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A Piecewise Linear Suspension Bridge Model:Nonlinear Dynamics and Orbit Continuation.S. H. Doole and S. J. HoganAbstractThe e�ect of harmonic excitation on suspension bridges is examined as a �rst step towards theunderstanding of wind, and possibly certain kinds of earthquake, excitation upon such struc-tures. The Lazer-McKenna suspension bridge model is studied completely for the �rst timeby using a methodology which has been successfully applied to models of rocking blocks andother free{standing rigid structures. An unexpectedly rich dynamical structure is revealedin this way. Conditions for the existence of asymptotic periodic responses are established,via a complicated nonlinear transcendental equation. A two part Poincar�e map is derivedto study the orbital stability of such solutions. Numerical results are presented which il-lustrate the application of the analytical procedure to �nd and classify stable and unstablesolutions; as well as determine bifurcation points accurately. The richness of the possibledynamics is then illustrated by a menagerie of solutions which exhibit fold and 
ip bifurca-tions, period doubling, period adding and sub/super-harmonic coexistence of solutions. Thesolutions are shown both in the phaseplane, and as Poincare map �xed points under pa-rameter continuation using the package AUTO. Such results illustrate the possibility of thecoexistence of `dangerous' large amplitude responses at the same point of parameter spaceas `safe' solutions. The feasibility of experimental veri�cation of the results is discussed.KEYWORDS: suspension bridges, Lazer-McKenna model, nonlinear dynamics, Poincar�e maps,subharmonic orbits, AUTO continuation, piecewise linear ODEs.1 IntroductionIn this paper, we consider the e�ect of harmonic excitation on suspension bridges as a �rst stagetowards the understanding of the action of wind (and perhaps certain kinds of earthquake)upon such structures. In particular, our interest lies in the role of the one sided sti�ness ofthe hangers (between roadbed and cable) in the resultant transverse and torsional motions.One source of motivation was the work of Lazer & McKenna and others (Lazer & McKenna1987, Glover, Lazer & McKenna 1989, Lazer & McKenna 1990, Lazer & McKenna 1991, Choi,Jen & McKenna 1991, Jacover & McKenna 1994) on the modelling of suspension bridges. Theyconsider the bridge deck to be a one{dimensional vibrating beam of length L connected to themain suspension cable by stays and hinged at each end. The stays are treated as one{sidedsprings. That is, they are assumed to provide a linear restoring force if stretched but to o�erno resistance to compression. If de
ection of the main cable is neglected, the following (scaled)equation for the downward de
ection u(x; t) of the bridge deck is obtainedutt + uxxxx = �put � ku+ +W (x) + F (x; t); (1:1)1



with the hinged boundary conditionsu(0; t) = u(L; t) = uxx(0; t) = uxx(L; t) = 0: (1:2)(We will describe our preferred scaling in x 2.) The righthand side of (1.1) includes the (small)wind resistance term put, k as the spring constant (u+ := maxfu; 0g), W (x) as the weightper unit length and F (x; t) as the forcing term. Lazer & McKenna (Lazer & McKenna 1990)introduce the one-sided spring as a nonlinear mechanism which may account for such windrelated disasters as the collapse of the bridge at Tacoma Narrows in 1940 (Bleich, McCullough,Rosecrans & Vincent 1950, Farquharson 1950). We shall show (amongst other things) that largeamplitude subharmonic responses can occur for small amplitude excitations across open intervalsof parameter values. This `broad band' mechanism for bridge collapse seems more plausiblethan one based on resonance. This latter explanation has no longer any currency within theengineering community either (Billah & Scanlan 1991), but opinion remains strongly dividedas to the details of any replacement (Peterson 1990, Petroski 1991, McKenna 1992). Scanlanand co-workers (Billah & Scanlan 1991) prefer to note which mode appears to lose stability tothe torsional motion and then pose a two degree of freedom oscillator, whose coe�cients arematched with certain experimental or �eld measurements. It may be, that in future studies,such an oscillator will be derivable via centre manifold/amplitude equation techniques as theappropriate low dimensional model. In the meantime, there exists no explicit mechanism for thetransitions between essentially one and two dimensional motions, or the reductions of the fulldynamics to the postulated oscillator.We use a similar model to (Lazer & McKenna 1990) but provide the �rst complete analysisof this work by applying the machinery developed by Hogan (Hogan 1989, Hogan 1990, Hogan1992a, Hogan 1992b, Hogan 1994) to the analysis of piecewise linear ODEs arising from (1.1-1.2) via separation of the variables. This approach reveals, for the �rst time, a rich dynamicalstructure which will prove valuable in further studies. Such a model is a plausible �rst step onthe road to understanding systematically the large scale oscillations of a bridge like the TacomaNarrows and the loss of stability to a torsional mode. Clearly the one-sided spring e�ect is highlyimportant in bridges undergoing torsion and this two-dimensionality will be incorporated infuture work. However, until the simplest asymmetric model is better understood, it seems over-ambitious to study a `more physical' case. Moreover, the solutions obtained and understood inthe one dimensional model will be used as a basis for accurate continuation in a model includingtorsion, in order to the yield explicit paths in parameter space between torsional and verticalmotions, which are the ultimate aim of this work.Conditions for the existence of asymptotic periodic responses to the piecewise linear ODE modelare established in x 3 and 4. The �rst set is for simple preloaded orbits; and the second, for fullphase-space orbits, involves the derivation of a complicated nonlinear transcendental equation.A two part Poincar�e map is derived to study the orbital stability of the latter class of solutions.Numerical results are presented which illustrate the application of the analytical procedure to�nd and classify stable and unstable solutions, as well as determine bifurcation points accurately.The richness of the possible dynamics is shown by a menagerie of solutions which show fold2



