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Neuronal populations with reciprocal inhibition and rebound currents:
effects of synaptic and threshold noise

S. Coombes and S. H. Doole
Department of Engineering Mathematics, Bristol University,
University Walk, Bristol, BS8 1TR, UK
(May 20, 1996)

The analysis of networks of time-summating binary neural networks is relevant to the study
of coherent oscillatory behaviour in neuronal populations. A class of networks based on a dis-
crete time version of leaky integrator networks has recently been extended to include the effects of
hyperpolarisation-activated inward currents [S. Coombes and S. H. Doole, Dynamics and Stability of
Systems 11, 36, (1996)]. Such rebound currents are important for central pattern generation in neu-
ronal circuits with reciprocal inhibition. In this paper, we incorporate models of intrinsic synaptic
and threshold noise into the above neural system. The macroscopic behaviour of time summating
networks with rebound currents and random thresholds is analysed in the thermodynamic limit.
Mean field equations are derived for the average network activity in a homogeneous network with
inhibitory synaptic connections. Periodic and chaotic solutions are shown to exist, together with
hysteretic transitions between periodic orbits. This hysteresis is observed between particular peri-
odic orbit branches, as well as more globally with respect to variations in external input or threshold
noise. Moreover, rebound currents are shown to suppress chaotic network response to external input,
in favour of low order periodic responses, which in turn define well ordered coherent macroscopic
oscillatory states for the system. The response characteristic of a single neuron in the presence of
synaptic multiplicative noise is also considered and compared to its zero noise limit. In this latter
case, the dynamics is reduced to a piecewise linear discontinuous circle map, whilst the former is
expressed in terms of a random iterated function system.
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I. INTRODUCTION

The analysis of reciprocally connected neurons has re-
ceived much attention in an attempt to understand the
mechanisms whereby rhythm generation is produced by
a neuronal central pattern generator (CPG) in the ab-
sence of endogenous pacemaking cells [1-6]. In partic-
ular, Brown [7,8] has proposed the half-center oscilla-
tor model to account for the rhythmic motor activity
for stepping movements observed in spinal cats. Two
pools of interneurons, the half-centers, are envisaged to
control flexor and extensor muscles communicating via
reciprocally inhibitory synapses. To generate oscillations
from two such pools requires additional physiological fac-
tors such as fatigue, adaptation or post inhibitory re-
bound. Post inhibitory rebound (PIR) is a nonlinear
phenomenon encountered in a variety of nerve cells. It
is an active process in which the excitability of a neu-
ron is enhanced temporarily following a period of hyper-
polarisation. Biological CPGs with half-center architec-
tures that have been shown to depend on the presence of
such ‘rebound currents’ include the heartbeat control cir-
cuit in the medicinal leech [9], the swimming circuit for
the mollusc Clione [10], respiratory control in the pond
snail [11] and gastric rhythms in crustaceans [12]. Typ-
ically, such CPG circuits are built from relatively few
neurons. A much larger network, found in the brain,
that generates rhythmic activity is the nuclear reticular
thalamus (NRT). This is a thin neuronal sheet composed
of coupled inhibitory neurons. In common with the cir-
cuits underlying rhythm generation in the simple inverte-
brates mentioned above, NRT neurons can rebound from
hyperpolarisation to fire. The NRT is thought to serve
as a pacemaker for synchronous spindle oscillations seen
during drowsiness, sleep or anaesthesia [13].

Previous models of simple CPGs for heartbeat, swim-
ming, respiration, gastric rhythms and also the rhyth-
mic activity in thalamo-cortical systems have combined
the generic reciprocally inhibitory architecture with
Hodgkin-Huxley equations utilising hyperpolarisation ac-
tivated inward ionic currents [14,15]. To avoid the diffi-
culties of analysing such complex systems, a much sim-
pler neuronal population dynamics incorporating the ef-
fects of PIR within the time-summating binary neuron
model [16] has been proposed [17]. This model is a
discrete-time approximation of the biologically realistic
leaky-integrator equations that describe cell membrane
potential dynamics. Both firing events and the trigger-
ing of the injection of rebound currents at the cell body
are signalled by the crossing of thresholds. Hence, there
is a threshold for firing and a threshold for rebounding.
In this paper, we examine the asymptotic states for this
population dynamics and concentrate on the following
issues:

e How do PIR currents affect the dynamical attrac-
tors in large populations of globally reciprocally in-
hibitory neural networks?

e How does this system respond to perturbation with
an external input?

e How robust is the system to the stochastic noise
that is present in all neuronal systems?

In the first instance we present the dynamics for the
standard time-summating binary network with rebound
currents. Noise at the axon hillock is modelled via a ran-
dom modulation of the thresholds for firing and rebound-
ing. Mean field equations for the average membrane po-
tential and mean network activity are derived by averag-
ing the dynamical population equations with respect to
the random thresholds and taking the thermodynamic
limit. The range of possible responses is investigated
numerically. Attention is concentrated upon bifurcation
parameters representing the levels of threshold noise and
global external input. The presence of rebound currents
is seen to suppress chaotic behaviour. In particular, these
currents can lead to low order periodic orbits for the av-
erage activity of the network. Interestingly, the active
population number is thought to control the CPG fre-
quency of the half-center swimming circuit in the tadpole
Xenopus [18]. Hence, intrinsic neuromodulation of such
currents in reciprocally inhibitory circuits may serve to
alter the frequency of rhythmic pattern generation. Fur-
thermore, the presence of PIR currents allows hysteretic
transitions between periodic orbits. Therefore, neuronal
population responses to external input will depend upon
whether this stimulation is increasing or decreasing. Sim-
ilar hysteresis is observed with variation of the threshold
noise.

