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Abstract

Motivated by recent experimental results we seek an explanation of asymmetry in

the radial profile of basilar membrane vibrations in the inner ear. We study a sequence

of one-dimensional beam models which take into account variations in the bending

stiffness of the basilar membrane as well as the potential presence of structural hinges.

Our results suggest that the main cause of asymmetry is likely to be differences between

the boundary conditions at the two extremes of the basilar membrane’s width. This

has fundamental implications for more detailed numerical simulations of the entire

cochlea.

PACS numbers: 43.64.Kc, 43.40.At, 43.40.Cw
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I. INTRODUCTION

In this report we consider a succession of simple mathematical models which are intended

to describe the distribution of sound-evoked vibrations across the width of the inner-ear’s

basilar membrane. This distribution, which we will refer to as a ‘radial profile’, has been

the subject of several recent experimental studies (e.g. Cooper, 1999; Nilsen and Russell,

1999, 2000; Rhode and Recio, 2000) and has fundamental implications for detailed numerical

simulations of the entire cochlea (cf. Steele, 1974; Brass, 2000; Lim, 2000; Barker, 2000).

Figure 1 shows a schematic cross section through the cochlear partition. The basilar mem-

brane (BM, at the bottom of the figure) is thought to be responsible for converting sound-

evoked pressure differences between the two sides of the partition (SM and ST in Fig. 1)

into ‘transverse’ structural motion (vertical arrows in Fig. 1). The various support cells and

accessory structures which ride on top of the BM convert the transverse motion into shearing

motion in the sub-tectorial space (see horizontal arrows in Fig. 1), as is needed to excite the

partition’s mechano-sensitive inner and outer hair cells (IHC/OHCs) and give rise to the

sensation of hearing (Dallos et al., 1996, for reviews). The situation in the real cochlea may

be far more complex than this, as has been suggested in various experimental investigations

(e.g. Karavitaki et al., 1998; Nilsen and Russell, 1999, 2000). On the other hand, it may

not be, as suggested in other investigations (e.g. Richter and Dallos, 1999; Fridberger et al.,

2002). Unfortunately, the basic physical characteristics of the components of the cochlea,

and the mechanics of their interactions, are not well understood. The only well-established

facts are that the BM varies in stiffness between the arcuate and pectinate zones (Miller,

1985; Olson and Mountain, 1994), and that the hair cells and most of the support cells are

at least an order of magnitude less stiff than the BM (Hallworth, 1995). The only structures

which seem to have a pronounced effect on the local stiffness of the BM are the pillar cells

(labelled PC in Fig. 1; cf. Olson and Mountain, 1994; Tolomeo and Holley, 1997). The pur-

pose of the present paper is to investigate the consequences of this structural knowledge in
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terms of the mechanical processing of sound in the cochlea.

The experimental studies of the BM’s radial profile which have been performed to date have

had mixed results: Nilsen and Russell, 1999, 2000 have reported relatively complex radial

profiles, while Cooper, 1999 and Rhode and Recio, 2000 have reported much simpler pro-

files. The present report will focus on the simpler profiles. There are several reasons for

this: firstly, the more complex findings of Russell and Nilsen have not been confirmed in

independent investigations, while the simpler profiles have been observed by at least two

groups. Secondly, the observations made by Cooper, 1999, 2000 are the most extensive

available; they map the BM’s radial profile with unprecedented resolution and they apply

across a wide range of stimulus frequencies, a wide range of intensities at the BM’s charac-

teristic frequency, and a number of longitudinal locations in guinea-pig, gerbil and chinchilla

cochleae. Cooper’s measurements are also consistent with previous radial profile studies in

the cat (e.g. Wilson and Evans, 1983; Cooper and Rhode, 1992), despite the differences in

physical parameters (such as BM thickness) between species. From the point of view of our

mathematical analyses, the most important features of the simple radial profiles are that,

at least to a first approximation, the BM moves in phase across its entire width, and the

amplitude distribution is asymmetric about the BM’s mid-point (cf. Fig. 2).