and 
ip bifurcations, period doubling, period adding and sub/super-harmonic coexistence ofsolutions. This is done by a combination of direct simulation of the ODEs and parametercontinuation of �xed points of an appropriate Poincar�e map. The possibility of experimentalveri�cation of these results is also discussed.2 The Piecewise Linear ODE and its ScalingAs has been described, the bridge is modelled by a beam with hinged end boundary conditions.The full, dimensional �eld equation is (Timoshenko 1928, Thomson 1993)Mutt +EIuxxxx + �0ut = �k0u+ +W (x) + F (x; t); (2:1)where u > 0 is downwards de
ection,M is the mass per unit length, EI the 
exural rigidity (thatis, the product of the beam's Young's modulus and the second moment of the cross-sectionalarea), �0 is viscous/wind damping, k0 is the Young's modulus of the stay, W is the weightdistribution and F is the external forcing. The boundary conditions are given by equation (1.2).Equation (2.1) is �rst simpli�ed by the `no-node' approximation. That is,F (x; t) = B0 sin!0t sin �xL ; W (x) = W 0 sin L� : (2:2)Certainly, it is reasonable for a �rst approach to the problem to consider just this basic mode.Moreover, Scanlan (Billah & Scanlan 1991) describes how for the Tacoma Narrows Bridge disas-ter, it was this mode that apparently �rst lost stability to torsional oscillations. See also (Gloveret al. 1989, Lazer & McKenna 1990). Next we separate variables as followsu(x; t) = y(t) sin �xL ; (2:3)where y > 0 is de
ection downwards. The natural scalings of time and lengtht̂ = �EIM �1=2 t; x̂ = ��L�x: (2:4)are then introduced. These di�er from those chosen in (Lazer & McKenna 1990) since wehave scaled L out of the problem in order to isolate those dynamics associated with the hangersti�ness asymmetry. It also removes the singular behaviour which would occur if L was increasedappreciably beyond �. The use of scaling (2.4) allows the geometric comparison of numericallycomputed orbits and the direct physical interpretation of numerical results in terms of the typeof suspension bridge being modelled. For this reason, we use these `physical' parameters in x 6.Dropping hats, we obtain the transformed equationsy00 + 2�y0 + (k + 1)y = W +B sin !t; y > 0; (2.5)y00 + 2�y0 + y = W +B sin !t; y < 0;3



where the prime denotes di�erentiation with respect to t, and the nondimensional constants arede�ned by � = �02pEIM ; k = k0EI ; ! = !0�MEI�1=2 ; W = W 0EI ; B = B0EI : (2:6)Equations (2.5) are, of course, similar to those that have been studied in the impact oscillatorliterature by, for example, Shaw (Shaw & Holmes 1983, Shaw 1985a, Shaw 1985b), Thomp-son (Thompson, Bokian & Gha�ari 1983), Whiston (Whiston 1987a, Whiston 1987b, Whis-ton 1992) Hogan (Hogan 1989), Budd (Budd, Dux & Cli�e 1993, Budd & Dux 1994) Nord-mark (Nordmark 1991, Stensson & Nordmark 1994) and many others. (See also the special issueof Phil. Trans. Roy. Soc, edited by (Bishop 1994), for a wide range of the current theoreticaland experimental work in the area.) The basic techniques developed for the treatment of thosepiecewise linear ordinary di�erential equations are applied here. However, the nonzero preloadW cannot be removed by simple translation, for example, and we stress that equations (2.5)do not reduce to any previously publishes case. Consequently, we include some details of theanalysis. To organise e�ciently the solutions obtainable by direct computation, and to make anynumerical search more e�ective, we begin by studying simple (asymptotic) periodic responsesanalytically. Then we consider the stability of these solutions. In this way, other asymptotictrajectories can be classi�ed and realized as the result of bifurcations from the simple periodicorbits. Note, too, that because of the physical scenario we are modelling, it is periodic orbitsrather than chaotic ones that are of interest.For simplicity in the subsequent analysis, we introduce the parameters F = B=W and m =k + 1 > 1 and scale Wŷ = y. We proceed to solve �rst for ŷ > 0. We de�ne ẑ(t) = ŷ0(t) anddenote the solutions in this half of phase space by the + subscript. Initial conditions at a timeto are also imposed, namely ŷ+(to) = yo; ẑ+(to) = zo: (2:7)The explicit solutions to governing equations are then given byŷ+(t) = 1m + 
 sin!t + � cos!t+ e�(to�t) �(yo � 1m � 
so � �co) cospm� �2(t� to)+ (�yo + zo � �m + �so � �co)(m� �2)�1=2 sinpm� �2(t� to)� ; (2.8)ẑ+(t) = 
! cos!t� �! sin!t + e�(to�t) �(zo � 
!co + �!so) cospm� �2(t� to)+ (1� �zo �myo + �so + !�co)(m� �2)�1=2 sinpm� �2(t� to)� :where co = cos!to, so = sin !to, and the other parameters are de�ned by
 = F (m� !2)(m� !2)2 + (2!�)2 ; � = � 2!�F(m� !2)2 + (2!�)2 ; (2.9)� = F!(m� 2�2 � !2)(m� !2)2 + (2!�)2 ; � = � F�(m+ !2)(m� !2)2 + (2!�)2 ;� = F (m2 � !2m+ 2(!�)2)(m� !2)2 + (2!�)2 :4



