations:

(1) Complex conjugate Floquet multipliers on the unit circle. Again this is
not possible as the determinant of our matrix A2 is e−δm.
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(2) A Floquet multiplier on the negative real axis at −1. We use our condition
on tr(A2) = λ1 +λ2, expand in terms of δ and ǫ and find that this is only
satisfied if ǫ = 4πδ; the boundary of our region of interest.

(3) A Floquet multiplier on the positive real axis at +1. With the assumption
ǫ ∼ δ there is no solution to our trace condition. However, as we found
the condition for ǫ ∼ δ2 in the impacting contact model case we try that
here. Indeed we find that the leading order terms for the contact time is

φ =
1

2π
arcsin

(

2m2π2δ2

3ǫ

)

, (109)

which can only have a solution for

ǫ >
2m2π2δ2

3
, (110)

which is the same as the condition with the impacting contact model.

We have therefore shown that, to leading order in the small parameter δ, the
piecewise linear finite stiffness model of backlash produces the same bifurca-
tions, both standard and nonstandard, as the impacting model, in the case of
P (m, 1, 0) periodic orbits. We now turn our attention to the more complicated
family of orbits, those with impacts on both sides of the lash.

7 P (m, 1, 1) periodic orbits

We shall now consider periodic orbits in which the gears enter contact on
both sides of the backlash region. From an application point of view, these are
potential candidates for bad N&V problems; certainly torque reversal (contact
with the boundary y = −β) is highly undesirable. The simplest solutions of
this type are periodic orbits that have only one contact on each side of the
lash per period; labelled as P (m, 1, 1) solutions in our notation. As before we
consider solutions for the cases of impacting and PWL contact models. We
show that both models again exhibit the same bifurcation behaviour to leading
order, illustrated graphically in the two-parameter bifurcation diagrams shown
in Figs. 13 and 14.

7.1 Impacting contact model

We first consider P (m, 1, 1) solutions with the impacting contact model. The
trajectory y(t) is made up of two smooth segments which we label ya and yb,
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defined by

y(t) =







ya(t) φ < t < ψ,

yb(t) ψ < t < φ+m,
(111)

and sketched in Fig. 12.

7.1.1 Existence

To compute the existence conditions for a P (m, 1, 1) orbit, we can solve the
ODE in the freeplay region (16) using the initial conditions

ya(φ) = β, (112)

y′a(φ) = −v1, (113)

yb(ψ) = −β, (114)

y′b(ψ) = v2, (115)

where v1 > 0, v2 > 0. We then apply our matching conditions for the contacts
at t = φ and t = ψ to get four equations to solve,

f(x,p) =





















ya(ψ)

y′a(ψ)

yb(m+ φ)

y′b(m+ φ)





















=





















−β
−v2

β

v1





















(116)

for the four unknowns x = [φ, ψ, v1, v2]
T.

We carry out expansions as described in Sec. 5.2, to find a power series in
δ for each unknown. We again find four cases corresponding to in-phase /
out-of-phase and m odd / even. The leading order terms are as follows:

(1) In-phase solution, m odd:

v1 = mπδ +
4β

m
+

ǫ

mπ2
, (117)

v2 = −mπδ +
4β

m
+

ǫ

mπ2
, (118)

φ =
βδ

ǫ
− m4π3δ2(4πδ − ǫ)

12ǫ((m2π2 − 4)ǫ− 16π2β)
, (119)

ψ =
m

2
+
βδ

ǫ
− m4π3δ2(4πδ + ǫ)

12ǫ((m2π2 − 4)ǫ− 16π2β)
. (120)
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(2) In-phase solution, m even:

v1 = mπδ +
4β

m
, (121)

v2 = −mπδ +
4β

m
, (122)

φ = − δ

4π2
+
m2πδ2

12ǫ
+

βδ

4πδ + ǫ
+

16β2δ

m2ǫ(4πδ + ǫ)
, (123)