II. SIMPLE BEAM MODEL

Initially, we shall investigate whether a simple beam equation can provide a suitable model

to describe the BM’s radial profile. Our main aims are to consider what the appropriate

boundary conditions might be, and to consider how variations in the stiffness of the arcuate

and pectinate zones might affect the BM’s radial profile. Throughout we shall consider only

one-dimensional spatial variation of the BM, that is we assume the profile to be a function

of radial position only (and not time). We justify this by the experimental observation that

the BM vibrates in what appears, within experimental accuracy, to be its pure fundamental
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mode, across a wide range of frequencies, intensities, and longitudinal locations along the

cochlear partition. Hence we can take a simple, second order in time, sinusoidally forced

beam model, expand as a Fourier series and keep only the term in the fundamental frequency.

We discard nonlinear terms, as the displacement of the BM is extremely small, being less

than 1% of the BM’s width. Furthermore, over almost the entire range of measurement, the

radial profile of the BM has the same shape, with a pronounced asymmetry .

We are left with a simple model of a one dimensional beam, subject to a constant load

representing the amplitude of forcing, whose static solutions describe the mode shape of the

BM’s vibration.

Initially, let us suppose that the beam has a constant bending stiffness EI (where E is the

elastic modulus, with units Nm−2, and I is the area moment of inertia, with units m4), and

is subject to a constant line pressure load q, with units Nm−1. Then the equation governing

the transverse displacement w as a function of position along the beam x, both with units

m, is the Euler-Bernoulli beam equation

d4w

dx4
=

q

EI
(1)

Therefore

w(x) =
q

4!EI
x4 + Dx3 + Cx2 + Bx + A (2)

where A, B, C and D are constants determined from the boundary conditions. It is ques-

tionable which boundary conditions most accurately model the physiology. Therefore we

shall consider the four possible combinations of clamped (w = w′ = 0) and simply supported

(w = w′′ = 0) boundary conditions at the two ends of the beam. Throughout this report we

non-dimensionalise all lengths by the width of the beam, so that x = 0 corresponds to the

left hand end of the arcuate zone and x = 1 to the right hand end of the pectinate zone in

the representation of the BM in figure 1, and the parameter q/EI is non-dimensional.
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The values of the constants given by the four combinations of boundary conditions are

reported in table I.

Figure 2 shows graphs of the solutions of Eq. (2), together with the experimental results

we use throughout this study. Throughout this report we have normalised the deflection w,

and the experimental data with which we compare our predictions, such that
∫

w(x) dx = 1.

The experimental results represent the means and standard deviations of 15 measurements

made at various frequencies and intensities in a single guinea-pig cochlea (see Cooper, 1999

for details). Inspection of Fig. 2 shows that the uniform bending stiffness beam model with

a simply supported boundary condition at x = 0 and a clamped boundary at x = 1 (as

shown in Fig. 2c) provides the best agreement with experimental data. The closeness of

this agreement between theoretical and experimental data motivates the beam equation as

a suitable candidate to modify, in order to try and improve the fit.

III. NON-UNIFORM BENDING STIFFNESS

Experimental measurements suggest that the bending stiffness of the BM varies across the

width of the membrane. The nature of the variation is somewhat controversial: on the one

hand Miller, 1985 has shown that the bending stiffness of the arcuate zone is, on average,

around 5 times higher than that of the pectinate zone. On the other hand, however, Olson

and Mountain, 1994 have shown that the pectinate zone is around three times more stiff than

the arcuate zone. In an attempt to refine our model, then, we shall now allow the bending

stiffness (i.e. EI) of the model beam to vary across its width. The variations will first be

allowed in a piecewise constant fashion. Our aim is not to derive a novel beam model, as

achieved in earlier work (e.g. Allaire et al., 1974, Miller, 1985), but rather to ask which simple

modeling hypotheses are consistent with experimental data. As before, we shall consider the

four combinations of clamped and simply supported boundary conditions at the endpoints.
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We initially choose a piecewise constant bending stiffness given by