The solutions for ŷ < 0, denoted ŷ�, ẑ� respectively, can be obtained from (2.8) by settingm = 1 in all expressions and replacing instances of to by t1, zo by z1, co by c1 and so by s1.In the sequel, we will discuss a range of solutions and their bifurcations, and it is appropriateto introduce a classi�cation scheme for these orbits. Following (Hogan 1989), we call a periodicasymptotic response an (`; n)-solution if the trajectory passes the positive z{axis ` times beforethe motion repeats, and that during that motion, n periods of forcing occur. This notation isclosely related to the two types of Poincar�e map that we will use. There is the stroboscopic map Sde�ned in the phaseplane for a �xed phase which acts on the position and velocity. Alternatively,there is the `impact' map P , which maps the phase and velocity upon intersection with fy = 0;z > 0g. That is, one records the phase and velocity as the beam passes through the rest statedownwards. Both have their advantages. The stroboscopic map is easy to de�ne globally and isa well understood tool in nonlinear oscillator problems. There are technical di�culties in makingthe impact map well-de�ned, but it is better for understanding bifurcations such as grazes whichdo not occur in smooth dynamical systems. Such issues are discussed in much greater detailin (Whiston 1987a, Whiston 1992, Foale & Bishop 1992, Nordmark 1991, Nordmark 1992, Budd1993). Thus an (`; n)-orbit is a �xed point of P ` and Sn.3 Existence of Preloaded OrbitsThe �rst type of asymptotic response we analyse consists of those orbits which lie in only onehalf of the phaseplane. (Simple phase plane arguments show that no closed orbit can lie entirelyabove or below the y = 0 axis.) We begin with (ŷ+, ẑ+) solutions since the other possibility canbe excluded. From (2.8), the asymptotic form of the (0; 1){solution isŷ+ � 1m + 
 sin !t+ � cos!t; ẑ+ � 
! cos!t� �! sin !t; (3:1)with (possible) initial data given by (to; yo; zo) = (0; 1=m+ �; 
!). Thus the locus of points inphase space is in terms of the physical parameters (2.6)�y+ � Wm�2 + �z+! �2 = B2(m� !2)2 + (2!�)2 � R2: (3:2)This describes an ellipse centred on (W=m, 0) with horizontal displacement R and verticaldisplacement !R. Thus a preloaded (and physically benign) orbit may exist provided that thephysical parameters satisfy B < Wmq(m� !2)2 + (2!�)2 � Bc: (3:3)We phrase the existence criterion in this way since in the numerical results section (x 6), weconcentrate on B and ! variation as these are the easiest to investigate experimentally. Toillustrate (3.3) we set W = 1, k = 10 and � = 0:01, and plot Figure 1. Variation of W showsthat this is a typical cross section. If B is �xed then there are three regimes. If B is very small5
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Critical LocusFigure 1: Existence windows for preloaded orbits (�, W , k �xed; locus of Bc is shown).(less than the minimum 2�Wm�1=2 occuring at linear resonance), then the preloaded orbitsexists for all !. If B > W , then the preloaded orbits only exists for su�ciently large ! (thethreshold is asymptotically B � W!2=m). This is the case where the righthand side of (2.5)becomes two{signed. In between, there are two existence windows for preloaded orbits, and itis in this regime that one of the main continuations in x 6 takes place. Conversely, if ! is �xed,there is always a lower existence window in B. Note that taking m = 1 in equation (3.2) showsthat no asymptotic response can lie entirely the lefthand side of the phase plane.Before considering more complicated periodic responses, we note that the stability of the preloadedorbits can be analysed by using the stroboscopic map S, where S : (yo; zo)! (y+; z+) � (f(yo;zo); g(yo; zo)). Evaluating at t = to + 2�! , we obtain the eigenvalues as �� = e�2��=!(c! � s!)where c! and s! are the evaluated circular functions. While it exists, the preloaded orbit will belocally stable as a �xed point of the strobe map and hence as a periodic orbit of the di�erentialequation. We plot typical preloaded orbits and study their interaction and coexistence withother kinds of orbits in x 6.4 Existence of (1; n)-Periodic OrbitsWe now describe a largely analytical procedure for constructing (1; n) asymptotic periodic re-sponses. In the next section, we show how the same calculation can be used to determine theirstability and bifurcation points. We consider that the response has settled down to a steadymotion. Suppose that at a time to, the trajectory passes through the P -Poincar�e plane at veloc-ity zo (and thus yo = 0). Let t1, z1 denote the phase and velocity when it passes through y = 0but with z < 0, and let t2, z2 denote the phase and velocity when it returns to the P -plane andthe periodic motion is completed. We refer to Figure 2. The following conditions will then hold6
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Figure 2: Notation for a (1; n){asymptotic periodic response.t2 = to + 2n�! ; (4.1)ŷ+(t1) = 0; (4.2)ẑ+(t1) = ẑ�(t1); (4.3)ŷ�(t2) = 0; (4.4)ẑ�(t2) = ẑ+(to): (4.5)Thus we have 5 equations in 5 unknowns and, as might be hoped, we can indeed solve for themall. Following (Hogan 1989), this is done by �rst solving for the time di�erence �t = t1 � to.Since the relationships (4.1-4.5) de�ne the quantities implicitly, they have to be manipulateduntil (eventually) one obtains a nonlinear, transcendental equation for �t. This is then solvednumerically. All other orbit parameters can then be found via substitutions. Note that t2 can bereplaced wherever it appears right from the outset via use of (4.1). Although the calculations arelengthy, the results do provide an independent check on any numerical solutions. Moreover, themore complicated solutions often have very small basins of attractions, especially near bifurca-tions. It is extremely unlikely that suitable initial data for the numerical solver would be foundby chance. Our approach makes such orbits accessible and allows for some basic continuationof solutions. Note that the output from this procedure has to be scaled appropriately beforecomparison is made with numerical solutions of (2.5), because of the use of the extra scaling tosimplify algebra.We sketch the solution procedure and state the results, but omit all details for the sake ofbrevity. Equation (4.2) is rearranged to yield of the formzo = F (ci; si;�t) (4:6)where i = 1; 2 and F is also a function of the parameters (2.6). Similarly, using the fact that7