ψ =
m

2
− δ

4π2
+
m2πδ2

12ǫ
− βδ

4πδ + ǫ
+

16β2δ

m2ǫ(4πδ + ǫ)
. (124)

(3) Out-of-phase solution, m odd:

v1 = mπδ +
4β

m
− ǫ

mπ2
, (125)

v2 = −mπδ +
4β

m
− ǫ

mπ2
, (126)

φ =
1

2
− βδ

ǫ
− m4π3δ2(4πδ + ǫ)

12ǫ((m2π2 − 4)ǫ+ 16π2β)
, (127)

ψ =
1

2
+
m

2
− βδ

ǫ
− m4π3δ2(4πδ − ǫ)

12ǫ((m2π2 − 4)ǫ+ 16π2β)
. (128)

(4) Out-of-phase solution, m even:

v1 = mπδ +
4β

m
, (129)

v2 = −mπδ +
4β

m
, (130)

φ =
1

2
− δ

4π2
− m2πδ2

12ǫ
+

βδ

4πδ − ǫ
− 16β2δ

m2ǫ(4πδ − ǫ)
, (131)

ψ =
1

2
+
m

2
− δ

4π2
− m2πδ2

12ǫ
− βδ

4πδ − ǫ
− 16β2δ

m2ǫ(4πδ − ǫ)
. (132)

As before, we need to make sure our orbits have the correct itinerary. This
means we must consider whether our trajectory section ya will hit the lower
boundary before t = ψ. This will occur if the value of v2 we have derived
is positive (recall that there can be no maxima of y in the freeplay region).
Therefore we require in each case:

(1) In-phase, m odd:

β >
m2πδ

4
− ǫ

4π2
. (133)

(2) In-phase, m even:

β >
m2πδ

4
. (134)
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(3) Out-of-phase, m odd:

β >
m2πδ

4
+

ǫ

4π2
. (135)

(4) Out-of-phase, m even:

β >
m2πδ

4
. (136)

We also consider if, analogously to the P (m, 1, 0) case, there is a boundary
ǫ ∼ δ2 in parameter space, where P (m, 1, 1) solutions cease to exist. We sub-
stitute series expansions for v1, v2, φ and ψ as above, together with modified
assumptions on the parameters

ǫ = ǫ2δ
2, β = β1δ, (137)

and again expand in the small parameter δ, solving in turn for the coefficients
of the expansions. The O(δ2) terms gives rise to a consistency condition for
φ0,

sin(2πφ0) = − π(π2m4 + 48β2
1)

3ǫ2 (4β1((−1)m − 1) + πm2((−1)m+1 − 1))
. (138)

Thus, for solutions to exist, the argument of the arcsin function must be less
than one in modulus; which upon rearrangement leads to bounds on ǫ for
the existence of P (m, 1, 1) solutions (to leading order). Namely, P (m, 1, 1)
solutions will exist, for m odd, if

ǫ > 2πβδ +
m4π3δ3

24β
, (139)

and, for m even, if

ǫ >
m2π2δ2

6
+

8β2

m2
. (140)

7.1.2 Stability

The stability of P (m, 1, 1) solutions is given by the eigenvalues of the matrix

A3 = D(φ+m, v1)Φ1(φ− ψ +m)D(ψ,−v2)Φ(ψ − φ). (141)

As before, the algebraic expressions for eigenvalues are complicated, but they
can easily be computed numerically, by substituting in parameter values that
satisfy our conditions of existence for the in-phase and out-of-phase solutions.
The results are illustrated in the bifurcation diagrams shown in Figures 13
and 14.
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7.1.3 Bifurcations

As before we examine the eigenvalues of the Jacobian matrix (141) to locate
standard bifurcations in addition to grazing bifurcations associated with the
existence conditions above. The three cases we consider are:

(1) Complex conjugate Floquet multipliers on the unit circle are not possible
as before.