EI(x) =















EI1 x ∈ [0, xt)

EI2 x ∈ (xt, 1]

(3)

where EI1 and EI2 are the constant bending stiffnesses of the arcuate and pectinate zones

(the regions [0, xt) and (xt, 1] respectively). Experimental measurements by Cooper, 1999

suggest a value xt = 0.28 though this value may vary slightly according to position along the

cochlear partition, and so we shall also investigate the effect of varying xt. For simplicity,

we also define a stiffness ratio factor, Γ,

Γ =
EI2

EI1

(4)

As the bending stiffness is constant in each region, we may solve the beam equation Eq. (1)

in each region to give

w(x) =















q

4!EI1

x4 + D1x
3 + C1x

2 + B1x + A1 x ∈ [0, xt)

q

4!EI2

x4 + D2x
3 + C2x

2 + B2x + A2 x ∈ (xt, 1]

(5)

Now to determine the eight constants of integration A1,2, B1,2, C1,2, and D1,2, we must

pose boundary conditions at x = 0, x = 1, and x = xt. The conditions at x = 0 and x = 1

(clamped or simply supported, for example) give four equations for the integration constants,

as before, while those at x = xt, the interface between the two zones, must provide another

four equations. In the first instance we choose total continuity, that is continuity of w, w ′,

w′′ and w′′′, at x = xt. The values of the eight constants, for the four possible combinations

of these boundary conditions are given in appendix A (note that each value is a function of

xt, Γ, q and EI2).
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Figure 3 shows plots of beam displacement, with the four possible combinations of end

boundary conditions, for various values of Γ.

Figure 3 clearly shows two plausible matches between the theoretical prediction of the piece-

wise constant beam model and the experimental data: clamped/clamped boundary condi-

tions (Fig. 3a), with large Γ, and (arguably rather better) simply supported/clamped end

conditions (Fig. 3c), with large or moderate Γ. Both of these models fit the data better than

the simple constant stiffness beam model, in that they approximate the peak amplitude,

and the decay near x = 1, more accurately than the simplest model. In either case, we may

reasonably hypothesise that the pectinate zone of the basilar membrane is much stiffer than

the arcuate zone, as in the measurements of Olson and Mountain, 1994.

Figure 4 shows the effect of varying xt for fixed Γ. We choose to vary xt between 0.2 and 0.4;

this could represent uncertainty in the position of the interface, or a variation with location

in the cochlea. We fix Γ = 25, as this provided the most plausible match between theoretical

prediction and experimental data above.

Figure 4 shows that varying the interface position has a negligible effect on the shape of

the model predictions. It seems that the boundary conditions have a far more important

effect in governing the mode shape than the position of the junction between the arcuate

and pectinate zones. This conclusion is supported by analyses at other values of Γ, including

the limit Γ → ∞.

IV. RIGID ROD AND HINGE MODEL

With reference to the physiology of the BM, it seems possible that the presence of the pillar

cells might make an extremely rigid structure in the arcuate zone, while the joint between

the arcuate and pectinate zones of the BM may be relatively weak. The conditions of total

continuity proposed thus far may therefore be too strong. This prompts us to consider

another simplified model for the basilar membrane, in which the arcuate zone is modelled
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by a rigid rod, and the pectinate zone as a flexible beam of constant bending stiffness EI.

Thus the equations for the deflection w(x) are

w(x) =















B1x x ∈ [0, xt)

q

4!EI
x4 + D2x

3 + C2x
2 + B2x + A2 x ∈ (xt, 1]

(6)

We suppose that there is a hinge, or rotational spring, at x = 0, such that the slope of the

BM there is proportional to the load applied q, so

B1 =
κq

EI
(7)

where the factor EI is inserted to simplify the calculation. Note that small κ represents a

relatively stiffer hinge. We now need four boundary conditions for the four unknowns A2,

B2, C2, D2. As before, we allow the beam to be simply supported or clamped at x = 1 so

that, at x = 1

w = 0, and either
dw

dx
= 0 or

d2w

dx2
= 0 (8)

At the junction x = xt, we suppose either that the beam and rod are “clamped” so that

w(x) and
dw

dx
are continuous (9)

at x = xt, or “simply supported”, so that

w(x) and
d2w

dx2
= 0 are continuous (10)

at x = xt.

