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A non-transverse homoclinic orbit to a saddle-node equilibrium.Alan R. ChampneysDepartment of Engineering MathematicsUniversity of BristolQueen's Building, University WalkBristol BS8 1TR, UK J�org H�arterichInstitut f�ur Mathematik IFreie Universit�at BerlinArnimallee 2-614195 Berlin, GermanyBj�orn SandstedeWeierstra�-Institut f�ur Angewandte Analysis und StochastikMohrenstra�e 3910117 Berlin, GermanyAbstractA homoclinic orbit is considered for which the center-stable and center-unstablemanifolds of a saddle-node equilibrium have a quadratic tangency. This bifurcationis of codimension two and leads generically to the creation of a bifurcation curvede�ning two independent transverse homoclinic orbits to a saddle-node. This lattercase was shown by L.P. Shilnikov to imply shift dynamics. It is proved here that ina large open parameter region of the codimension-two singularity, the dynamics arecompletely described by a perturbation of the H�enon-map giving strange attractors,Newhouse sinks and the creation of the shift dynamics. In addition, an examplesystem admitting this bifurcation is constructed and numerical computations areperformed on it.1 IntroductionIn recent years several authors have investigated the bifurcations in 
ows caused bycodimension-two homoclinic orbits. See, for example, [Fie92], [San93], [CK94] and ref-erences therein. In this article we are interested in a homoclinic solution q(t) converging to1



(a) (c)(b)Figure 1: Planar bifurcation of a homoclinic solution to a saddle-node equilibriuma non-hyperbolic equilibrium p0, which undergoes a saddle-node bifurcation. This situationis in fact of codimension one. Indeed, generically the homoclinic orbit is contained in thetransverse intersection of the center-stable and center-unstable manifolds of the equilib-rium p0. Therefore, the orbit 
(q) together with the stationary point p0 form a normallyhyperbolic manifold di�eomorphic to S1, see �gure 1(b).Note that the normally hyperbolic manifold persists even under perturbations that breakthe saddle-node. It is easy to determine the 
ow on that manifold. Either two heteroclinicorbits appear connecting the two equilibria which bifurcate from the saddle-node p0 or themanifold just consists of a periodic orbit, see �gure 1(a),(c). Note that for systems in morethan two dimensions, it is of no extra codimension for more than one homoclinic orbit toexist similtaneously to the same saddle-node. Moreover, if there are multiple - say k - suchdistinct homoclinic solutions, Shilnikov [Shi69] proved that the Poincar�e map restricted tothe invariant set in a neighborhood of the union of these homoclinic orbits is conjugate to ashift on k symbols under a parameter variation such that the stationary point disappears.One of the objectives of this article is to show how a system may arise in which two ho-moclinic solutions to a saddle-node equilibrium are present. To that end, we investigatethe following bifurcation of codimension two. We assume the existence of a saddle-nodeequilibrium with center-stable and center-unstable manifolds both of dimension at leasttwo and such that their intersection fails to be transverse. Instead these manifolds shouldpossess a quadratic tangency at an intersection point q(0), see �gure 2. This correspondsto a \saddle-node" bifurcation of two homoclinic solutions which collide and disappearas a parameter is varied. At the same time, the horseshoe proved to exist by Shilnikov[Shi69] has to be annihilated, too. We will show that this annihilation process is precisely2



W uloc(0)z W sloc(0) W cu(0)
q(t) W csloc(0)xyFigure 2: A degenerate homoclinic orbit to a saddle-node equilibriumgiven by the dynamics of a H�enon-like map. In fact, the Poincar�e map in a neighborhoodof the homoclinic orbit turns out to be a small perturbation of the logistic map, under asuitable scaling. Therefore, all phenomena like persistent homoclinic tangencies of periodicorbits, in�nitely many Newhouse sinks and period doubling sequences known to occur inthe H�enon map [PT93] are proved to exist for the unfolding of the degenerate homoclinicorbit. We will discuss these issues as well as others in more detail in the last section.Let us �nally mention the related result on another bifurcation of codimension two in-volving a homoclinic orbit to a saddle-node. Here the homoclinic solution is contained inthe intersection of, say, the center-unstable manifold with the stable manifold. The corre-sponding scenario has been extensively studied in the literature, see [Luk82, Sch87] for thetwo-dimensional case and [CL90, Den90] in higher dimensions. Essentially, this bifurcationoccurs on a two-dimensional manifold due to a homoclinic center-manifold reduction, see[San93]. In contrast, we are unaware of any previous treatment of the case under investi-gation here other than a certain index-theory result in [Fie92], see the Discussion for moredetails.The rest of this paper is organised as follows. In section 2 we state our main result and insection 3 we prove it. As with many results in homoclinic bifurcation theory, we shall stateour theorem for systems of the lowest possible dimension only, in this case three dimensions.3