(2) Real Floquet multiplier at −1, corresponding to period-doubling bifurc-
ations. We again consider all possible combinations:
• In-phase, m odd:

ǫ =
2π2(4β ±m2πδ)

m2π2 − 2
, (142)

which has two solutions if 4β/(m2π) > δ.
• In-phase, m even:

ǫ = −2πδ ± 8β

m2
, (143)

of which only the ‘+’ solution is in our region of interest.
• Out-of-phase, m odd:

ǫ =
2π2(−4β ±m2πδ)

m2π2 − 2
, (144)

where only the ‘+’ solution is in our region of interest.
• Out-of-phase, m even:

ǫ = 2πδ ± 8β

m2
. (145)

(3) Real Floquet multiplier at +1. For this the parameters must satisfy
• In-phase, m odd:

ǫ =
16βπ2

m2π2 − 4
, (146)

• In-phase, m even:
ǫ = 0, −4πδ, (147)

therefore clearly there are no relevant lines.
• Out-of-phase, m odd:

ǫ = 0, − 16π2β

m2π2 − 4
, (148)

therefore no relevant lines.
• Out-of-phase, m even:

ǫ = 0, 4πδ, (149)

both of which are on the boundary of our region of interest.

It is clearer to see which conditions are relevant in our parameter space by
examining the bifurcation diagrams in Figs. 13 and 14. Once again we see
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a wide region of parameter space in which there are many stable solutions,
coexisting both with the silent permanent contact solution, as well as the
P (m, 1, 0) periodic orbits. Once again, provided that 4πδ − ǫ < 16β, as we
increase ǫ from zero while keeping 4πδ−ǫ constant (following the dash/dotted
lines in Figures 13 and 14) we first see a cyclic fold bifurcation at which a pair
of solutions is born, one stable and one unstable, that each hits y = ±β once
per period. The period that emerges first depends on the particular parameter
values δ, ǫ and β; they are all born when ǫ ∼ δ2 however. By increasing ǫ by
order of magnitude, so ǫ ∼ δ, the stable P (m, 1, 1) solutions first lose stability
through a smooth period doubling, then both unstable P (m, 1, 1) solutions are
destroyed through grazing solutions, either separately (for m even) or together
(for m odd). As before, these grazing bifurcations appear to meet and be
organised in points (ǫ, δ) = (0, 16β/m2). These are probable codimension-two
points, whose analysis we defer to further work [28].

Thus as we found before, the possible solutions to the rattle problems, pre-
dicted by our model, are to reduce the oscillatory forcing, tighten the backlash,
or increase the damping. Moreover, for small damping values, large numbers
of rattling solutions coexist, see Figure 15.

7.2 Piecewise linear contact model

We study again the existence and stability of P (m, 1, 1) solutions by using a
piecewise linear model of the contact force. In this case the solutions of interest
can be sketched as in Fig. 16. This is the most algebraically complicated
situation we shall consider.

The trajectory is now made up of four smooth parts:

y(t) =







































ya(t) φ < t < φ+ σ1 (y > β),

yb(t) φ+ σ1 < t < ψ (|y| < β),

yc(t) ψ < t < ψ + σ2 (y < −β),

yd(t) ψ + σ2 < t < φ+m (|y| < β),

(150)

illustrated graphically in Fig. 16.

7.2.1 Existence

Solving the relevant ODEs for y(t) (15)–(17) with the initial conditions indic-
ated in Fig. 16, and applying appropriate matching conditions for continuity
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of the trajectory, leads to a system

f(x,p) =



















































ya(φ+ σ1) − β

y′a(φ+ σ1) + v2

yb(ψ) + β

y′b(ψ) + v3

yc(ψ + σ) + β

y′c(ψ + σ) − v4

yd(φ+m) − β

y′d(φ+m) − v1



















































= 0. (151)

of eight equations in the eight unknowns x = [φ, ψ, σ1, σ2, v1, v2, v3, v4]
T . We

solve these equations using the same asymptotic expansion techniques as be-
fore; for the sake of brevity we do not display the solutions here (see [7] for
full details). As before we have sets of solutions for m odd and m even, and for
in-phase and out-of-phase solutions. We again find that, to leading order, the
existence criteria correspond exactly to those in the impacting case. We also
find an identical condition, on existence corresponding to a fold bifurcation,
as in the impacting contact model case.