t2 � t1 = 2n�=! ��t, we obtain an equationz1 = G(ci; si;�t) (4:7)from (4.4). Next, with the help of (4.3,4.5), we obtain other expressions for zo and z1 so thatthey may be eliminated to obtain equations solely in the ci and si. This yields a linear systemwhich we write as Aco + Bso = Cc1 +Ds1 + �; (4.8)Eco + Fso = Gc1 +Hs1 + �: (4.9)The coe�cients are functions of the system parameters and �t and are given in the Appendix.The dependence on t1 is removed by writing t1 = �t+ to and expanding the circular functions.We then solve for co and so and use the fact that c2o + s2o = 1 to �nally obtain the nonlinearequation for �t, (D0� � B0�)2 + (A0�� C 0�)2 � (A0D0 � B0C 0)2 = 0; (4:10)where the primed versions of coe�cients are given in the Appendix. Equation (4.10) can besimpli�ed a little further but there is little advantage in doing so. In practice, the equation wassolved by bisection to 10 decimal places at each root within the relevant interval (0; 2n�=!). Adouble root corresponds to a fold bifurcation point and thus does not raise problems. Once �tis known, we can obtain to from to = 1! arctan A0� � C 0�D0�� B0� : (4:11)One can then calculate all the individual times via use of (4.1) and thence z1 and zo fromthe explicit solutions. Thus the solution can be plotted and initial data for a numerical solvergenerated.However, not all the roots generated in the interval are physical. Some are spurious (generatedby manipulations such as squaring or corresponding to `integrating' with an equation in thewrong half of phase space) whilst others might be copies (up to phase). This means that theprocedure requires some intervention to discard roots after plotting. When a period doublingbifurcation occurs, a simple root of (4.10) ceases to lie in the interval (for a given n). Locally,the bifurcation should be (`; n)! (2`; 2n) and hence we cannot with the above method calculateanalytically the period 2n solution. Our approach could be extended to the case ` > 1 but theanalysis is even more complicated and is not pursued here. Globally, of course, the solutiontype is likely to change (see x 6). For a fold bifurcation, the two roots can be relevant: thesecond corresponding to an unstable solution. (We plot such a solution in x 6, which could notbe found by simple numerical simulation.) However, away from the bifurcation, the second rootcan cease to be physical through a global event or simply because it passes outside the possibleinterval. In fact, if the minimum of (4.10) lies under the endpoint of the feasible interval thenthe unstable solution would never be admissible, even local to the bifurcation point.8



5 Orbital Stability of (1; n) OrbitsThe asymptotic responses found by the (largely) analytical method described above need not bestable. The presence of any perturbation (to the actual initial data) can lead the system settlingonto another (stable) orbit which may or may not be periodic. We carry out the stability analysisin the manner of (Hogan 1989). However, we present an easier way of deriving expressions forthe determinant and trace of the pertinent Jacobian matrix. The analysis is carried out in thephase plane using the Poincar�e map P : the periodic orbit is a �xed point of the map. We use theprevious notation for labelling a given periodic response. The stability of �xed point (and thusthe asymptotic response) is determined by the eigenvalues of the Jacobian DP (Guckenheimer& Holmes 1986).The calculation ofDP proceeds in two parts, depending upon which equation is being integrated.That is, we decompose the map P = P� � P+ whereP+ :  tozo ! 7!  t1z1 ! =  f(to; zo)g(to; zo) ! ; P� :  t1z1 ! 7!  t2z2 ! =  h(t1; z1)�(t1; z1) ! : (5:1)We begin by studying P+ whose JacobianDP+ =  @f@to @f@zo@g@to @g@zo ! (5:2)has entries which may be determined by the implicit di�erentiation of the de�ning equation (4.2)for t1 (and then that of z1). We use the Chain Rule to deduce that@f@to = � 1ẑ+(t) ����t=t1 �@ŷ+@to �����t=t1 ; @g@t0 = @2ŷ+@t2 �����t=t1 @f@to + @ẑ+@to ����t=t1 ; (5.3)@f@zo = � 1ẑ+(t) ����t=t1 �@ŷ+@zo �����t=t1 ; @g@z0 = @2ŷ+@t2 �����t=t1 @f@zo + @ẑ+@zo ����t=t1 : (5.4)When these equations are evaluated, the second derivative term in y+ can be simpli�ed usingthe di�erential equations (2.5). That is,@2ŷ+@t2 �����t=t1 = �2�ẑ+(t1)�mŷ+(t1) + 1 + Fs1: (5:5)One can evaluate the derivatives in the style of (Hogan 1989) and obtain the complicated expres-sions given in the Appendix. From such formulae, one can obtain the entries of DP+. However,if the focus is not on the speci�c expansion in a given direction, it is simplest to explicitly eval-uate little of (5.3-5.4) and, using the fact that ŷ+(t1) = 0 to simplify (5.5), instead calculate thedeterminant and trace more directly. The eigenvalue stability problem for P is given by�2 � (trace DP )�+ (detDP� detDP+) = 0; (5:6)where trace DP = @h@t1 @f@to + @h@z1 @g@to + @�@t1 @f@zo + @�@z1 @g@zo : (5:7)9



Now for any simple trajectory through the phase plane,detDP+ = e�2��t zoz1 (5:8)and similarly for detDP�. Combining these results for a complete periodic asymptotic responseand using 4.1, we obtain that detDP = e�4n��=! < 1 : (5:9)Hence there can be no Hopf-Neimark bifurcations to quasiperiodic motions and one eigenvaluealways remains inside the unit circle. Moreover, in generaldetDP = e�2��t zoz2 (5:10)so that the determinant is unbounded at z2 = 0. Therefore P is not di�erentiable in this case.(This is to be expected as the situation is analogous to that for `grazing bifurcations' in impactoscillator theory). As no Hopf-Neimark bifurcations occur, the stability boundaries are � = �1.Using the method described above to calculate to calculate the trace, we �nd that a large numberof terms cancel to yield for a periodic asymptotic responsetrace = e�2n��=!  2cmc� � sms�(m+ 1� 2�2)p(1� �2)(m� �2)! ; (5:11)where, additionally,c� = cosp1� �2(t2 � t1); s� = sinp1� �2(t2 � t1): (5:12)The divergence or fold bifurcation occurs when (trace �det) = 1 and the 