However, using center-manifold results for homoclinic orbits as in [San93, San94a] it shouldbe easily possible to show the results to hold for systems in IRn for arbitrary n � 3. Then,in section 4, we present an equation which will be proved to admit a non-transversalhomoclinic orbit to a saddle-node equilibrium as well as to possess a generic unfolding.Although an arti�cial example, it allows for illustration of the preceding theory and servesas a test example. Numerical methods are used to detect the codimension-two point andto demonstrate the asymptotic scalings. In the last section we give conclusions and discussthe relevance of our results to applications.Acknowledgement. We thank Bernold Fiedler and Arnd Scheel for helpful discussions.Collaboration was made possible through the support of WIAS and the visiting fellowresearch grant GR/K/39653 from the U.K. EPSRC.2 The main resultsConsider the equation _u = f(u; �); (u; �) 2 IR3 � IR2:(2.1)We assume that f is su�ciently smooth and that 0 is an equilibrium of (2.1) for � = 0such that(H1) �(Duf(0; 0)) = f��s; 0; �ug and �s 6= �u as well as ��s < 0 < �u.Furthermore, suppose that q(t) is a homoclinic orbit converging to 0 as t tends to �1,which is neither contained in the stable nor the unstable manifold of 0, i.e.(H2) q(0) 2 W cs(0) \W cu(0) but q(0) =2 W s(0) [W u(0).Here W cs(0) and W cu(0) denote respectively the center-stable and center-unstable mani-folds of 0, see e.g. [Van89]. Moreover, we assume that the intersection in hypothesis (H2)is not transverse, i.e.(H3) W cs(0) and W cu(0) have a quadratic tangency at q(0).4



In the appendix an analytical expression involving the nonlinearity of f only is derivedwhich determines whether the tangency is quadratic or of higher order. Now, we have toimpose non-degeneracy conditions on the dependence of the nonlinearity on the parameters�. The saddle-node equilibrium and the quadratic tangency must unfold generically butindependently of each other. To this end, we de�ne vc and wc to be respectively theright and left eigenvectors corresponding to the zero eigenvalue, the existence of which isensured by hypothesis (H1). Moreover, let  (t) be the unique bounded solution of theadjoint variational equation _w = �Duf(q(t); 0)T w;see [San93] for further properties of this equation. Note that (t) 2 (Tq(t)W cs(0) + Tq(t)W cu(0))?exists and decays exponentially to zero for t!�1 due to hypothesis (H3).De�ne M = R1�1 h (t);D�f(q(t); 0)i dtN = hwc;D�f(0; 0)i;(2.2)which are vectors in the parameter space IR2. In fact, M is the usual Melnikov integralmeasuring the rate of splitting of the center-stable and center-unstable manifolds. Thenthe non-degeneracy conditions are given as follows.(H4) (i) hwc;D2uf(0; 0)[vc; vc] i 6= 0(ii) M and N are linearly independent in IR2.Hypothesis (H4)(i) is equivalent to the fact that the vector �eld restricted to the centeryzW csloc(0; �) �2 > 0�2 < 0 �2 = 0W cu(0; 0) W culoc(0; �)yz
Figure 3: The unfolding of the quadratic tangency5



shift� dynamics �1�2
Figure 4: The bifurcation diagrammanifold possesses a non-zero quadratic term for � = 0. Owing to (H4)(ii) the saddle-node and the quadratic tangency of center-stable and center-unstable manifolds unfoldgenerically and independently with respect to the two-dimensional parameter �, see section3.Now we can state our main result.Theorem 1 Suppose that the assumptions (H1) up to (H4) are satis�ed. Furthermore,assume �u < �s, otherwise reverse time. Then, after a change of parameters � = �(�), weobtain the bifurcation diagram given in �gure 4.Here the positive �1-axis consists of saddle-nodes of periodic orbits. There exists no recur-rent dynamics for �1 > 0, �2 < 0. Moreover, the Poincar�e map de�ned on a transversesection is conjugate to a perturbed H�enon map(y; z) 7! (z; z2 + �) +O�e�c=p�1 (jyj+ jzj; jzj2+ jyj)�on each line �1 = const: > 0. The error estimate is valid in the C3-topology. Here� = e2C(�)�u=p�1�2 for some function C(�) smooth for positive �1 such that C(0) > 0. Hence,changing �2 2 [��; �] corresponds to varying � 2 [�� ec=p�1 ; � ec=p�1] for some �xed c > 0.In particular, we have the following corollary.6