Another biologically significant source of noise in the
single neuron arises from the quantal release of chem-
ical transmitters into synapses. Such neurotransmitter
release provides a mechanism for converting pre-synaptic
axonal signals into changes in the membrane potential
of post-synaptic neurons. This multiplicative noise is
modelled by independently updating synaptic connection
strengths at every time step according to some probabil-
ity distribution, as originally proposed by Bressloff [19].
Since the nature of synaptic neurotransmitter release is
quantal, each random connection strength only has a fi-
nite number of possible values. In conjunction with the
fact that the number of output states of a binary network
is itself finite, the stochastic dynamics of time-summating
networks with PIR currents and synaptic noise may be
formulated as a random iterated function system [20] on
the space of membrane potentials. We illustrate such a
stochastic dynamics by concentrating on a single neuron
for which the limiting behaviour is described by an invari-
ant probability measure on the space of membrane poten-
tials. The invariant measure is seen to have a fractal-like
structure. To highlight the response characteristic of this
stochastic single neuron, we make a comparison with the
same system in the limit of zero noise. In this case, the
single neuron dynamics can be reduced to a piecewise lin-
ear map with two discontinuities and the response char-
acteristics follow a self-similar (non-monotonic) devil’s



staircase. Hysteresis persists for the single neuron and
the piecewise linear structure of the map can be exploited
to allow a quite explicit analysis of this feature.

II. DYNAMICS

Single neuron equations that reproduce all the be-
haviour of a biological neuron can be used as the basic
elements for a study of neuronal population dynamics. In
particular, Bressloff & Taylor [16] have developed a dy-
namical model of a binary neural network that incorpo-
rates certain important neurophysiological features. This
is achieved by constructing a discrete time approximation
of a leaky integrator model with cell membrane potential
decay. However, one feature of a single neuron that their
model does not describe is that of post inhibitory re-
bound. With this in mind, we define the following model
of N leaky integrators with post inhibitory rebound [17].
Let V;(t) be the membrane potential of the i*" neuron at
time ¢ with respect to some resting potential. Then V;(t)
satisfies the differential equation

d‘gt(t) — _ViT(it) + ]z:; Agz’j (t) + Agi(t) , (1)

where 7; is the ith cell membrane time constant and
Ag;i(t), i # j, is a measure of the synaptic conduc-
tance change at the j*® synapse of neuron i. Excitatory
synapses have positive g;; while inhibitory ones are neg-
ative. The term Ag;(t) is taken to be positive in sign.
It describes an excitatory feedback current representing
the effect of post inhibitory rebound and does not involve
synaptic processing.

A discrete time approximation of the neuronal dynam-
ics may be obtained by first formally integrating (1) (with
V;(0) = 0) to obtain

t N
Vi(t) = /0 dt e=(t=t)/ (ZAgikw)mgi(t')) (2)

k=1

A simple model of neuronal input that allows evaluation
of (2) is to assume that neuron 7 receives an impulse of
size w;; each time that neuron j fires. Thus

Agz’j (t + td) = Wjj Z (S(t - A]n) 5 (3)

n>1

where A7 is the time at which the j*" neuron fires for
the n'® time since ¢ = 0, and §(z) denotes the Dirac-
delta function. The synaptic delay time t4 is included to
account for the time between the arrival of a signal at
a synapse and the resulting change in resting potential
of the neuron. In a similar fashion, we write the post
inhibitory rebound current in the form

Agilt+1p) = w; 3 8(t = BY), (4)

n>1

where BT represents the time at which the i*" neuron
rebounds for the n'" occasion and t, is the delay time
for post inhibitory rebound to take effect. The nth firing
and rebounding times are defined by

A7 =inf{t| V;(t) > hy;t > A7} (5)
B} =inf{t| Vj(t) < kj;t > B} '} (6)
respectively. The quantities h; and k; measure the

thresholds for firing and rebounding respectively. In gen-
eral, the A? and B} lie on a lattice generated by t4, t,,
and the first times that firing and rebounding occur.
For simplicity, we set ¢, = t; and proceed by break-
ing the integral in (2) into [0,%4] and [¢4,t]. The more
general case of distinct delays is considered in [21]. The
integral over [0, ¢4] is treated as a boundary term which
is determined by the state of the network over the inter-
val [—t4,0]. We choose initial conditions such that the
first firing and rebounding times are multiples of ¢4. In
this case all subsequent firing and rebounding times are
multiples of t4. For any function f, we may write

D fAD) =Y f(mta)a(m) (7)
n>1 m=0
> f(B}) =Y f(mta)b;(m) (8)
n>1 m=0

where a;j(m) and bj(m) are the firing and rebounding
functions defined by

1 A7 = mt, 1 B? = miy
. — j . — fi
a;(m) = { 0 otherwise ’ j(m) = { 0 otherwise - ©)

Hence we deduce that

Vi(m) = Zry{*l (Z wikag(m — 1) + wibi(m — T))
r=1 k

(10)

for t = mtg. In (10), we have set t4 to unity for clarity
and introduced v; = e~'/7. At non-integer multiples
of the fundamental time delay t; the neuron does not
receive any input, and the neuronal dynamics are given
simply by

Vi(t) = e E™/TV(m),m < t < (m +1). (11)
We write (10) as the first-order iterative equation
Vi(m) = Fi(V(m - 1)) =
~viVi(m — 1) + Zwikak(m = 1) +wbi(m—-1), (12)
k

where V is a vector with components V; and the fir-
ing and rebounding functions take the form a;(m) =
O(Vi(m) — h;), b;(m) = O(k; — V;(m)). Here © denotes
the step function, ©(z) = 1 if z > 0 and is 0 otherwise.
The first term on the righthand side of equation (12) rep-
resents simple voltage decay at the cell membrane. The
second term is interpreted as synaptic input and the third
represents the effect of a rebound current.