7.2.2 Stability and Bifurcations

We can consider the stability of P (m, 1, 1) solutions in the piecewise linear
contact force model using the same approach followed so far; that is by study-
ing the eigenvalues of the matrix

Φ1(φ+m− ψ)Φ2(σ2)Φ1(ψ − φ)Φ2(σ1), (152)

that arises from the composition of Jacobian matrices associated to small
perturbations in each of the phase-space regions. We will not attempt to find
expansions for our Floquet multipliers in general. Numerical simulations show
that the same stability results obtained in the impacting case are still valid.
The same is true if we construct the two-parameter bifurcation diagrams using
the piecewise linear model of backlash.

8 Conclusions

In this paper we have considered the dynamics of rattling motion in lightly
damped geared systems. We have derived a model with particular reference
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to the Roots blower vacuum pump, which we believe is also applicable to a
wide range of other mechanical systems in the small damping large stiffness
limit. We have derived bounds for the existence of silent solutions, and we
have classified rattling periodic solutions, in which the gears repeatedly lose
and re-establish contact.

We have presented a method to find analytical existence and stability bound-
aries for two simple classes of rattling solutions. In addition we have derived
conditions for smooth bifurcations and non-smooth transitions of periodic or-
bits, and hence produced bifurcation diagrams. All this analysis has been per-
formed for both the impacting and piecewise linear backlash models. We have
shown that to leading order in the small damping parameter, both backlash
models produce the same existence, stability and two-parameter bifurcation
diagrams. We have yet to fully unfold the points which act as organising
centres for many of the bifurcations; for a preliminary study see [28].

We can validate our findings by integrating the equation of motion (14) nu-
merically. Our analysis predicts that there are coexisting stable periodic orbits
of type P (m, 1, 0) and P (m, 1, 1) for suitable choices of parameters; we can
also use our construction techniques to generate suitable initial conditions. We
show in Fig. 17 time integration plots of the PWL contact model, for repres-
entative parameter values δ = 0.5×10−4, ǫ = 10−4, β = 6×10−4 and κ = 108,
differing only in the choice of initial conditions. We do indeed see coexisting
stable solutions of both types, all of which also coexist with the permanent
contact solution, confirming our theoretical predictions.

We have thus shown the importance of full nonlinear analysis in machine
design. In particular, a machine may be capable of silent (linear) motion but
have coexisting rattling modes of operation which are noisy. Moreover, we
have analysed only a few of the possible families of periodic solutions, and
there may exist more complicated types of solution such as quasi-periodic or
chaotic. In the analysis presented here, these modes can only be destroyed
by either increasing the damping or substantially reducing the amplitude of
the oscillatory forcing, and these approaches may be neither possible (from
the point of view of manufacturing tolerances) nor satisfactory (e.g. from the
point of view of power consumption). However, in practice, limitations in our
modelling, such as the neglexion of lubrication, will modify the story presented
here.

A further technical issue concerns the basins of attraction of some of the stable
rattling solutions that we have presented. We believe that some of these are
vanishingly small in the small damping limit, and hence will not have an
influence on real machine dynamics. This is an issue which we defer to further
work.
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Fig. 1. Schematic diagram of the moving parts of a Roots blower vacuum pump,
illustrating the parallel arrangement of rotors, shafts and gears.
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Fig. 2. The three modes of gear meshing (full details are given in [29]). From left
to right: (a) X drives Y, (b) Freeplay, (c) Y drives X. In state (a) the gears are in
contact, with the X-shaft driving the Y-shaft. (b) illustrates ‘freeplay’; in this state
there is no contact between the gears. (c) shows torque reversal, where the Y-shaft
drives the X-shaft.
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Fig. 3. The external torques acting on the shafts of meshing gears. The right hand
side drawing illustrates the interaction force between the gears.
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Fig. 4. Sketch of a permanent contact solution with backlash width β = 0.1.