Corollary 1 The Poincar�e map for �1 > 0 contains period doubling sequences, persistenthomoclinic tangencies to periodic points and in�nitely many periodic sinks. Moreover,strange attractors exist.Proof. This follows from the results obtained by Yorke and Alligood [YA85], Mora andViana [MV93], and Palis and Takens [PT93], to which the reader is also referred for moredetails of the bifurcation sequences giving rise to these diverse dynamical regions. 2The function C(�) appearing in the scaling of the parameter � = e2C(�)�u=p�1�2 does es-sentially not depend on the eigenvalues �s and �u. Hence the scaling involves only theeigenvalue closest to zero which we have assumed to be �u.3 The proofThroughout, we assume that hypotheses (H1) to (H4) are satis�ed. The geometry of theproblem under investigation is depicted in Figure 2. First, we choose coordinates such thatW cloc(0; �) = n(x; 0; 0). jxj < �oW csloc(0; �) = n(x; y; 0). jxj+ jyj < �oW culoc(0; �) = n(x; 0; z). jxj+ jzj < �ofor all � satisfying j�j < � for some small � > 0. We de�ne�� := n(��; y; z). jyj+ jzj < �oas sections transverse to the homoclinic solution. Then we can parametrizeW cu(0; �)\��as a function over W csloc(0; �) \ ��, i.e.W cu(0; �) \�� = n(��; y; z). z = G(y; �) = (1+G1(y; �)) y2+G2(�) y+G3(�)o;(3.1)see Figure 3. Here Gi(0; 0) = 0 for i = 1; 2; 3. Observe that the coe�cient of the quadraticterm can be chosen to be unity for � = 0 without loss of generality. Denote the uniqueminimum of G(�; �) near (0; 0) by Y (�). Then we de�neĜ(�) := G(Y (�); �):The next lemma gives a connection between the vectors M and D�Ĝ(0).7



Lemma 1 The relation D�Ĝ(0) = cM holds for some c 6= 0.Proof. Note �rst that the constant c is due to the coordinate transformation at thebeginning of this section, which did not involve a change of parameters. By the geometricalinterpretation of the Melnikov integral as the rate of splitting of the center-stable andcenter-unstable manifolds, under parameter variation, it is clear that the vectorM will notchange its direction under this coordinate transformation. In the new coordinates we willactually show that D�Ĝ(0) =M:To verify this equality, computeĜ(�) = (1 +G1(Y (�); �))  G2(�)2 !2 � G2(�)22 +G3(�) +O(�2);using (3.1). Then D�Ĝ(0) = D�G3(0)as the Gi vanish for � = 0. On the other hand, by construction, the splitting distance isgiven by the vertical component Ĝ(�). The Melnikov integral, de�ned as the derivative ofthe splitting distance at � = 0, is therefore given byM = D�G3(0):This proves the lemma. 2In the proof of Theorem 1 we will make use of a Ck-normal form near 0 which is givenby Il'yashenko and Yakovenko in [IY91, Thm. 5]. They consider a parametrized familyof vector �elds near an equilibrium with the property that for the parameter value � = 0there exists an equilibrium the linearization of which has a single zero eigenvalue. Thenfor arbitrarily large k 2 IN this family is locally Ck-conjugate to the vector �elds inducedby _x = m�2Pi=0 ai(�)xi + xm + a(�)x2m�1_y = ��(x; �) y_z = �(x; �) z:Here m � 2 is the multiplicity of the zero of the vector �eld at � = 0, and �; � and theai are Ck-functions with �(0; 0) = �s, �(0; 0) = �u and a(0) = ai(0) = 0 for all i. In our8



