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Abstract

In this paper we present a model of impact dynamics in large dimensional systems. We

describe a hybrid method, based on graph theory and probability theory, which enables us

qualitatively to model the statistics of global dynamics as parameters are varied. Direct

numerical simulation reveals a sudden jump from no impacts within the system to many

repeated impacts at a critical value of system parameters. We show that a simple model of

the most likely number of impacts also possesses a sudden jump and gives good agreement

with the numerical results for large impact probability. A refinement of this model improves

the agreement at lower impact probability values.

1 Introduction

We consider a large dimensional piecewise smooth (PWS) dynamical system. PWS systems may

be described by equations of the form

ẋ = f(x, t, µ), (1)

∗martin.homer@bristol.ac.uk
†s.j.hogan@bristol.ac.uk
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where f : Rm+p+1 → Rm is a piecewise smooth function, µ ∈ Rp is a vector of parameters and

x ∈ Rm. Low dimensional (small m) versions of such systems have extremely rich dynamics. They

occur in a variety of physical systems in engineering and applied science. Examples include systems

with impacts [Thompson & Ghaffari, 1982; Goyder & Teh, 1989; Budd & Dux, 1994; Holmes, 1982],

as well as systems in power electronics [di Bernardo et al., 1998], geared systems [Halse et al., 2006],

earthquake engineering [Hogan, 1995], and structural engineering [Doole & Hogan, 1996; Lazer &

McKenna, 1990]. Much recent research has concentrated on bifurcations unique to such systems

(see Kowalczyk et al. [2006], and references therein). Large dimensional piecewise smooth systems,

however, are much less well understood.

We consider the following model problem in which n masses oscillate parallel to the x-axis, confined

between two side walls (see Fig. 1). The equilibrium positions of the masses are uniformly spread

at a distance d apart along this axis. The masses can impact nearest neighbours only. Between

impacts, the motion of each mass is governed by the differential equation

mj
d2xj

dt2
+ ω2

j (xj − jd) = Fj(t), (2)

where mj is the jth mass at position xj(t) and ωj is its natural frequency. The forcing Fj(t) is

assumed to be of the form

Fj(t) =

∞
∑

i=1

αi,j cosΩit + βi,j sin Ωit, (3)

where αi,j and βi,j are independent random variables and Ωi are a set of forcing frequencies; we

use this, as in Rice [1945], as a simple model of random forcing. Damping is provided by impacts

between masses through the Newtonian coefficient of restitution.

This model is related to that of Toda [1989], where an exponential force was assumed between

masses in a single row of oscillators. Under harmonic forcing, the system in [Toda, 1989] was

shown to possess complex dynamics [Geist & Lauterborn, 1988], and when viscous damping and

spring stiffness were added, a sensitivity to initial conditions was observed [Davies & Moon, 1994].

In a related problem [Kuroda & Moon, 2001], an experiment was described in which a periodic

array of elastic oscillators was placed in a steady cross flow. At a critical value of the flow speed,

the oscillators appear to exhibit chaotic dynamics. Such threshold phenomena are known to occur

in heat exchangers [Goyder & Teh, 1989; Kim & Jung, 2000] and are thought to be responsible for
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reduced operational lifetime in these critical components of the nuclear industry.

Our approach is to investigate the statistics of impacts in Eqs. (2) and (3) as the forcing amplitude

is increased, first via numerical simulation and then by analytic methods.

2 Numerical Simulations

We choose a scaling such that d = 1, mj = 1, ωj = 1, so Eq. (2) becomes

d2xj

dt2
+ (xj − j) = Fj(t), (4)

and we take Fj(t) to have just one component

Fj(t) = α1,j cosΩt + β1,j sinΩt, (5)

where α1,j and β1,j are identically distributed independent normal random variables, with zero

mean and variance σ2. We set Ω =
√

2, and assume a coefficient of restitution r = 0.8 at impact.