III. MEAN FIELD THEORY

The macroscopic behaviour of time-summating net-
works with PIR currents in the thermodynamic limit is
relevant to the discussion of systems such as the swim-
ming circuit of the Xenopus tadpole. A large population
of neurons with inhibitory couplings relies on rebound to
support self-sustained rhythmic behaviour. The active
number of neurons in this population has been linked to
the control of swimming frequency [18]. A mean field
theory allows one to follow the average activity of a pop-
ulation as a well defined macroscopic dynamical quan-
tity. To derive mean field equations for a homogeneous
inhibitory network we proceed in a similar fashion to [22].

The effect of noise at the axon hillock is introduced by
re-interpreting the thresholds for firing and rebounding
as random variables. This is achieved by generating a
random external field n; from some distribution p;(n;).
This field can be considered as a random modulation of
the deterministic thresholds h; and k;. In this case, the
probability of the i*" neuron firing when the membrane
potential is equal to Vj is

v = [ dnpoW —hi+n),  (3)

and the probability of rebound, 4?(V;), is constructed
in an analogous fashion. A common choice for the dis-
tribution of thresholds is one that reproduces the Little
model [23]

0
pi(mi) = 6_mf(77i)a (14)
where f() = (1+exp—360)~" is a sigmoid function with
a ‘temperature’ parameter 3! = T, measuring the noise
level. The probabilities for firing and rebounding then
take the simple form

Yi(Vi) = f(Vi—hi), $}(Vi) = f(ki—=Vi).  (15)

We now consider a homogeneous network in the thermo-
dynamic limit N — oo with inhibitory couplings such
that w;; = —w, /N, w; = wy, hi = h, k;, =k and 3; = v
for all i . The dynamics for such a system arising from
equation (12) are

Vilm + 1) = F'(V.(m))

M=

= yVi(m) — O(Vj(m) — h +n;(m))

Wq
N
Jj=1
+wpO(k — Vi(m) +mi(m)) + 1, (16)
where we have additionally included a global external
input I.

To derive mean field equations for a homogeneous net-
work, consider a ﬁxe,d vector V and define the associated
random variables V; = F;'(V), with mean and variance

Vi=(F(1), , (17)
AV = ((F V) - T)?) . (18)

p

Here (...), denotes averaging with respect to the random
thresholds. Using the distribution (14), we obtain

N
Vi=aVim 2 SV =) +wnf(s =V +1 (19)
j=1

and

2 N
AV = F5 ATV = h) = £(V; ~ 1)}

+wp {f(s=Vi) = f2 (k= V3)} . (20)

Each term in the mean and variance is finite. In the ther-
modynamic limit, fluctuations Idepend upon the size of
the rebound current since (AV;) — wp/2. For small re-
bound currents, the probability that Vz-' = V;- in a given
trial approaches unity. Now set V to be V(m). Then

V; (m) = Vi(m + 1) and we obtain, for large N, the dy-
namical mean field equations:
w N
Vi(m +1) = qVi(m) = <= > f(Vi(m) = h)
j=1
Fwy f(k = Vi(m)) + I (21)

Similarly, the mean activity of the network; M, =
N~t32, aj(m) satisfies

My =N"1Y" f(Vi(m) = h) (22)

As (Vi(m+1) =Vj(m +1))/(Vi(m) = V;(m)) <+ ws/2,
the long term macroscopic behaviour of the network is
effectively governed by the single mean field equation

Xmt1 = FB(XM)
=vXm — waf(Xm - h) + wa(’ﬁ - Xm) +1 (23)

with X,,, = N1 >; Vj(m), provided v + wp/2 < 1. The
mean output activity is now given by

My = f(Xm — h) (24)

The dynamical equations (23) and (24) are exact for a
single neuron with PIR in the presence of threshold noise
of the Little type. In fact, equation (23) may be regarded
as a systematic extension of the postulated single-neuron
model of Aihara, Takabe and Toyoda [24] to include the
effects of a rebound current.

To study the dynamics of the map Fj(X), we must
first determine any invariant intervals. These intervals
are determined by the critical points which solve



dFs(Xm) _
=0 (25)

In the absence of any rebound currents, the maps (23)
and (24) possess certain symmetries which give structure
to the response diagrams. To show this, we introduce
T = Xm —hand A =1 —h(1 —+) > 0 and write the
map (23) in the parameterised form

Tl = Fa(@m) = YEm —wo f(2m) + A (26)
We form the relations

fA(_mm) = _fA(mm) + 24 —w, ; (27)
fA(xm) = f—A(xm) + 2Aa (28)

from which we can establish
Fu(@m) ==F_ 4 (—7m) (29)

for a shifted bifurcation parameter A = A —w, /2. Thus
the bifurcation diagram of Fj3(X,,) is symmetric about
the point I = w,/2 + h(1 — ) (for wy = 0). Since
M1 = f o Fa(xy), the firing map M4 = M,,+1 obeys
the relation M, = 1-M_ 4 and is also symmetric about
I = wa/2+ h(1—+). For non-zero wy, the full dynamical
equations take the form

T+l = Gas(@m) = Falxm) + we f(6 — 21m) (30)

where 6 = k — h. One can also establish the relation
gA’(;(-'L'm) = _g_A’(_(;) (_-'Em) ) (31)

where A' = A+ (wp —w,) /2. Hence, the introduction of
rebound currents will lead to a destruction of symmetry
in any bifurcation diagrams with fixed non-zero § and
this loss of symmetry is first observed close to the point
of symmetry for wy = 0.