ip or period doublingbifurcation when (trace + det) = �1. Both these quantities can be evaluated and monitoredas we continue an analytical orbit `by hand', using the method described previously to evaluateall parameters and solution constants. Thus di�erent kinds of bifurcations can be found inreadiness for checking with the numerical integrations. In fact, for much of the time that theorbit is stable, the eigenvalues form a complex conjugate pair on the circle whose squared radiusis given by the value of detDP . However, before either a fold or a 
ip occurs, the eigenvaluescoalesce on R. The eigenvalues then move in opposite directions, so that after the bifurcation,one lies inside the unit circle and one outside. However, the piecewise linear nature of thesystem has repercussions for the prediction of the number of solutions. We have mentioned thisalready for folds: if one has a stable solution close to a fold, the unstable solution may not exist.Moreover, one would expect the `period{one' solution to persist at a 
ip but this may not bethe case.6 Numerical ResultsIn this section, we trace out a number of paths in parameter space. In doing so, we try toillustrate the rich dynamic behaviour possible: the coexistence of sub and superharmonic solu-tions, period{doubling and {adding sequences, truncated cascades, fold bifurcations and global10



bifurcations. We concentrate on a variation of B with all parameters �xed, and similarly, oneof !. We also exhibit a period{doubling cascade with k. The choice of parameters has beensomewhat arbitrary. When the beam experiments are undertaken, actual values for the physicalparameters can be properly estimated. Meanwhile, the analytical relationship between a fullbridge model and the beam model is unclear. At present, it seems productive and useful to �rstunderstand the full range of dynamics in this simple model. The transitions between solutiontypes and patterns of coexistence are certainly more complicated that one might na��vely think.As mentioned in the introduction, parameter values given in this section correspond to thenatural scaling (2.6) of the ODEs in order to allow physical interpretation of all the diagramsin terms of the type of suspension bridge we are modelling. We do not wish to unnecessarilyconstrain the dynamic behaviour, and hence keep damping fairly small (usually � = 0:01)and the asymmetry in the system moderately large (typically k = 10). We also wish to takeproper account of the preload W : it seems that it is when B � W that the complete cascadesare possible. It may be possible to investigate this analytically in the manner of Elvey andThompson (Elvey 1983). The slight parameter redundancy in our nondimensionalisation allowsus to identify in a transparent way when physically small forcing terms are associated with orbitswhose magnitude is much larger. However, this phenomenon occurs away from linear resonancevalues. Indeed, at such values, behaviour is often relatively benign.In the next two sections, we compare analytical results with those obtained by direct simulationof equations (2.5) (using NAG routine d02cjf) and by parameter continuation using the packageAUTO (Doedel & Kerneves 1986). The AUTO code continues the periodic orbits as �xed pointsof the Pm-Poincar�e map (with the relevant power) upon the z-axis intercept. The intermediateswaps between (y+; z+) and (y�; z�) solutions are obtained internally by Newton iteration, andpassed as parameters to allow restarting of continuation. When the code reaches an end pointof an (`; n) orbit, examination of the AUTO output usually allows the identi�cation of changesin ` via the extinction of a loop, or its passing into the righthand plane. The semi-analyticalmethod is used to generate the highly accurate initial periodic orbits and swap times required tosuccessfully begin continuation (especially of higher order orbits). The nonlinear equation (4.10)for t1 � to is itself unsuitable directly for exhaustive automated continuation. (For that reason,Figures 8 & 9, for example, were produced using AUTO.)6.1 Variation of !For these variations, we set W = 1 and B = 0:5. The bifurcations in this direction all seem tobe folds. A given full phase space (`; n)-orbit exists in a window of ! values, and disappearsthrough a fold at each end. However, the orbit geometry is not symmetric with respect to thiswindow. In line with the �ndings of (Lazer & McKenna 1991) for the 
oating beam model ofa ship, it is at the lower ! end that the large scale oscillations may be found. For (Lazer &McKenna 1991), this �nding is important since the 
oating beam is a common model in navalarchitecture, and the indicated relationship clashes with a common safety procedure. Theselarge scale oscillations persist over a signi�cant parameter sub-window. With reference to the11