We simulate the system of Eqs. (4) and (5) with 100 masses (taking the two end walls to be

indistinguishable from the masses), and record the number of impacts after a suitable transient

time has elapsed. Solutions which have no impacts after the transient are discarded (for further

details see Homer [1999]). Figures 2 and 3 respectively show plots of the most likely number and

the expected number of impacts as a function of σ. For this range of parameter values, the number

of three-way impacts is negligible, as is the incidence of sticking; these are important observations

for the analysis later in the paper. Figures 2 and 3 show that for small σ there are very

few impacts, but as σ is increased past a threshold (σ ≈ 0.12) the number of impacts increases

very rapidly. Such a threshold is clearly present in the case of two masses (where a low enough

force means that the masses can never hit each other), but it is perhaps surprising that a large

dimensional system exhibits this behaviour, which is reminiscent of percolation theory [Stauffer,

1985]. We now seek an explanation for this jump.
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3 PWS Systems and Graph Theory

We recall that in previous work [Hogan & Homer, 1999; Homer, 1999] we demonstrated how graph

theory [Biggs et al., 1976] may be used to find periodic orbits in general PWS dynamical systems.

The key idea is to represent the system as a directed graph. Specifically the relationship between

the PWS of this paper and a graph can be summarised as follows:

• impacts are interpreted as vertices of a directed graph of the system,

• the evolution of the system between two impacts is an edge of the graph between the two

corresponding vertices, and

• the direction along an edge corresponds to increasing time.

Every periodic orbit in the dynamical system can be represented as a circuit in the graph, every

one of which can be found algorithmically; see Hogan & Homer [1999] for full details.

We now describe a graph representing our model. With n masses, there are n+1 possible impacts;

namely n − 1 mass-mass impacts, and 2 mass-wall impacts. In Fig. 4 we have n = 3, so there are

4 vertices in the graph (corresponding to 2 mass-mass impacts and 2 mass-wall impacts). The

16 edges correspond to all the possible evolutions of the system between the vertices. A particular

periodic orbit in the system involves some of the vertices and some of the edges. In fact different

circuits in this graph correspond to different periodic orbits in the dynamical system. For example

the circuit shown in Fig. 5(a) has its equivalent physical evolution shown in Fig. 5(b). Similarly

the circuit shown in Fig. 6(a) has its equivalent physical evolution shown in Fig. 6(b).

4 Periodic Orbits

We now make the fundamental assumption that the response of the system to an external forcing,

that is Figs. 2 and 3, consists of a mixture of different periodic orbits that go to make up a fully

connected graph, as illustrated in Fig. 4. For low values of σ, the orbits that make up the system

response will have few impacts each and for large values of σ the orbits will have many impacts

each.

So, as a function of σ, we need some idea of the distribution of types of orbit and some way of
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deciding how often each different type of orbit occurs. Using graph theory it is straightforward to

count and classify these orbits. We shall begin this calculation in Sec. 5. The problem of deciding

how likely any particular orbit is to occur is more difficult. In essence it requires a knowledge of the

relative size of the basin of attraction of each orbit, for given parameter values. A simpler method

is to argue that a graph edge occurs with probability p ∈ [0, 1]. In this way an orbit (circuit of

the graph) with k trajectory segments (k edges) occurs with probability proportional to pk. We

incorporate probability into our analysis in Sec. 6.

5 Distribution of Orbits

To count the different types of orbit, we divide the circuits into classes. We first consider simple

circuits, where no vertex in the graph is visited more than once (it is not necessary to visit every

vertex). In physical terms, simple circuits of length k correspond to periodic orbits, with k + 1

masses undergoing a sequence of impacts with no repeats. So, for example, in the simple circuit in

Fig. 5 the left hand wall and the first mass collide, then the first and second mass collide, followed

by the third mass and the right hand wall. So the sequence of impacts here is L-1, 1-2, 3-R.

Contrast this with the sequence for the non-simple orbit in Fig. 6 which is L-1, L-1, 1-2, L-1, 2-3,

1-2, 3-R, 3-R where the L-1 impact is repeated twice and the 1-2 and 3-R impacts repeated once

each. We shall return to the subject of non-simple circuits in Sec. 9.

In a fully connected graph with N vertices, the number of distinct paths of length k with the same

initial and final vertex is

(N − 1)(N − 2) . . . (N − (k − 1)) =
(N − 1)!