To see how the invariant interval can affect dynamical
behaviour, it is instructive to first consider the case with
zero rebound. We introduce o = w, /2y — 1 so that the
function F4 has critical points at _ and =, where

Bxy =log(c £ Vo2 —1) (32)

There is also a unique fixed point zy, which lies in the
interval [z_,z,]. For fixed 8, v and w,, varying the
bifurcation parameter A simply shifts the graph of F4
up or down. For 8 > 1 (low temperature), there ex-
ists an interval Q = [w_,w4], with 0 < w_ < wy <
w,, such that for all A € Q the fixed point is unsta-
ble. All trajectories then converge to the closed interval
Y = [Fa(z-),Fa(z4)]- There is also the possibility of
chaotic dynamics since a positive Liapunov exponent can
occur. If A ¢ Q, the fixed point is stable and all trajec-
tories converge to xp. Note the invariant interval ¥ is
contained within [A — w,, A] (the invariant interval in
the limit 8 — o0). For non-zero wy, the invariant in-
terval for nontrivial dynamics will also be determined by

the critical points of G45 and the stability of the fixed
point (see figure 1). Simple analytic expressions like (32)
for the critical points are cumbersome since they are now
the roots of a quartic in f. However, it is a simple matter
to bound the invariant interval by [4A — w,, A + ws], for
example. Now as A is decreased, the stable fixed point
o can destabilise and restabilise twice in turn.

F(X)

FIG. 1. Graph of the map Fg. The dashed rectangular
region denotes the restriction of Fj3 to the invariant interval
determined by the critical points, with 8 = 25, h = 0, v = 0.5,
I =0.2, we, = 1.0 and wp, = 0.5. The dotted line shows the
graph for wy = 0.

We now examine some simulation results to illustrate
the effects of introducing rebound currents into the neu-
ronal population dynamics. In all of these, we have taken
h = 0, and moreover ensured that v+ wp/2 < 1 in or-
der that the mean field theory is valid. As a benchmark,
we first examine the case wy = 0 in figures 2 and 3. In
the first of these, the averaged voltage respects the sym-
metry described above (reflect first in X = 0 and then
I =1/2). Without rebound, there is only nontrivial out-
put for excitation (I > 0). We note the existence of four
bands of chaos, and the collapse to trivial fixed point dy-
namics outside the regime shown. The existence of this
chaos has been confirmed numerically by calculation of
the Liapunov exponent according to

dxm+1
dz,

(33)

n—1
o1
AMz) = nlgréo - Z:Olog

m=

Once wy is non-zero, hysteresis is observable: both ‘lo-
cally’ between particular periodic orbit branches, as well
as more ‘globally’ with respect to variations of the ex-
ternal input over relatively wide parameter windows. In
addition, suppression of chaotic dynamics in favour of low
order periodic responses can occur. In figures 4 and 5, we
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FIG. 2. Average voltage bifurcation diagram. w, = 1.0,
wy, = 0.5, =0.5, y=0.7, 8 = 25.0.
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FIG. 3. Mean activity bifurcation diagram. w, = 1.0,
wp = 0.5, § = 0.5, v =0.7, 8 = 25.0.

see the multiplicity of solutions that gives rise to the pos-
sibility of (local) hysteresis. Later on when we look at the
case of a single neuron in the absence of threshold noise
(figure 14), we will be able to identify the multiplicity in
the centre of figure 4 as the coexistence of ‘noisy’ versions
of period 3 and period 2 orbits of a certain piecewise lin-
ear map. We have termed this ‘local’ hysteresis since we
are able to recognise the orbits involved over the small
parameter window. This particular example of hysteresis
is extinguished when the spreading fan of periodic points
hits the origin at values of 8 below about 270.

In figures 6 and 7, we have decreased 3 to 25, to ex-
pose ‘global” hysteresis with increasing/decreasing exter-
nal input. The breakup of the symmetry of the response
is also clear. With the introduction of PIR, it is possible
to obtain nontrivial responses in the presence of exter-
nal inhibition (I < 0). The simple periodic structure
observed for such input is typical of the dynamics due
to PIR. If we examine the mean activity, rather than
the average voltage, then the sigmoidal form of M maps
these negative valued orbits to (effectively) zero. These
low order periodic orbits due to wy # 0 are also those

-0.8
027 028 029 03 031 032 033 034 035
|

FIG. 4. Local hysteresis: Average voltage increasing.
we = 1.0, wp = 0.28, § = 0.6, v = 0.8, 8 = 300.
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FIG. 5. Local hysteresis: Average voltage decreasing.
we = 1.0, wp = 0.28, § = 0.6, v = 0.8, 8 = 300.