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Figure 3: Subharmonic coexistence of (1; 1) and (1; 2)-orbits (� = 0:01, k = 10, ! = 4, W = 1,B = 0:5).suspension bridge model, we emphasize that they are not the result of narrow linear resonance.We begin with a (1; 2)-orbit at ! = 4. Via the analysis of x 4, we �nd that possible initial datafor this orbit is the S{Poincar�e point (t; y; z) = (0:60977664; �0:81204135; �0:87377383) (ofcourse, P{map initial data with y = 0 cannot be directly used). In addition, x 5 assures usthat this orbit is stable. Direct numerical integration con�rms these �gures in full. For the sakeof brevity, we abbreviate numerical values in the sequel. The simplest, e�ective way to movearound parameter space with the numerical solver (as opposed to AUTO) is to use the Poincar�epoint as the starting conditions for a slightly di�erent value of !, and then integrate until a newasymptotically stable trajectory is found. At the same point in parameter space, we can also�nd a (1; 1) orbit of which the (1; 2)-solution is a subharmonic. Both are shown in Figure 3.In this and all subsequent phaseplanes, strobe points corresponding to intervals of �=! (ratherthan 2�=!) are shown. This is in order that for low n (m, n) orbits, the speed of tracing outeach part of the orbit is more evident.The (1; 1)-orbit is (at this moment) a small amplitude orbit whereas the (1; 2)-orbit is a largescale motion with an amplitude 4 times the magnitude of the forcing term. If we continue the(1; 2) orbit, we �nd that it undergoes fold bifurcations at ! = 3:28 and ! = 6:56. Local to thesebifurcations, we thus have at least three solutions coexisting; the third being an unstable (1; 2)orbit. Note that the stable eigenvalues sit on a circle of changing radius as they tend toR+ priorto passing through +1, according to (5.9). Throughout this window, the n = 1 orbit persistsbut it passes entirely into the right hand plane (to become a (0; 1)-solution when ! � 4:06, seex 3). Figure 4 illustrate the relative sizes of the two kinds of orbits at either end of the n = 2existence window.The calculations of x 3 show that the preloaded orbit exists for all larger !. What happens if12
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Figure 5: Multiple coexistence close to the (1; 1)-orbit fold bifurcation point (! = 1:6).(a) (b)
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Figure 7: Higher subharmonics { a (1; 3)-orbit (a) near lower fold ! = 5:38495 (b) near upperfold ! = 7:252321.too, that for any (`, n) orbit we only plot one point per orbit to simplify the diagram. Thispoint corresponds to a particular crossing which is representative of its amplitude. In Figure 9,we focus in on the appearance of the primary (1,1) harmonic from the preloaded orbit (PL),with the asymmetric orbits appearing to the left at lower values of !. Of course, the preloadedorbit appears as the z = 0 axis since there is no intercept. Note, too, that the use of AUTO hasrevealed the additional coexistence of two stable, symmetric (1,1) orbits between the PL pointand the �rst change of stability at a limit point (LP). This had not been observed by muchdirect numerical simulation, but had been suspected since we know the preloaded orbit to bestable.In Figure 10, we focus on the asymmetric orbits. (The isola is labelled in a clockwise fashion.)For the second of these, the `period-adding' is extended to include a (3, 1) orbit (shown inFigure 6 (b)). Moreover, the isolas in these �gures do not physically cross.They maybe unfoldedby plotting the parameter variation against both the z axis intercept and the phase of thesolution. In Figure 11, this is shown for the regular third harmonic.6.2 Variation of BWith the variation of B, one often encounters, in addition to folds, period doubling bifurcations.(In this section, and the next, note that the eigenvalues which predict bifurcation lie on a �xedcircle prior to coalescence.) To illustrate this, we start with a `transverse' variation to thestandard (1; 1)-orbit path treated above. We denote this as the primary branch in what follows.We begin with ! = 3 and B = 0:5. First, we increase B (Figure 12). The �rst period-doublingbifurcation occurs at B � 2:83, that is, (1; 1) ! (2; 2). Before then the orbit has coexisted15
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First Two Asymmetric Superharmonics
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Figure 11: A crossed isola is unfolded by introducing the phase into the bifurcation diagram.17



with, for example, a (3; 3)-orbit (Figure 17 (a)). Locally, the period-doubling bifurcation is(1; 1) ! (2; 2) but the inner loop shrinks as B increases further and the outer loop stretchesincreasingly asymmetrically into the lefthand plane. When B � 4:63 the inner loop hits theorigin and undergoes another period doubling bifurcation to an (incipient) (4; 4)-orbit. However,as the inner loop bifurcates, one new loop moves into the left hand plane and the other, entirelyinto the righthand plane. Hence instead a (2; 2)! (3; 4) bifurcation is actually observed. Thisis an instance where a bifurcation is complicated by the piecewise linear nature of the system.However, unlike the fold bifurcations, the orbits (though nonlinear) do not have large-scaleamplitudes relative to the forcing.In smooth bifurcation theory, one would now expect a cascade of such bifurcations. In impactoscillator models, they are often interrupted by grazing bifurcations. In our case, two thingshappen. First, once B � 6:2, a loop has passed through y = 0 and a (3; 4)! (2; 4) transitionhas taken place. Then the period doubling cascade is truncated by the `reverse' bifurcation toa (1; 2)-orbit when B � 6:491. This bifurcation point can be analytically determined. As B isincreased further, this orbit undergoes no other bifurcation. When B � 11:6, the extra loop inthe right hand plane disappears and a curve enclosing a convex region remains.In Figure 13, we show the same transition as produced by the AUTO code. Note the sharpincrease in the z axis intercept which is associated with the gain of orbit convexity (and symme-try) in phasespace of the (1,2) orbit. The period doubling is shown in more detail in Figure 14,where the transitions of the unstable orbit are also indicated. The total e�ect of the transitionis turn a �rst into a second harmonic. In addition, the proximity of the LPs on the (3,4) branchto the PD point indicate that nearby in parameter space is a (codimension two) generalised 