(N − k)!
, (6)

because, in order to complete a valid path, we must choose k − 1 additional vertices, all different.

Thus the number of distinct simple circuits of length k ∈ {1, . . . , N} in a graph with N vertices,

φN (k), is given by

φN (k) =
N !

k(N − k)!
, (7)

since there are N choices of the initial vertex i, with each circuit repeated k times (once for each

vertex along its length).
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If N is large, the ratio

φN (k)

φN (N)
=

N

k(N − k)!
� 1 (8)

for all k � N . Thus the majority of simple circuits have length ≈ N , the size of the whole system.

In physical terms, most of the periodic orbits involving a sequence of impacts with no repeats are

the size of the whole system. This effect is demonstrated in Fig. 7.

6 Probability

We now address the problem of deciding how likely a circuit (orbit) of length k is to occur. As

mentioned in Sec. 4, we associate a weight pij ∈ [0, 1] with each edge of the graph between

neighbouring vertices i and j. For simplicity, we will assume that the pij are all equal to some

constant value p. We also assume that impacts occur independently.

Therefore the probability of a simple circuit of length k is proportional to pkφN (k). We take the

sample space to be all possible simple circuits. In other words, all possible simple circuits are

included and no non-simple circuits are included. We shall discuss the relaxation of both these

assumptions in Secs. 8 and 9. Thus if X is the number of different mass-mass impacts, it has the

distribution

P (X = k) =
pkφN (k)

∑N
j=1 pjφN (j)

=
ΦN,p(k)

ΓN,p
, (9)

where

ΦN,p(k) =
pkN !

k(N − k)!
, ΓN,p =

N
∑

j=1

pjN !

j(N − j)!
(10)

(so that
∑N

k=1P (X =k) = 1).

Figure 8 shows P (X = k) for various values of the parameter p. For small values of p we expect to

see very few impacts (Fig. 8(a)), while for very small increase in p the number of impacts increases

rapidly towards the size of the whole system, where each mass undergoes an impact (Figs. 8(a),(b)

and (c)).

We can also calculate the most likely number of impacts, k?, that is, the value of k which maximises

ΦN,p(k) for fixed N and p. Figure 9(a) shows a plot of k?
N (p) against p. We do indeed see a very

rapid rise in the most likely number of impacts as p increases. Note that k?
N (p) is a step function,

since the most likely number of impacts is integer valued. Closer investigation of the small p region
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suggests a large discontinuity. Figure 9(b) is a plot of the expected number of impacts versus p.

Note that the insets expand the small p region in both figures and that µ(0) = 0 in Fig. 9(b). Note

that these observations are in qualitative agreement with Figs. 2 and 3. In the next section we

shall prove that this sudden jump in k?
N (p) does indeed exist.

7 Discontinuity in Most Likely Number of Impacts

We now prove that there is a sudden jump in k?
N (p) as a function of p. Since k? is the value of

k that maximizes ΦN,p(k), we investigate the difference between two neighbouring points on the

curve ΦN,p(k):

ΦN,p(k + 1) − ΦN,p(k) =
pkN !

(N − k)!k(k + 1)

[

−pk2 + (Np − 1)k − 1
]

. (11)

Thus ΦN,p(k) increases or decreases as

fN,p(k) = −pk2 + (Np − 1)k − 1 (12)

is positive or negative respectively. So any zeros of fN,p(k), given by

k± =
1

2p

[

(Np − 1) ±
√

(Np − 1)2 − 4p
]

(13)

correspond to turning points of ΦN,p(k).

We also have that

fN,p(0) = −1, (14)

fN,p(N) = −(N + 1). (15)

Moreover since

fN,0(k) = −(k + 1) < 0, (16)

and

∂

∂p
fN,p(k) = k(N − k) > 0, (17)

for all k ∈ (0, N), then for fixed N and k, fN,p(k) increases through zero as p increases.
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Let us now examine in detail what happens as p increases from zero. At p = 0, fN,0(k) is negative

for all k ∈ (0, N) from Eq. (16), thus ΦN,0(k) is monotone decreasing, and the most likely number

of impacting masses is 1.