034 035

which break up the symmetric structure for I > 0. If one
looks at the graphs of F2 and F*, it becomes clear why
the period 2 and period 4 are so robustly stable to vari-
ations in I. The ‘quartic’ nature of the graphs of those
higher iterates means that the fixed points are both sta-
ble and lie within the invariant interval. Moreover, the
shallow slope at the fixed points requires large perturba-
tions to the map for destabilisation. In comparison, the
‘quadratic’ form with w, = 0 has unstable fixed points
within the invariant interval. Finally, note that depend-
ing on whether [ is increasing or decreasing, either 1 or
2 bands of chaos are suppressed, respectively.

We have established that PIR currents can lead to low
order periodic orbits and hence the suppression of chaos
for a range of external input. Comparing figures 6 and
8, we can see how low order orbits in X lead to corre-
sponding low order orbits in the mean activity M. The
existence of such orbits for M implies that the system as a
whole is in a macroscopically ordered state since M,,, ~ 0,
1. That is, in the regime where PIR currents suppress
chaos, the network can be bistable (or even tristable),
with the mean output activity oscillating, say, between
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FIG. 6. Global hysteresis in average voltage: I increasing.
we =1.0, wy, = 0.5, 6§ = 0.5, vy = 0.7, B = 25.
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FIG. 7. Global hysteresis in average voltage: I decreasing.
we = 1.0, wp = 0.5, § = 0.5, v = 0.7, B = 25.

the ordered state with nearly all neurons off and the op-
posite ordered states of nearly all neurons on together.
In contrast, when the dynamics is chaotic, both ordered
and disordered macroscopic states coexist and there is
no coherent oscillatory behaviour. =~ We close this sec-
tion by looking at bifurcation diagrams in temperature
T. The variation of T is interesting because many neu-
ronal CPGs alter their rhythmic behaviour via intrin-
sic, as opposed to extrinsic, neuromodulation. In our
model, the global external input I is a source of extrin-
sic input, whilst modulation of the thresholds for firing
and rebounding is intrinsic. In figures 9 and 10, we see
that hysteresis remains possible. It is particularly strik-
ing since in the direction of increasing 7', only low order
periodic responses are possible, whereas a wide band of
chaos is possible for the opposite variation.

0.8 3
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04

0.2

0 0.2 04 0.6 0.8 1

|
FIG. 8. Demonstration that PIR currents can lead to or-
dered macroscopic states (I increasing). w, = 1.0, wp = 0.5,

§=05,v=0.7,8=25.
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FIG. 9. Global hysteresis in mean activity: Temperature
increasing. wg, = 1.0, wp = 0.4, = 0.5, y =0.75, I = 0.2.

IV. REDUCTION TO A PIECEWISE LINEAR
DISCONTINUOUS CIRCLE MAP

It is instructive to consider the case of a single neuron
with rebound currents in the absence of noise. This may
be achieved by taking the limit 8 — oo with N = 1 in
equation (21). Alternatively, for a single neuron, consider
equation (12) and define x,, := V(m)—h. Now introduce
the five parameters w, = —wy; > 0, wy = wy > 0,
0=h—k, A=IT—-h(1—-7),0 <~y < 1. The dynamics
of a single PIR neuron is then governed by the map (see
figure 11)

YTm + A= Wwe, Ty >0
’)/.ZUm—}—A, _6Z$m<0
VL + A4+ wp, Ty < —0

ITm41 = f(mm) =

(34)

This is a particular case of the maps studied in [17],
where (34) is considered as a lift of a degree one cir-
cle map, and hence we provide only a summary of results
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FIG. 10. Global hysteresis in mean activity: Temperature
decreasing. w, = 1.0, wp, = 0.4, § = 0.5, v =0.75, I = 0.2.

in this section. We suppose w, > A > 0 and hence
C = A —w, <0 (since otherwise trivial fixed point dy-
namics result). Bounded dynamics are confined to an
invariant interval . For definiteness, we scale w, = 1.
Moreover, as the map is piecewise linear, the Liapunov
exponent (33) can be readily evaluated to be constant
and equal to log~y < 0, and chaos is not possible.

Before we can discuss the dynamics described by equa-
tion (34), we must first know when an appropriate invari-
ant interval exists, and what are suitable ranges for the
variation of the bifurcation parameter A. The map has a
stable fixed point at Z = (1 — A)/(y — 1) and nontrivial
dynamics only occur while this point remains outside the
invariant interval X as A varies. Moreover, when C > —§
(that is, A > 1 — §), then F reduces to a bilinear map
on the invariant interval. We introduce E and D as the
heights of F on either side of the discontinuity at —§
(see figure 11). It is straightforward to show that ¥ is
either [C, A] or [C, E]. Note that if D < C' (yd > 1) then
the discontinuity at —§ is not included in the invariant
interval and hence the map is bilinear for all relevant
variation of A. Biologically, this means that PIR does
not affect the neuron and so this case is of little interest.
We distinguish two cases.

CaseI.If A > F and C < D, then X is [C, 4] =
[A—-1,A] and ws < vd < 1. Hence, nontrivial
dynamics occur for A < min(1,1/7). On the left
of a bifurcation diagram in A, the dynamics on the
invariant interval behaves according to the full tri-
linear map. Once A increases beyond 1 — §, the
dynamics on the invariant interval is bilinear.