ipor Bautin bifurcation.If we decrease B from the start value of 0:5, the behaviour is rather di�erent. The (1; 1)-orbitdisappears through a fold bifurcation at B � 0:0097. Note that once B < 0:18, a preloadedorbit also exists. In Figure 15, we show the stable and unstable solutions which exist near thefold point (the di�erence (Tr�Det) is 0.9), as well as the preloaded solution. In Figure 16, weshow the hysteresis curve as produced by AUTO. As for the ! variation, there is restabilisationof the (1,1) orbit through a fold in line with the calculations of x 2. It was this feature that wassubjected to extended parameter variation of the full PDE in (Choi et al. 1991).However, coexisting with the primary branch are a number of more exotic trajectories. As justtwo examples, for B = 2:2, we show in Figure 17(a) a (3; 3)-orbit and when B = 8, a (4; 6)-orbit(Figure 17 (b)). One would expect to �nd such higher order orbits for B � W . However,what becomes clear, with the use of a continuation code like AUTO, is that they persist at leastto the regime where B � W , that they are interlaced with the primary branch and that theyappear to be involved in the global bifurcation structure of the primary branch. For example,in Figures 18, 19, we show a high order transition and its relationship to the primary branch.The labelling is clockwise in Figure 18. Again, we are close to a codimension two bifurcationpoint. In Figure 20, we show an almost symmetric pair of solution branches of (2; 3) (and(3; 3)) solutions. The loss of symmetry is probably due to the use of the z axis intercept as18
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Figure 12: Truncated period doubling cascade in B (a) B = 2:83, (b) B = 2:833, (c) B = 4:7,(d) B = 6:4, (e) B = 8:0 and (f) B = 10:8. 19



Primary branch: variation with B
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Primary branch: variation with B
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Primary branch: variation with B
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Secondary solutions with the primary branch
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Figure 19: Relation of high order isola in Figure 18 to primary branch.a measure of size in the bifurcation diagram, rather than a sup or L2 norm, say. Note thecoexistence of two stable (2,3) orbits from di�erent solution branches. However, we were unableto extend the branches beyond the indicated end points (EP), which indicate some change inthe solution type (`; n). There was some evidence of a limit point very close to the (3; 3) EP,and similar structure on the other branches may have prevented AUTO from continuing perioddoubled branches, for example. (AUTO cannot, on its own, detect and follow codimension twobifurcations.) In Figure 21, we show coexistence of more exotic solutions, whose paths withrespect to the bifurcation parameter are themselves highly complicated. Again, we show theprimary branch for comparison.6.3 Variation of kOnce B � W , the variation of k can yield (more) complete period doubling cascades relativelyeasily, even with greater damping in the system. Perhaps, it is unsurprising that, with strongforcing and increasing asymmetry in the system, exotic orbits can be obtained. We take � = 0:05,! = 1,W = 0:1 B = 1 and increase k upwards from k = 1. The initial data for the �rst orbit wasfound using the analytical methods: the �rst period doubling bifurcation occurs when k � 6:3(analytically con�rmed). As k is increased further, we obtain a sequence of periodic orbits withincreasing close bifurcation k-values of which we have observed(1; 1)! (2; 2)! (3; 2)! (6; 4)! (12; 8)! (24; 16)! : : : : (6:1)This transition is featured in Figure 22: note how the period doubling appears associated withthe intersection of loops with the z = 0 axis. Observe, too, the nonlinear dependence of the23
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  Figure 21: (4; 6) and (5; 6) orbits with the �rst subharmonic.24
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Figure 22: Period doubling cascade in k (a) k = 4, (b) k = 6:2, (c) k = 6:5, (d) k = 8:0, (e)k = 11:0 and (f) k = 13:2. 25



amplitude on the forcing for the bifurcating orbits. As for the truncated period doubling, thatthe ` entry of the orbit classi�cation is more volatile than the `subharmonic' label n. Yet the `label remains important to distinguish full phase from `benign' preloaded orbits. However, thisparameter variation would be very di�cult to investigate within an experimental framework,and hence we do not pursue it further here.7 ConclusionsAs a �rst step to understand the role of the `one-sided' stay in suspension bridge dynamics,a suspended beam model has been considered. This represents the most complete analysisof the Lazer & McKenna model to date. We have revealed for the �rst time a great deal ofnonlinear dynamics which will provide valuable input to experiments and higher dimensionalmodels. Separation of variables was used to reduce the model to a piecewise linear ODE; which isequivalent to a one-sided preloaded forced spring, a case not studied before nor reducible to onethat has. Methods have been given which enables two types of asymptotic periodic responses tobe calculated. The second approach can yield unstable solutions which are otherwise inaccessiblevia direct numerical solution. A range of illustrative examples were then given which showedhow the analytical methods may be used to structure a search of parameter space by simulationand continuation, and also the wide range of bifurcation phenomena and coexistence which arepossible. Experimental