As p increases, the local (negative) maximum of fN,p(k) at k = (Np − 1)/2p increases until it

touches the line fN,p(k) = 0. From Eq. (12), this occurs when (Np − 1)2 = 4p, that is when

p = pcrit =

(

1 +
√

N + 1

N

)2

, (18)

(Note that the other root corresponds to the unphysical case of k < 0). Increasing p still further

produces two zeros of fN,p(k) at k = k±.

Figure 10 shows a sequence of sketches of fN,p(k) and ΦN,p(k) as p increases from zero. In Fig.

10(a), p = 0 and so the most likely number of impacting masses is 1. Increasing p to pcrit leads to

a repeated root of fN,p(k) (shown in Fig. 10(b)), so ΦN,p(k) has a stationary inflexion, but is still

decreasing, and hence the most likely number of impacts is still 1. Increasing p further, as shown

in Fig. 10(c), leads to two zeros of fN,p(k), so ΦN,p(k) has a local minimum and a local maximum.

Initially, the value of ΦN,p(k) at the local maximum is less than that at k = 1, and so the most

likely number of impacts is still 1. As p increases still further, there is a critical value at which the

local maximum of ΦN,p(k) becomes a global maximum. At this value of p there is a sudden jump

in k?
N (p) to a value much larger than 1, as shown in Fig. 10(d). For further increase in p, k?

N (p) is

monotone increasing, such that k?
N (p) → N − 1 as p → 1.

8 A Relation Between σ and p

The numerical simulations in Sec. 2 show a clear jump in the expected number of impacts k? as

σ is varied. These calculations were performed using the full equations of motion. On the other

hand in Sec. 7 we were able to show analytically that an estimate of k? also undergoes a sudden

jump in value, this time as a function of p. So how can we relate σ and p? In particular, we must

find a way to compute p from the parameters in the physical model. We now describe a possible

candidate for this relationship.

Solving Eqs. (4) and (5) it is straightforward to show that the separation of masses j and j + 1,
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∆j(t) = xj+1(t) − xj(t), is given by

∆j(t) = d + (α0,j+1 − α0,j) cos ωt + (β0,j+1 − β0,j) sin ωt

+
α1,j+1 − α1,j

ω2 − Ω2
cosΩt +

β1,j+1 − β1,j

ω2 − Ω2
sinΩt. (19)

The quantities α0,j and β0,j are related to the initial conditions of the mass j. We assume these

are also normally distributed random variables; later we shall integrate over all possible initial

conditions.

Now the probability of not having an impact, 1 − p, is just the probability that ∆j > 0 for all

t > 0, that is P (inft>0 ∆j > 0), which gives

1 − p = P

(

Y0 +
Y1

|ω2 − Ω2| < d

)

, (20)

where Yi, (i = 0, 1) is given by

Yi =
√

(αi,j+1 − αi,j)2 + (βi,j+1 − βi,j)2. (21)

Equation (20) may be written in terms of the density functions of all the random variables αi,j

and βi,j with the aid of standard identities from probability theory [Grimmett & Welsh, 1990].

Since αi,j and βi,j are normally distributed with zero mean and variance σ2, then the probability

density function of Y0 is given by

fY0
(x) =

x

2σ2
exp

(

− x2

4σ2

)

H(x), (22)

and that for Y1/|ω2 − Ω2| by

fY1/|ω2−Ω2|(x) =
(ω2 − Ω2)2x

2σ2
exp

(

− (ω2 − Ω2)2x2

4σ2

)

H(x), (23)

where H(x) is the Heaviside function. So Eq. (20) becomes

1 − p =

∫ d

−∞

∫ ∞

−∞

fY0
(t)fY1/|ω2−Ω2|(x − t) dt dx, (24)
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that is

p = 1 − (ω2 − Ω2)2

4σ4

∫ d

0

∫ x

0

t(x − t) exp

(

− t2

4σ2

)

exp

(

− (ω2 − Ω2)2(x − t)2

4σ2

)

dt dx. (25)

We show in Fig. 11 the curve p = p(σ) given by Eq. (25) for the parameter values used in the

numerical simulation, namely ω = 1, Ω1 =
√

2 and d = 1.