Case II. Suppose E > A and C < D, so that
min(l,ws) > vd. For small A, ¥ is [C, E] but as
A increases, there are two possibilities. If E hits
Z when A = Apg, say, and Ag < 1— 4, then the
dynamics collapse when A = Ap and there are
no nontrivial bilinear dynamics. Alternatively, if
Ag >1-4, then at A =1 — ¢, the map becomes

Y
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FIG. 11. Graph of the piecewise linear map F. Dashed
rectangle indicates region of convergence.

bilinear and the invariant interval jumps discontin-
uously to [C, A].

The piecewise linear nature of the map also allows sim-
ple periodic orbits to be explicitly described. A (p, ¢, r)-
orbit on [C, A] is a periodic orbit of period p+¢g+r which
visits the three parts of the domain [C, —4¢), [-4,0) and
[0, A), p, ¢ and r times respectively, and is stable if it ex-
ists. For example, it is straightforward to calculate that
the leftmost points of primary orbits of the form (0,1, n)
and (1,0,n) are given by

(22:1 ") A~ (Zz_:11 ’Ym)

(1) —
z - ’
1— ,yn+1
(S A= (Tazhym) +97
(2) m=1 Y - m=1 Y Y Wh
X = 1— 'y”+1 y (35)

respectively. Many detailed features of the bifurcation
diagrams can be understood in terms of periodic orbits
like these, and more importantly when they cease to ex-
ist: for example, when a point on the orbit coincides
with one of the two discontinuities as we vary A. Such
interactions with the discontinuities determine bifurca-
tion dynamics. In addition, after colliding with a dis-
continuity (0 or —4§), a primary periodic orbit typically
undergoes a ‘Farey tree’-type bifurcation [25] which thus
generates period k solutions, where k is limited math-
ematically by the resolution of the bifurcation diagram,
and biologically by minimum feasible currents (for exam-
ple, see figure 12). This sort of feature can also be found
in earlier neuron map models [26]. The novelty with two
discontinuities is that the discontinuity at —J can also
trigger such behaviour as A varies, and the two disconti-
nuities compete with each other to create new features,
for instance, hysteresis.
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FIG. 12. Bifurcation diagram for the piecewise linear map.

we = 1.0, wp, = 0.5, § = 0.5, v =0.8.

In figure 12, we show an example of Case II dynamics.
With § = 0.5, the lefthand region is dominated by tri-
linear dynamics: note how the quasiperiodic regime loses
the symmetry of the bilinear map. Note too that the
invariant interval is [4,E] = [A — 1, A + 0.1] until the
transition at A =1—46 = 0.5 to [A — 1, A]. In figure 13,
we show the average firing (upper) and rebounding rates
(lower) for this parameter set, defined in general by

1 M

pa= lim —2 > O(V(m)—h) (36)
) li

pp=Jlim -3 Ok V(m)) (37)
m=1

respectively. The two rates coincide until A = 0.2 be-
fore the rebound rate necessarily decreases to zero as the
map becomes bilinear when A = 0.5. The effect of PIR
is clear: jumps and lack of monotonicity in the devil’s
staircase. The jumps are associated with a periodic orbit
hitting the discontinuity at —d as A is varied. Typically,
the same period orbit of the trilinear map cannot be sus-
tained by the bilinear map. And if the period changes,
then so will the firing rate. This jump in period at —¢
can also give rise to hysteresis.

The piecewise linear nature of the map allows explicit
analysis of the hysteresis and it cannot occur when ¢ =
wp = 0. The period two (1,0,1)-orbit in figure 14 (Case
I) hits —0 when

—6(1=17%) +1 =y,

A=A, = , 38
: LY (39)
and the period three (0,2,1) orbit when
—5(1—~8 1
A=Ay = & (39)
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FIG. 13. Average firing and rebounding rates for the piece-
wise linear map. w, = 1.0, wpy = 0.5, § = 0.5, v = 0.8.

For the period 3 orbit to be feasible, we require D < 0,
(A < 76) so that two successive iterates in (—§,0) are
possible. Now when § = wy = 0, we always have Ay < A3
and no hysteresis is possible: the usual ‘Farey tree’ bifur-
cation will occur. However, once PIR is included, there
is a window of 7 values where hysteresis can occur, nom-
inally bounded by values such that A, = A3. However,
such windows are further restricted by the loci A = 74
(as mentioned above) and A = v/(y%? ++ + 1) (the value
when the middle point of the period 3 orbit hits the ori-
gin). In addition, for A increasing, the period 3 orbit
can be extinguished when the A value at which the pe-
riod 2 orbit hits —4 overtakes that for the collision of the
midpoint of the period 3 orbit with the discontinuity at
zero. Repeating such an analysis for other pairs of pe-
riodic orbits is time-consuming and we do not pursue it
further here. Thus we have established that locally the
response of the PIR neuron to its global input can de-
pend on whether this activity is increasing or subsiding.
This hysteresis cannot occur in the absence of PIR. As we
saw in the preceding section, in the presence of thresh-
old noise, this ‘local’ hysteresis persists and, in addition,
more extensive hysteresis is possible.