Equations (8) together with either Eq. (9) or Eq. (10) give us 4 conditions for the 4 unknowns.

As before, these conditions may be solved explicitly to find the four constants of integration
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A2, B2, C2, D2, (as functions of x, xt and κ) and hence give an analytic expression for the

membrane displacement. The values of the constants are reported in appendix B.

Figure 5 shows solutions of Eq. (6) for the four possible combinations of boundary conditions

given in Eq. (8) and either Eq. (9) or Eq. (10). The most plausible match to the data in

this case is where the membrane is pinned at x = xt and clamped at x = 1 for κ ≈ 0.02, as

shown in Fig. 5(c). Varying xt was again found not to have any significant effect, as shown

for the case of two bending stiffness models above. Once again we see the importance of the

boundary conditions.

V. CONTINUOUSLY VARIABLE BENDING STIFFNESS

Another possible refinement of our model is to allow the bending stiffness of the BM to

vary continuously with position. While the arcuate zone of the real BM has a reasonably

constant cross-sectional area and composition, and is therefore quite likely to have a constant

bending stiffness, the pectinate zone certainly does not (cf. Iurato, 1962; Cabezudo, 1978).

The individual fibrils of collagen which make up the BM are often arranged in such a way

that the BM’s pectinate zone has two distinct layers (cf. Fig. 6). The layers are separated

by a ground substance with potential load-carrying ability, and the thickness of this ground

substance varies across the width of the pectinate zone (Iurato, 1962; Cabezudo, 1978); the

variation is particularly marked in the unfixed gerbil cochlea, as shown by Edge et al., 1998.

In mechanical terms, the resultant variation in the cross sectional area of the pectinate zone

will lead to a non constant second moment of area, I = I(x). In this case, we must solve a

generalised beam equation:

d2

dx2

(

EI(x)
d2w

dx2

)

= q (11)

We suppose that the BM has uniform cross section along the plane of the membrane; the

approximation to the transverse geometry of the cross section used in this study is shown

in Fig. 6. We assume that the distance from the centre line (the x-axis) to each edge of the
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BM in the arcuate zone is a constant, r. In the pectinate zone, we assume that the BM is

divided in two, each half having constant thickness r, and that the profile of the inner and

outer edges is quadratic and symmetric about the x-axis and the midpoint of the pectinate

zone, x = (1 + xt)/2, with maximum distance from the centre line to the outer edge of

the membrane R; thus the distances of the inner and outer edges from the centre line, for

x ∈ [xt, 1], are given by

rinner(x) =
4

(1 − xt)2
(R − r)(x − xt)(1 − x) (12)

router(x) =
4

(1 − xt)2
(R − r)(x − xt)(1 − x) + r (13)

In reality, the upper and lower portions of the pectinate zone of the BM are tied together,

both by exchange of fibres between the two portions, and via a ground substance. We shall

suppose, for simplicity, that the two portions are joined by a light net of fibres with infinite

shear stiffness, and so act together as a competent beam.

Since all lengths are non-dimensionalised by the width of the beam, the second moment of

area of a thin slice of membrane is given by Gere and Timoshenko, 1991

I(x) =















2

3
r3 x ∈ [0, xt)

2

3
(router(x)3 − rinner(x)3) x ∈ (xt, 1]

(14)

Direct measurement in the guinea-pig by Miller, 1985 suggests values for the dimensional

physical constants r and R of

r = 0.75µm; R = 2.15µm (15)

for a membrane of width 150µm, so in our non-dimensionalised variables we have that

r =
1

200
; R =

43

3000
(16)
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Figure 6 shows a plot of the variation of second moment of area in this case: the average

bending stiffness of the pectinate zone is clearly much larger than that in the arcuate zone.