case m = 2, since condition (H4)(i) implies that the vector �eld restricted to the centermanifold has a double zero at 0 for � = 0, see [Sot74, GH90]. Furthermore, we will performa change of parameters � = �(�) such that a0(�) = �1. At the moment, �2 has yet to bede�ned. For de�niteness, we will suppose that D�2Ĝ(0) < 0 such that the center-stableand center-unstable manifold intersect each other for �2 � 0, see Figure 3.The normal form near (0; 0) then reads8>>><>>>: _x = �1 + x2(1 + a(�)x)_y = ��(x; �) y_z = �(x; �) z:(3.2)The normal form transformation thus \almost" linearizes the vector �eld.3.1 The case �1 � 0The normal form (3.2) already shows that for �1 � 0 there will be no recurrence inside atubular neighborhood of q(�) . Note that in this case there are two equilibria (x�1; 0; 0) and(x�2; 0; 0) with invariant planes given by x = x�1 and x = x�2 between which the x-componentof the vector �eld is negative, see �gure 1(a).To verify our statements about homoclinic and heteroclinic orbits, note that (3.1) andLemma 1 describe exactly how the center-unstable manifold intersects the local center-stable manifold. Varying �2 basically shifts the parabola in �gure 3 up and down. Thus,for �2 < 0 there will be no intersection of the two manifolds. For �2 = 0 there will beexactly one point of intersection corresponding to either a homoclinic orbit (if �1 = 0) orto a heteroclinic connection between the two equilibria that arise from the saddle-nodebifurcation (in the case �1 < 0).For �2 > 0, there will be two points of intersection between the parabola W cu(0; �) \ ��and the y-axis in ��, leading to two homoclinic respectively two heteroclinic orbits.3.2 The case �1 > 0For this case we are going to show the conjugacy to a H�enon map as claimed in Theorem1. This will be achieved via a sequence of lemmata. In the following, we assume withoutloss of generality that �u < �s holds. Otherwise, we consider the vector �eld with time9



reversed.We begin with the calculation of the Poincar�e map near the homoclinic orbit. Recall thede�nition of the two sections�� = n(��; y; z). jyj+ jzj < �o:Between those sections we will consider the 
ow-induced maps �loc : �� ! �+ and�far : �+ ! ��.The normal form (3.2) enables us to give a su�ciently accurate estimate for �loc while theassumption (H3) on the quadratic tangency between W cs(0) and W cu(0) is essential forestimating �far.Lemma 2 The local Poincar�e map �loc : �� ! �+ is given by�loc(y; z) = �e�C(�)�sp�1 y; eC(�)�up�1 z� ;(3.3)where C(�) is a smooth function of � and ~C1 � C(�) � ~C2 for some positive constants ~C1and ~C2. The mapping �loc is Ck with respect to �2.Proof. We start with a calculation of the \time of 
ight" between the sections �� and�+. The 
ow is induced by the normal form (3.2). We assume here that the sections aretaken in such a way that, for all jyj; jzj < � and jxj � �, we have ja(�)�j < 12 and0 < C1 � �(x; �)�(0; 0) ; �(x; �)�(0; 0) � C2for some positive constants C1 and C2. Note that the x-equation of (3.2) does not dependon y or z and hence can be integrated. This leads tot(x) = xZ�� 1�1 + w2 + a(�)w3 dw:The equation _y = ��(x; �) ythus implies y(t) = y(0) exp0@� tZ0 �(x(� ); �) d�1A :10



Writing �loc in the form (��; yin; zin) 7! (�; yout; zout), we arrive atyout = yin exp0B@ � t(�)Z0 �(x(� ); �) d�1CA= yin exp0B@� �Z�� �(x; �)�1 + x2 + a(�)x3 dx1CA :(3.4)Since the integral in the exponent does not depend on y or z, it can be estimated by�Z�� C1�(0; 0)�1 + 32x2 dx � �Z�� �(x; �)�1 + x2 + a(�)x3 dx � �Z� C2�(0; 0)�1 + 12x2 dx:Calculating explicitly the integrals on the left and right hand sides we get~C1�(0; 0)p�1 � �Z�� �(x; �)�1 + x2 + a(�)x3 dx � ~C2�(0; 0)p�1for some positive constants ~C1 and ~C2 independent of y, z and �. Therefore, there exists aCk-function C(�) := p�1�(0; 0) �Z�� �(x; �)�1 + x2 + a(�)x3 dxwith 0 < ~C1 � C(�) � ~C2 such thatyout = yin e�C(�)�(0;0)p�1 = yin e�C(�)�sp�1 :The same arguments apply also to the z-equation and in exactly the same manner we getzout = zin e C(�)�(0;0)p�1 = zin e C(�)�up�1 :For later purposes we need to show that �loc is di�erentiable with respect to �2. Thatthis holds true is obvious from the integral representation (3.4) as the denominator nevervanishes for jyj; jzj < � ; jxj � �. Inductively, it can be shown that yout and zout arek-times di�erentiable with respect to �2. 2Lemma 3 After an appropriate coordinate transformationy = ~y + g(�)z = ~z + e��h(�) = ~z + e�C(�)�up�1 h(�)(3.5) 11