V. QUANTAL SYNAPTIC NOISE

So far we have only considered the effect of thresh-
old noise acting at the axon hillock. Another important
source of noise arises from random fluctuations in the
number of packets of chemical neurotransmitter released
into the synaptic cleft upon arrival of an action potential.
To illustrate how to model such a stochastic process, we
consider a single neuron in which the synaptic connection
is treated as a random variable. The stochastic dynamics
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FIG. 14. Multiple solutions yield hysteresis in the piecewise
linear map: w, = 1.0, wp = 0.28, § = 0.6, v = 0.8. Value of
—4¢ also plotted.
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for a single neuron becomes:

V(m +1) = yV(m) — wa(m)B[V (m) — h(m)]

+wpO[k(m) —V(m)|+ 1.  (40)
The self-inhibitory synaptic weight w, is decomposed as
wq(m) = weu(m), where u(m) is the random number
of vesicles released at time m. The weight w, measures
the efficiency with which neurotransmitters bind to re-
ceptors. For a given membrane state, firing is once again
signalled by the threshold event

(41)

A biologically realistic description of stochasticity at the
synaptic cleft should capture both the stimulated and
spontaneous process of vesicle emission. Both processes
are typically modelled with the use of a binomial distribu-
tion of size L, where L is the maximum number of vesicles
released (typically L ~ 1 —10). For simplicity, we ignore
the spontaneous release of neurotransmitter in the ab-
sence of an incoming signal and consider the one-vesicle
limit L = 1. The random variable u(m) is equal to 1 if
a vesicle is released at the discrete time m. If a(m) = 0,
then u(m) = 0, whereas if a(m) = 1, then u(m) is gen-
erated with probability A. In this case the conditional
probability that u(m) = v is P(u | a) = aA. The random
thresholds h(m) and x(m) are generated as before such
that the probabilities for firing and rebounding maintain
the forms given in (15). Since the rebound current does
not involve synaptic processing, wy does not depend upon
m. The dynamics (40) comprises four maps Fy, Fi, F, F3
with associated probabilities ®g, @1, ®5, 3, where

Fo(V) =9V —wa +1,20(V) =9 (V)AL = 9" (V)) (42)

0 010203040506070809 1
I

FIG. 15. Dynamics of the random IFS . Zero thresh-
old noise (8 — oo) and stochastic synaptic noise (A = 0.5).
we = 1.0, wy = 0.5, h = 0.0, kK = —0.5, v = 0.8.

FL(V) =9V —wa + I 4wy, ®1(V) = (V)MP(V)  (43)
F(V) =V + T +wy, ®2(V) =" (V)1 — Ap*(V)) (44)
F3(V) =V + L,&3(V) = (1 —4"(V))(1 — Mp*(V)) (45)

In the limit of zero synaptic (A = 1) and zero threshold
noise (8 — 00), the probabilities for firing and rebound-
ing approximate the step functions ©(V —h) and ©(k—h)
respectively. In this circumstance the IFS & reproduces
the dynamics of the piecewise linear map (11) exactly,
since for a given state V', one of the ®, will be equal to
one. The map Fj is never possible since ®; = 0 for all
V (rebounding and firing are mutually exclusive in the
zero noise limit). The maps F», F3 and Fy coincide with
the left, middle and righthand portions of the trilinear
piecewise linear map (34), respectively.

The set {(Fu,®a) | @ € {0...3}} determines a ran-
dom iterated function system (IFS), &, on the membrane
potential space, endowed with, say, the Euclidean met-
ric [20]. That is, § consists of a finite indexed set of con-
tinuous mappings on some metric space together with a
corresponding set of probabilities for selecting one such
map per iteration. Namely,

V(m) = Fom-n[V(m —1)], (46)
where F,(,—1) = F, with probability ®,[V(m — 1)].
Hence a particular trajectory of the dynamics is specified
by a particular sequence of events {a(m);m = 0,1... |
a(m) € {0...3}} together with an initial point V(0).
The contraction ratio A, of F, is defined by

'

|Fa(V)_Fa(V)|
V=V

Ao = sup (47)

V#£V'

and satisfies A < 1 for all a since v < 1. Therefore the
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FIG. 16. The invariant measure of the random IFS $, is
shown for A =1, v = 0.99 and no rebound currents.

IFS is hyperbolic and the contraction mapping theorem
yields the unique fixed point V¢ of F}, such that

lim (F,)™(V) =V

m—r0o0

(48)

for all V. The fixed points of & determine an inter-
val @ = [(I —w,)/(1 =), +wp)/(1 —7)] such that
Fy,Fy,F5,F3: Q — Q. As an example of the IFS S, we
present a typical set of orbits in figure 15, with non-zero
rebound currents and pure synaptic noise (zero threshold
noise). Figure 15 shows that different parts of the inter-
val Q are visited with differing frequency.This suggests
that associated with the random IFS, S, there is a den-
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FIG. 17. The invariant measure of the random IFS G, is
shown for A =1, v = 0.618 and no rebound currents.
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FIG. 18. The invariant measure of the random IFS &, in
the presence of rebound currents. A =1, v = 0.99, w, = 0.05

sity on the attractor of §. This density may be formally
discussed with the help of measure theory [20].