Once again, in order to solve Eq. (11), we must supply end boundary and junction conditions.

We shall assume that the modulus of elasticity E is constant and equal in both zones. Figure

7 shows plots of the solution of Eq. (11) together with experimental data for the four possible

combinations of clamped or simply supported boundary conditions at the two ends (x = 0

and x = 1) with total continuity at the junction. Given the values of the constants r and

R and the boundary conditions, Eq. (11) can be integrated using Waterloo Maple Software,

1996 to give explicit solutions, shown in Fig. 7. Once again we see reasonable agreement

between theory and experiment, best of all when the beam is simply supported at x = 0 and

clamped at x = 1 (cf. Fig. 7c). However, the fit between experiment and data is not as close

as that for the piecewise constant bending stiffness model of Figs. 3a and 3c. It appears

that the boundary conditions are much more important than the fine details of the model

in determining the fundamental behaviour of the membrane.

VI. CONCLUSIONS AND FURTHER WORK

In this report we have discussed simple beam equations as possible models to describe the

radial profile of the basilar membrane’s sound-evoked vibrations. Part of the benefit of using

such simple models is that closed form solutions can be obtained, and so complete parametric

studies can be made; a task that is much more difficult with finite element solution methods,

for example.

It seems that solutions of the beam equation can fit experimental data well with certain

combinations of boundary conditions and bending stiffness variations. The best fit to ex-

perimental data is obtained for a beam with piecewise constant bending stiffness, simply

supported at the arcuate end (x = 0), and clamped at the pectinate end (x = 1), with the

bending stiffness of the pectinate zone much larger than that of the arcuate zone. Good
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agreement is also obtained in the limit of this ratio of bending stiffnesses tending to infinity,

with the membrane clamped at the pectinate end, and either simply supported or clamped

at the arcuate end. More detailed modelling of the physiology, such as changing the location

of the transition from arcuate to pectinate zone, or allowing the bending stiffness of the pec-

tinate zone to vary with radial position, do not substantially improve the fit to experimental

data. The more detailed models do support the conclusion, however, that the pectinate zone

of the BM is substantially stiffer than the arcuate zone, and that the membrane is simply

supported at the arcuate end and clamped at the pectinate end.

We may tentatively conclude, therefore, that the basilar membrane acts as if it is simply

supported at the arcuate end, clamped at the pectinate end, and is substantially stiffer in

the pectinate zone than the arcuate zone.

There are many possibilities for refinements and improvements to the types of model dis-

cussed here. Although a more detailed modelling of the physiology would perhaps be possible,

not too much should be expected from a constant loading model; the fit is already reason-

ably good, given the large standard deviation in the data. Also, we have made no attempt

to model the variation of BM properties with position in the cochlear partition, although

experimental data suggests that such variation does not significantly affect the qualitative

features of the radial profile. Perhaps more important would be to add a simple model of the

dynamics of the hair cells, which seem to be largely responsible for enhancing the sensitivity

of the BM at low stimulus levels, and try to understand their behaviour in active and passive

modes.

APPENDIX A. CONSTANTS OF INTEGRATION FOR THE PIECEWISE CONSTANT

BENDING STIFFNESS MODEL

We record here the values of the eight constants of integration, A1,2, B1,2, C1,2 and D1,2

for the beam model with piecewise constant bending stiffness Eq. (3), and the four possible
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combinations of clamped and simply supported end boundary conditions.

Equations (A1)–(A4) show the values of the constants where the beam is clamped at x = 0

and x = 1; Eq. (A5)–(A8) for clamped at x = 0 and simply supported at x = 1; Eq. (A9)–

(A12) for simply supported at x = 0 and clamped at x = 1; and Eq. (A13)–(A16) for simply

supported at x = 0 and x = 1.