veri�cation of the results using a simple mechanical model is planned,and we hope to be able to report on this in the future. The choice of parameter variations wasmade with the problem of practical implementation in mind.There is clearly plenty of scope for further analysis of this simple model. The basins of at-traction of competing multiple solutions at a given point in parameter space have only beendescribed anecdotally, rather than mapped. One would also like a more global structure for thecoexistence possibilities. We have described one possible application of the continuation packageAUTO (Doedel & Kerneves 1986). But much remains open. For example, are there in�nitelymany isolas of either regular (1; n) subharmonics, and (m; 1) asymmetric superharmonics; or isthe number constrained like in the work of (Elvey 1983). And in the variation of B, the EPs ofthe (2; 3) branches appear to coincide with the �rst period doubling of the primary branch: aresome global dynamics responsible for this coincidence.Recently, Fonda and co{workers (Fonda & Ramos 1991, Fonda, Schneider & Zanolin 1992)have used a di�erent modi�cation of the Lazer-McKenna model. They postulate a minimumheight before slackening of the hangers, and (Brownjohn 1994) gives some support to this idea.They then choose to reduce the number of parameters by imposing a static balance e�ectivelyequivalent to a weightless bridge. (In addition, their analysis is largely concerned with thezero dissipation case.) In future work, the cuto� height could be incorporated into the analysisdescribed here by modifying the separation of variables (2.3) with Heaviside functions. It isalso important to note that part of their analysis assumed some symmetry in the shape andpositioning of the orbits. None of the orbits we computed had any such symmetries. Other26



authors (Choi & Jung 1991, Choi, Jung & McKenna 1993, Choi et al. 1991) have extended thework of Lazer & McKenna. For example, rotatory inertia has been incorporated into some ofthe theoretical results. We could do likewise, but the e�ect upon results is likely to be small.Brownjohn (Brownjohn 1994) has also argued that, for two numerical case studies, the staysti�ness asymmetry is unimportant in the one dimensional motion. Of course, one might saythat these are just two examples and that in postulating interactions for the �nite elementmodel, one may be imposing undue constraints. More importantly, it says nothing about therole of the asymmetry in determining stability and transitions. A number of modern long spansuspension bridges have used mono{duo cables with A{frame tower construction (Ostenfeld &Larsen 1992). This reduces the importance of torsional dynamics in which the in
uence of thestays is most obvious. Nevertheless, from a theoretical perspective, it remains important todetermine design and safety boundaries to prevent over and (under) design in future.There remains a gulf between the ODE model we have studied and the beam equation, andan even larger one between that and a complete bridge model. However, it is to be hopedthat demonstrating the dynamic complexity of the simplest model is a useful task with somerelevance to more complicated ones. The priority is the inclusion of torsion via some route,whether through PDE analysis or the coupling of ODE models. Whichever proves most fruitful,it seems clear that the positive use of the piecewise linear nature of the system, along withnonlinear dynamics, can provide new and useful information compared to the nonlinear analysisemployed by Lazer, McKenna and co-workers.AcknowledgementsThe research described here was funded by an EPSRC grant under the Applied NonlinearMathematics Initiative. The authors thank Tony Blakeborough, Allan McRobie and JamesBrownjohn for helpful discussion concerning engineering aspects of this problem. The authorsare also grateful to Joe McKenna, Fabio Zanolin and Alessandro Fonda for sending and discussingreprints of their work in this problem area.AppendixWe �rst give the formulae for the coe�cients of the linear system (4.8-4.9) solved in order todetermine (1; n)-solutions. We �rst de�ne some preliminary parameters. Subscripts on theparameters previously de�ned in (2.9) denote evaluation for ŷ� and ẑ�, and thus, for example,m is set to unity in those de�nitions.s! = sinp1� �22n�! ; c! = cosp1� �22n�! ; (A.1)c� = cosp1� �2�t; s� = sinp1� �2�t; (A.2)� = c�s! � s�c!; � = c�c! + s�s!; (A.3)27



~A = e�te�2n��=! ��� ��p1� �2� ; ~B = e��t �cm � �smpm� �2� ; (A.4)� = (1� ~B ~A)�1: (A.5)The required coe�cients are as follows,A = �!e��t � ~B
1 � 
cm + �smpm� �2�+p1� �2��1e��te2n��=!�1; (A.6)B = �e��t �!(� ~B�1 + �cm) + �smpm� �2�+p1� �2��1e��te2n��=!
1; (A.7)C = �!� ~Be�te�2n��=! �
1� + �1�p1� �2�� 
�+ �1 +p1� �2��1�1�; (A.8)D = �� ~Be�te�2n��=! �!�1� + �1�p1� �2�� !��� �1 +p1� �2��1
1�; (A.9)� = �� ~Be�te�2n��=!�p1� �2 + e��tsmpm� �2!+ � +p1� �2��1 ��� e��te2n��=!� ; (A.10)E = �!� ~Ae��t ��
cm + �smpm� �2�+ 
1� � ��pm� �2�cmsm ; (A.11)F = �� ~Ae��t ��!�cm + �smpm� �2�� !�1�+ � �pm� �2
 cmsm ; (A.12)G = ��! � ~A
 + e�te�2n��=! ���
1 + �1�p1� �2���pm� �2�e�tsm ; (A.13)H = ����!� ~A + e�te�2n��=! �!��1 + �1�p1� �2���pm� �2
 e�tsm ; (A.14)� = �� ~Ae��tsmpm� �2 + e�te�2n��=!�p1� �2 !+ �m � pm� �2m  cm � e�tsm! : (A.15)We now give the coe�cients of the Jacobian stability matrix (5.3-5.4) for (1,n) orbits. Weobtain@f@to =  e���tẑ+(t1)!�zocm + smpm� �2 (1 + Fso � �zo)� (A.16)@f@zo = �� 1ẑ+(t1)� sme���tpm� �2 ; (A.17)@g@t0 =  e���tẑ+(t1)!�zo �(F �m
)�m�c1cm + smpm� �2 (m�c1 � (m� + �F )s1)�+!(1 + Fso)�(�s1 � 
c1)cm � smpm� �2 (�s1 + �c1)�e���t fzo((m
 � F )so +m�co)� !(1 + Fso)(�so � 
co)g� (A.18)@g@z0 =  e���tẑ+(t1)!�!(
c1� �s1) + smpm� �2 (!�c1 + s1(�� F ))+e���t(zo + !(�so � 
co))� (A.19)28
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