the Poincar�e map � = �far ��loc takes the form� (y; z; �) = 0@ e�z + be��ye2�z2 + ce�z + �2 1A+O0@ (e��jyj+ e�jzj) (e��jyj+ e�jzj+ j�j)(e��jyj+ e2�jzj2) (e��jyj+ e�jzj+ j�j) 1Afor some b; c 2 IR. Here we have set as abbreviations e�� := e�C(�)�sp�1 and e� := e C(�)�up�1 ;while O(�) denotes the Landau order symbol.Proof. Owing to the quadratic tangency condition (H3) and by stretching the y- andz-axis appropriately, �far can be written in the general form0BBB@ �yz 1CCCA 7! 0BBB@ ��z + f1(z; �) z + b1 y + f2(y; z; �) y + f3(�)z2 + f4(z; �) z2 + f5(z; �) z + b2 y + f6(y; z; �) y + f7(�) 1CCCAwith fi 2 Ck and fi(0) = 0 for all i, that is, when each of the arguments of fi is equal tozero.An expression for the Poincar�e map � can be derived by substituting (3.3) into the aboveequation. Upon making the coordinate transformation (3.5), and henceforth omittingtildes, the map � takes the form�(y; z; �) = 0@ F1(y; z; �)F2(y; z; �) 1A ;with F1(y; z; �) = e�z + h(�) + f1(e�z + h(�); �) (e�z + h(�)) + b1 e��(y + g(�))+f2(e��(y + g(�)); e�z + h(�); �) e��(y + g(�)) + f3(�)� g(�)F2(y; z; �) = (e�z + h(�))2 + f4(e�z + h(�); �) (e�z + h(�))2 + f5(�)(e�z + h(�))+b2 e��(y + g(�)) + f6(e��(y + g(�)); e�z + h(�); �) e��(y + g(�))+f7(�)� e��h(�):For the scaling to work it is important to remove the terms of F2 that are linear in y andto keep only terms depending on y or z in F1. Note thatf1(e�z + h(�); �) = f1(h(�); �) + e�z 1Z0 Dzf1(�e�z + h(�); �) d�= f1(h(�); �) + e�z Dzf1(h(�); �) +O(e2�jzj2):12



Then F1(y; z; �) = e�z + h+ f1(h; �) (e�z + h)+b1 e��(y + g) + f2(e��g; h; �) e��(y + g) + f3(�)� g+O�(e��jyj+ e�jzj)(e��jy + gj+ je�z + hj)�:and F2(y; z; �) = (e�z + h)2 + f4(h; �) (e�z + h)2 +Dzf4(h; �) e�z(e�z + h)2+f5(�)(e�z + h) + b2 e��(y + g) + f6(e��g; h; �) e��(y + g)+Dzf6(e��g; h; �) e���z(y + g) + f7(�)� e��h(�)+O�(e��jyj+ e2�jzj2)(e��jy + gj+ je�z + hj)�:In order to remove the terms of F1 that do not depend on y and z we have to solve theequation h+ f1(h; �)h+ b1 e��g + f2(e��g; h; �) e��g + f3(�)� g = 0:For the z-term of F2 to vanish we have to satisfy the condition2h+ 2f4(h; �)h+Dzf4(h; �)h2 + f5(�) +Dzf6(e��g; h; �) e��g = 0:Obviously, g(0) = h(0) = 0 is a solution and by the Implicit Function Theorem theequations can be solved locally near � = 0. The solutions g = g(�) and h = h(�) determinethe transformation given in Lemma 3. Note also that h(�) = O(j�j). Thus, the mapping �so far has the form� (y; z) = 0@ e�z + be��ye2�z2 + ce��y + ~f (�) 1A+O0@ (e�jzj+ e��jyj)(e�jzj+ e��jyj+ j�j)(e2�jzj2 + e��jyj)(e�jzj+ e��jyj+ j�j) 1A ;where ~f is Ck with ~f(0) = 0. To arrive at the form of � given in Lemma 3 we set~�1 := �1~�2 := ~f(�)and write again �i instead of ~�i. 2The following lemma completes the proof of Theorem 1.13