A1 = 0, A2 =
x4

t

24
(1 − Γ)

q

EI2

, (A1)

B1 = 0, B2 = −
x3

t

6
(1 − Γ)

q

EI2

, (A2)

C1 =

[

−3x4
t + 8x3

t − 6x2
t

24
(1 − Γ) +

1

24

]

q

EI2

, C2 =

[

−3x4
t + 8x3

t

24
(1 − Γ) +

1

24

]

q

EI2

, (A3)

D1 =

[

x4
t − 2x3

t + 2xt

12
(1 − Γ) −

1

12

]

q

EI2

, D2 =

[

x4
t − 2x3

t

12
(1 − Γ) −

1

12

]

q

EI2

(A4)

A1 = 0, A2 =
x4

t

24
(1 − Γ)

q

EI2

, (A5)

B1 = 0, B2 = −
x3

t

6
(1 − Γ)

q

EI2

, (A6)

C1 =

[

−x4
t + 4x3

t − 4x2
t

16
(1 − Γ) +

1

16

]

q

EI2

, C2 =

[

−x4
t + 4x3

t

16
(1 − Γ) +

1

16

]

q

EI2

, (A7)

D1 =

[

x4
t − 4x3

t + 8xt

48
(1 − Γ) −

5

48

]

q

EI2

, D2 =

[

x4
t − 4x3

t

48
(1 − Γ) −

5

48

]

q

EI2

(A8)

A1 = 0, A2 =
x4

t

24
(1 − Γ)

q

EI2

, (A9)

B1 =

[

−3x4
t + 8x3

t − 6x2
t

48
(1 − Γ) +

1

48

]

q

EI2

, B2 =

[

−x4
t − 2x2

t

16
(1 − Γ) +

1

48

]

q

EI2

, (A10)

C1 = 0, C2 =
x2

t

4
(1 − Γ)

q

EI2

, (A11)

D1 =

[

x4
t − 6x2

t + 8xt

48
(1 − Γ) −

1

16

]

q

EI2

, D2 =

[

x4
t − 6x2

t

48
(1 − Γ) −

1

16

]

q

EI2

(A12)
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A1 = 0, A2 =
x4

t

24
(1 − Γ)

q

EI2

, (A13)

B1 =

[

−x4
t + 4x3

t − 4x2
t

24
(1 − Γ) +

1

24

]

q

EI2

, B2 =

[

−x4
t − 4x2

t

24
(1 − Γ) +

1

24

]

q

EI2

, (A14)

C1 = 0, C2 =
x2

t

4
(1 − Γ)

q

EI2

, (A15)

D1 =

[

−x2
t + 2xt

12
(1 − Γ) −

1

12

]

q

EI2

, D2 =

[

−
x2

t

12
(1 − Γ) −

1

12

]

q

EI2

(A16)

APPENDIX B. CONSTANTS OF INTEGRATION FOR THE RIGID ROD AND HINGE

MODEL

We record here the values of the four constants of integration, A2, B2, C2 and D2 for the model

described in section IV, where the arcuate zone is modelled by a rigid rod, the pectinate zone

as a flexible beam of constant bending stiffness, with a hinge, or rotational spring, at x = 0,

and the four possible combinations of clamped and simply supported boundary conditions.

Equations (B1)–(B4) show the values of the constants where the beam is clamped at x = xt

and x = 1; Eq. (B5)–(B8) for clamped at x = xt and simply supported at x = 1; Eq. (B9)–

(B12) for simply supported at x = xt and clamped at x = 1; and Eq. (B13)–(B16) for simply

supported at x = xt and x = 1.