For example, in the case of state-independent transi-
tion probabilities, a frequency histogram of how often an
orbit visits a particular subinterval of ) reveals the in-
variant measure, pg, of an IFS &. The support of ug is
called the attractor, Ag, of the IFS. Both the attractor
Ag and the invariant measure pg typically have a rich
fractal structure. To illustrate these ideas using numeri-
cal simulations, we rescale the map onto the unit interval
[0,1], by setting w, = I and I = 1—+ —wp. In the high
temperature limit (8 — 0), ¥*(V) = ¢*(V) = 1/2 and
the IFS & reduces to & given by

Fo(V) =9V, ®o(V) = A/4, (49)
F(V)=+4V +uwy, @1(V)=A/4, (50)
EV)=4V+1—v, 3(V)=1/2-1/4, (51)
FV)=4V+1l—y—uyp, @35(V)=1/2—X/4. (52)

In this instance, the IFS & has state-independent transi-
tion probabilities, for which it is known that there exists
a unique invariant measure [20]. We approximate this
measure numerically by calculating how often an orbit
{V(m)} visits a particular subinterval of [0,1]. From
figures 16 and 17, it can be seen that as v — 1 the mea-
sure becomes progressively smoother, in the absence of
rebound. However, as illustrated by figure 18, the in-
clusion of a rebound current can lead to a broadening
of the frequency histogram, yielding a more even sam-
pling of the unit interval. (Similar behaviour results with
the inclusion of threshold and synaptic noise, with the
histograms showing some bias and losing the symmetry
around V = 1/2). In the presence of a finite temperature
(nonzero () the IFS < has state-dependent probabilities.
The limiting behaviour of the system is still characterised
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FIG. 19. Response characteristic for a neuron with pure
synaptic noise A = 0.5, 8 — oo. Upper line is the firing
rate, lower line is the rebounding rate (other parameters as
in figure 15)

by a unique invariant measure, also exhibiting a fractal
structure similar to that seen above [19]. One extra non-
ergodic feature of the analysis, in contrast to an analysis
with state-independent probabilities, is the emergence of
absorbing states.

We have seen in section IV that in the absence of noise
our model neuron has a periodic response to external
stimuli. Moreover, the average firing rate is independent
of initial conditions and forms a devil’s staircase struc-
ture as a function of the external input. With the intro-
duction of synaptic noise (A < 1,3 — 00), the dynamics
is no longer periodic. However, as seen in figure 19 the
step-like nature of the neuron’s response characteristics,
defined by equations (36) and (37), tend to be preserved,
even for high values of synaptic noise. However, the case
of pure threshold noise (A = 1, 8 O(1)) differs somewhat.
The response characteristic is then smooth as shown in
figure 20.

VI. DISCUSSION

In this paper, we have introduced an analytically
tractable and computationally simple model of pulse cou-
pled neurons, with hyperpolarisation activated currents,
existing in some interconnected population. The basic
single neuron equation from which the population is built
is based upon the time-summating single neuron model of
Bressloff and Taylor [16]. In common with many discrete-
time binary neuron models, firing is modelled as a thresh-
old event. We have extended this caricature of a real
neuron by modelling the injection of a rebound current
as another threshold event. Such a model is relevant to
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FIG. 20. Response characteristic for a neuron with pure
threshold noise 8§ = 1.0, A = 1. Increasing line is the firing
rate, decreasing line is the rebounding rate (other parameters
as in figure 15)

the study of neural circuits or CPGs that are known to
rely upon post inhibitory rebound for the generation of
rhythmic behaviour.

In fact, in the absence of noise, the population dynam-
ics may be formulated in terms of a set of coupled circle
maps. Exploring coherent oscillatory behaviour in such
a system is of special interest when one recalls that such
systems of maps have previously been used to simulate
the evolution of temporal correlations and decorrelations
in groups of spiking neurons [27].

Of course, one may resort to more detailed studies
with, say,the use of coupled Hodgkin-Huxley equations,
realistic post-synaptic responses and detailed equations
describing the kinetics of hyperpolarisation activated in-
ward ionic currents. The limitations of such an approach
include the formidable number of free parameters that
need to be used in a population study, together with the
loss of analytical tractability. A reduction to a simpler
set of coupled equations, preserving essential features of
the real biological neuron, is clearly desirable. The in-
troduction of a rebound current to the extended time-
summation neuron model has provided such a reduction
from which a mean field theory for large populations is
easily constructed. The effects of noise at the axon hillock
are incorporated with the introduction of a set of random
thresholds and appropriate averaging.

Several predictions from a mean field theory of a pop-
ulation of globally inhibitory neurons with rebound cur-
rents and threshold noise have arisen. Bifurcation dia-
grams for the average cell membrane potential and num-
ber of active members of the population both highlight
the possibility of hysteretic transitions between orbit
branches. Therefore, the attractors of the population dy-



namics can depend upon whether the bifurcation parame-
ters representing external input and the level of threshold
noise are increasing or decreasing. Additionally, with the
introduction of rebound currents, the asymptotic dynam-
ical state of the system often switches from occupying a
chaotic attractor to a low order periodic orbit. In fact,
not only do rebound currents suppress chaotic neuronal
response in the above system, but macroscopically or-
dered states are preferred. The system is seen to exist
with almost all neurons firing or quiescent, thus defining
coherent, oscillatory states.

The more biologically important source of noise arising
from the random fluctuations in the number of quanta
of chemical transmitter released into the synaptic cleft
has also been considered. For our single neuron model,
we have formulated the stochastic dynamics in terms
of a random IFS on the space of membrane potentials.
The limiting behaviour of the neuron has been discussed
with the aid of numerical simulations. In particular we
have made comparisons with the same system in the ab-
sence of any noise. In this case, the single neuron has
circle map dynamics with periodic orbits and an aver-
age firing rate that is independent of initial conditions.
Moreover, as a function of external input, this firing rate
forms a devil’s staircase. In the presence of noise, the re-
sponse characteristic no longer assumes this self-similar
pattern. With pure threshold noise, the response char-
acteristics can be completely smoothed, whereas the fir-
ing/rebounding rates for pure synaptic noise continue to
reflect quite strongly those in the noise free case.
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