We are now able to make a quantitative comparison of the predictions of the probabilistic graph

theory method and the results of our numerical simulations, with the aid of Eq. (25). Figure 12

shows the expected number of impacts plotted against σ, for both the predictions of the graph

theory method and the results of our numerical simulations. We compare the expected number

of impacts (rather than the most likely number), since this is a much easier statistic to compute

reliably in numerical simulations.

Figure 12 shows good qualitative agreement between theory and experiment, particularly for large

σ. The value p(σ) is extremely small for σ < 0.15, and we suspect our method of estimating p is

poor here. The similarity is encouraging, however, since so many factors were neglected to use the

probabilistic graph theory method.

Perhaps the most significant omission is that of the coefficient of restitution at impact. In Sec. 2

our choice of r = 0.8 ensured that multiple impacts and sliding were seldom observed. This gave

us confidence that we could use graph theory. We choose not to pursue this point further in this

paper, and leave calculation of an improved relationship between σ and p for further work. Instead

in the next section we shall consider non-simple circuits.

9 Non-simple Circuits

We now consider the possibility of including non-simple circuits in our method. Such a circuit

is illustrated in Fig. 6 where 3 impacts are repeated; impact L-1 is repeated twice, impacts 1-

2, 3-R repeated once each. First we shall consider those circuits in which exactly one vertex is

visited twice, all other vertices being visited no more than once (in other words, just one impact

is repeated). Let the number of such circuits of length k in a graph with N vertices be φ1
N (k).

Initially let vertex i be visited twice. Then we seek circuits which start at vertex i, visit γ1 ∈ N
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distinct vertices (via a path of length γ1 + 1), return to vertex i again, then visit γ2 ∈ N more

distinct vertices (a path of length γ2 + 1), and finally return to vertex i. For a circuit of length k,

we have the constraint

(γ1 + 1) + (γ2 + 1) = k, (26)

and so the number of such circuits is

(N − 1)(N − 2) . . . (N − γ1) · 1 · (N − (γ1 + 1))(N − (γ1 + 2)) . . . (N − (γ1 + γ2))

= (N − 1)(N − 2) . . . (N − (γ1 + γ2)) (27)

= (N − 1)(N − 2) . . . (N − (k − 2)) (28)

=
(N − 1)!

(N − (k − 1))!
. (29)

Thus the total number of circuits of length k, passing through one vertex twice, and no other

vertex more than once is

φ1
N (k) =

1

2

∑ ∑

γ1,γ2∈N

(γ1+1)+(γ2+1)=k

(N − 1)!

(N − (k − 1))!
=

γ(k, 2)

2

(N − 1)!

(N − (k − 1))!
. (30)

The factor of 1
2 arises because each circuit is counted twice. γ(n, j) is the number of solutions of

the equation

α1 + α2 + · · · + αj = n, (31)

where αi ∈ N+ for all i and is given [Tucker, 1980] by:

γ(n, j) =

(

n − 1

j − 1

)

=
(n − 1)!

(j − 1)!(n − j)!
. (32)

Thus

φ1
N (k) =

1

2
(k − 1)

N !

(N − (k − 1))!
. (33)

By a similar method, we may count other classes of higher order circuits. We label the number of

circuits of length k in a fully connected graph with N vertices where exactly δj vertices are visited

j + 1 times, all other vertices visited at most once, as

φ...δ4,δ3,δ2,δ1

N (k). (34)

For example the number of distinct circuits of length k > 3 where one vertex is visited three times,
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and no other more than once, φ1,0
N (k), is

φ1,0
N (k) =

1

6

(k − 1)!

(k − 3)!

N !

(N − (k − 2))!
. (35)

The number of distinct circuits of length k > 4 where one vertex is visited four times, and no other

more than once, φ1,0,0
N (k), is

φ1,0,0
N (k) =

1

24

(k − 1)!

(k − 4)!

N !