A2 =
((xt − 1)3 + 48κ)x2

t

24(xt − 1)3
q

EI
(B1)

B2 = −
x5

t − 2x4
t + 2(1 + 24κ)x2

t + (12κ − 1)xt + 12κ

12(xt − 1)3
q

EI
(B2)

C2 =
x5

t + x4
t − 8x3

t + 8(1 + 6κ)x2
t + (48κ − 1)xt − 1 + 48κ

24(xt − 1)3
q

EI
(B3)

D2 = −
x4

t − 2x3
t + 2(1 + 6κ)xt − 1 + 12κ

12(xt − 1)3
q

EI
(B4)
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A2 = −
x6

t − 6x5
t + 12x4

t + (−10 + 48κ)x3
t + (3 − 72κ)x2

t

48(xt − 1)3
q

EI
(B5)

B2 =
x6

t − 6x5
t + 6x4

t + (48κ + 8)x3
t + (−72κ − 15)x2

t + 6xt − 48κ

48(xt − 1)3
q

EI
(B6)

C2 =
3x4

t − 8x3
t + 6x2

t − 1 + 24κ

16(xt − 1)3
q

EI
(B7)

D2 = −
3x4

t − 4x3
t − 6x2

t + 12xt + 24κ − 5

48(xt − 1)3
q

EI
(B8)

A2 =
3x5

t − 10x4
t + 12x3

t + (−6 + 72κ)x2
t + (1 − 48κ)xt

48(xt − 1)3
q

EI
(B9)

B2 = −
6x5

t − 15x4
t + 8x3

t + (6 + 144κ)x2
t + (−6 − 72κ)xt + 1

48(xt − 1)3
q

EI
(B10)

C2 =
x5

t − 6x3
t + (8 + 24κ)x2

t − 3xt

16(xt − 1)3
q

EI
(B11)

D2 = −
5x4

t − 12x3
t + 6x2

t + (24κ + 4)xt − 3

48(xt − 1)3
q

EI
(B12)

A2 = −
xt(−1 + 4xt − 4x2

t + 24κ + x3
t )

24(−1 + xt)

q

EI
(B13)

B2 =
(x4

t − 4x3
t + (4 + 24κ)xt − 1)

24(−1 + xt)

q

EI
(B14)

C2 =
xt

4

q

EI
(B15)

D2 = −
xt + 1

12

q

EI
(B16)
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TABLE I: Constants of integration for simple beam model

boundary condition constants

x = 0 x = 1 A B C D

clamped clamped 0 0 1
24

q

EI
−

1
12

q

EI

clamped simply supported 0 0 1
16

q
EI

−
5
48

q
EI

simply supported clamped 0 1
48

q
EI

0 −
1
16

q
EI

simply supported simply supported 0 1
24

q

EI
0 −

1
12

q

EI
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Figure 1: Schematic diagram of the mammalian cochlear partition. BM denotes the basilar

membrane, whose endpoints attach to the inner spiral lamina (ISL) and outer spiral

ligament (OSL). TM denotes tectorial membrane; PC denotes pillar cells; OHC and IHC

outer and inner hair cells, respectively; SM and ST scala media and tympani, respectively.
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Figure 2: Graphs of membrane deflection versus radial position, for the constant bending

stiffness beam model, with boundary conditions indicated by schematics below ( 
� denotes

clamped, 4 simply supported).
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Figure 3: Piecewise constant bending stiffness beam model, for fixed xt = 0.28 and varying

bending stiffness ratio Γ, with boundary conditions indicated by schematics below (arcuate

zone shaded).
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Figure 4: Piecewise constant bending stiffness beam model, for varying xt and fixed stiffness

ratio Γ = 25, with boundary conditions indicated by schematics below (arcuate zone shaded

for a single xt).
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Figure 5: Rigid rod and hinge models, for varying hinge stiffness κ and fixed xt = 0.28.

Boundary conditions at x = 1 indicated by schematics below. Continuity conditions at

x = xt: (a) and (b) w and w′ are continuous; (c) and (d) w and w′′ are continuous.
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Figure 6: (above) Sketch profile of basilar membrane geometry, (below) plot of second

moment of area for the variable thickness membrane with realistic parameter values
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Figure 7: Continuously variable bending stiffness model for fixed xt = 0.28, with boundary

conditions indicated by schematics below.
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