42



limκ→∞B(y, β, κ) B(y, β, κ), κ <∞

−β −ββ β yy

impacting contact model PWL contact model

Fig. 5. Backlash models.
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Fig. 7. Sketches of some different types of solutions: (a) P (1, 1, 0) out-of-phase,
(b) P (1, 1, 1) in-phase, (c) P (2, 1, 1) out-of-phase.
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Fig. 8. Notation for the P (m, 1, 0) solution with the impacting contact model.
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Fig. 9. Sketch of bifurcations of P (m, 1, 0) solutions for the impacting contact model,
m odd. As we vary parameters along the vertical dash-dot line we observe a sequence
of bifurcations: first a cyclic-fold where the unstable and stable solutions are created,
then a grazing where the stable solution impacts the boundary at y = −β, and finally
a grazing where the unstable solution impacts the boundary at y = −β.
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Fig. 10. Sketch of bifurcations of P (m, 1, 0) solutions for the impacting contact
model, m even. As we vary parameters along the vertical dash-dot line we observe a
sequence of bifurcations: first a cyclic-fold where the unstable and stable solutions
are born, and then a simultaneous (to O(δ2)) grazing of both solutions with the
boundary y = −β.
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Fig. 11. Notation for the P (m, 1, 0) solution with the PWL contact model.
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Fig. 12. Sketch of a P (1, 1, 1) orbit, impacting contact model.
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Fig. 13. Sketch of bifurcations of P (m, 1, 1) solutions, odd period. As we follow the
dash-dotted line we have a cyclic-fold bifurcation where the unstable and stable
solutions are born, then a period-doubling bifurcation where the stable solution
becomes unstable. This unstable solution then grazes the boundary at y = −β
before the original unstable solution grazes the boundary y = −β.
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Fig. 14. Sketch of bifurcations of P (m, 1, 1) solutions, even period. As we follow
the dash-dotted line we have a cyclic-fold bifurcation where the unstable and stable
solutions are born, then a period-doubling bifurcation where the stable solution
becomes unstable, and finally both unstable solutions simultaneously (to O(δ2))
graze the boundary y = −β.
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Fig. 15. Scale diagram of the regions of existence of stable solutions for m = 1, 2, 3, 4,
β = 6 × 10−4. The number of solutions increases as we approach the origin. The
locations of the cyclic-fold bifurcations are not shown as they are too close to the
(4πδ − ǫ)-axis to be visible.
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Fig. 16. Sketch of a P (1, 1, 1) orbit, piecewise linear contact model.

52



5 6 7 8 9 10

−5

0

5

x 10
−4 P(2,1,0)

y

t5 6 7 8 9 10

−5

0

5

x 10
−4 P(1,1,0)

y

t 5 6 7 8 9 10

−5

0

5

x 10
−4 P(3,1,0)

y

t

5 6 7 8 9 10

−5

0

5

x 10
−4 P(1,1,1)

y

t 5 6 7 8 9 10

−5

0

5

x 10
−4 P(2,1,1)

y

t 5 6 7 8 9 10

−5

0

5

x 10
−4 P(3,1,1)

y

t

Fig. 17. Numerical integration of (14) showing coexisting stable P (m, 1, 0) and
P (m, 1, 1) solutions for m = 1, 2, 3 with the piecewise linear contact model,
δ = 0.5 × 10−4, ǫ = 10−4, β = 6 × 10−4, κ = 108. These solutions all coexist
with the permanent contact solution, a sinusoid of amplitude ǫ/(2κ) centred at
y = β + 2πδ/κ.

53