(N − (k − 3))!
. (36)

The number of distinct circuits of length k > 4 where two vertices are visited twice, and no other

more than once, φ2
N (k), is

φ2
N (k) =

1

8

(k − 1)!

(k − 4)!

N !

(N − (k − 2))!
. (37)

It is now straightforward to form distribution functions for the number of impacts, extending the

sample space to include higher order circuits. Once again we assume impacts occur independently.

To fix ideas let us consider a sample space made up of the five classes of circuit we have counted,

that is the simple circuits, and the four higher order circuits above. So the number of circuits with

k different mass-mass impacts per period in this case is

φN (k) + φ1
N (k + 1) + φ1,0

N (k + 2) + φ1,0,0
N (k + 3) + φ2

N (k + 2). (38)

Figure 13 shows the distribution of the number of impacts, and their contributions from the five

terms of the sum, for various values of p. These diagrams show that, even for very small

p, higher order circuits appear to be significant, and as p increases, the higher order circuits

dominate, and the probability of observing a simple circuit becomes insignificant, as we would

expect. Despite this, however, the shape of each distribution becomes essentially identical as p

increases, as shown in Fig. 14, and thus the expectation of the simple circuit distribution alone is a

very good approximation to that of the sum. This explains why we have good agreement between

theory and numerical simulation for large p; adding higher order circuits does not significantly

alter the expected circuit length. For small p, however, the expected circuit length is measurably

different, perhaps going some way to account for the poor correspondence in this regime. The

behaviour of the most likely circuit length will change also: we expect a sudden jump as before,

but at a different critical probability.

12



Figure 15 shows the change in the expectation of the circuit length, together with our numerical

simulations. We do indeed see the most change for small σ, even though the change is modest. It

seems more likely that the relationship between p and σ is more important that the inclusion of

higher order circuits in determining the agreement between theory and experiment.

10 Conclusions

In this paper we have examined the dynamics of impacts in a large dimensional forced piecewise

smooth system. Numerical simulations show a clear jump in the impact statistics as the variance

σ2 of the forcing amplitude is increased.

Initially we assume that the system dynamics consists solely of simple periodic orbits. We count

these orbits, using methods from graph theory, and assign to them a certain probability of occur-

rence. This model also possesses a sudden jump in the expected number of impacts as the impact

probability p increases.

A relationship between σ and p is then derived and good agreement is found between the two sets

of statistics in the large σ/large p regime. We then refine the model to include multiple impact

orbits which slightly improves the agreement in the small σ/small p regime.

There are many possible refinements and improvements to our method, including an explicit inclu-

sion of the coefficient of restitution into our graph theory calculations, allowing non-independence

of impacts, or having different values of p for different edges in the graph. Also there are other ways

to compute p, for example, by using a more realistic model of mass vibration, and subsequently

computing p purely numerically.
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Figure 2: The most likely number of impacts as a function of σ
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Figure 3: The expected number of impacts as a function of σ
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Figure 4: Graph describing periodic motions in the model with n = 3 masses. Vertex L-1 denotes
an impact between the left hand wall and the first mass, vertex 1-2 an impact between the first
and second masses, vertex 2-3 an impact between the second and third masses and vertex 3-R

between the third mass and the right hand wall.
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Figure 5: (a) Circuit from Fig. 4, and (b) its physical equivalent.
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Figure 6: (a) Circuit from Fig. 4, and (b) its physical equivalent.
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Figure 10: A mechanism for the sudden jump in k?
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Figure 12: Comparison of expected number of impacts for graph theory predictions (green line)
and numerical simulations (red crosses).
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Figure 13: Distributions of the number of impacts (k) with sample space containing higher order
circuits (red lines) for N = 100, and (a) p = 0.005, (b) p = 0.005, detail of small k region, (c)

p = 0.01, (d) p = 0.05. Also shown are the relative probabilities of observing the various classes of
circuits (dashed lines).
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Figure 14: Convergence of simple and higher order circuit distributions as p increases; (a)
p = 0.015, (b) p = 0.04.
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Figure 15: Comparison of expected number of impacting masses for graph theory predictions
including higher order circuits (blue line) and simple circuits only (green line), and numerical

simulations (red crosses).
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