Lemma 4 After the scaling u := e� yv := e2�z;the mapping � is a di�eomorphic perturbation of the H�enon map(u; v) 7! (v; v2+ �):Proof. After straightforward calculation, the scaling transformation leads to� (u; v; �) = 0@ v + b e��uv2 + c e���u+ e2��2 1A+O0@ e��(jvj+ e��juj)(e��jvj+ e��juj+ e�j�j)(e��jv2j+ e��juj)(jvj+ e��juj+ e�j�j) 1A :To arrive at the form given in Theorem 1 set� := e2��2 = e 2C(�)�up�1 �2:(3.6)Since C(�) is bounded, the curves � = constant are exponentially 
at curves in (�1; �2)-space. As �1 tends to 0 (with � �xed and therefore with �2 ! 0 as well) the mapping �tends to the mapping (u; v) 7! (v; v2 + �)(3.7)due to our assumption �u < �s.For �1 > 0, � is clearly a di�eomorphism as it is the return map of a 
ow. Since we havelost one degree of di�erentiability in the transformation performed in Lemma 3, the map� will be Ck�1. This completes the proof. 2For the conclusions of the corollary to hold it su�ces that f 2 C3, since our Poincar�e map� is then C2 and a di�eomorphic perturbation of the mapping (3.7), see [PT93].4 An exampleIn this section an example is constructed which exhibits the codimension-two bifurcationof the preceeding theory. The general methodology of the construction is the same as in[San94b]. Numerical calculations performed on this example are then used to illustrate theresults in Theorem 1 and its corollary. 14



4.1 ConstructionThe construction is carried out step by step; the �nal equation being given later in (4.7).We begin by considering the planar vector �eld0@ _x_y 1A = G(y; �1) 0@ �yx 1A� �sH(x; y) 0@ xy 1A ;(4.1)where �s > 0 and G(y; �1) = sin2 �2'��4 �+ �1 = 12 (1� y) + �1H(x; y) = 12 (x2 + y2 � 1);(4.2)with ' = arctan �yx�. Note that (4.1) is constructed such that the zero level set of thealgebraic curve H(x; y), namely the unit circle� = f(x; y) = x2 + y2 = 1g;is invariant under the 
ow. Note further thatjrH(x; y)����j = 1and hence � is normally hyperbolic and attracting with exponential rate equal to ��s.The 
ow on � is given by _' = G('; �1) = sin2 �2'� �4 �+ �1;(4.3)and therefore, when �1 = 0, there exists a saddle-node equilibrium p0 at (x; y) = (0; 1)with eigenvalues 0 and ��s. Note that the coe�cient of the quadratic term in the Taylorexpansion of the nonlinearity in (4.3) does not vanish. Hence, hypothesis (H4)(i) is satis�edaccording to the statement following (H4). With �1 = 0, � n p0 is a homoclinic orbit to thesaddle-node p0. Moreover, �1 unfolds the saddle-node in a generic way, in fact, N1 = 1.Another way of calculating N is by computing wc and vc.Upon adding a third equation via0BBB@ _x_y_z 1CCCA = 0BBB@ G(y; �1) 0@ �yx 1A� �sH(x; y) 0@ xy 1A�u z 1CCCA ;(4.4)for �u > 0, it is clear that (4.4) satis�es hypotheses (H1) and (H2) but that the center-stable and center-unstable manifolds intersect transversally along �. It remains to modify15



(4.4) to ensure a quadratic tangency between W cu(p0) and W cs(p0). To this end, we addterms that describe a rotation along � which does not a�ect the dynamics on the invariantcircle. The additional term is given by
 H(x; y)0BBB@ 001 1CCCA� 
 z 0BBB@ Hx(x; y)Hy(x; y)0 1CCCA ;(4.5)with linearization 0BBB@ 0 0 �
 Hx0 0 �
 Hy
 Hx 
 Hy 0 1CCCAon �. With respect to the basise1 = (0; 0; 1)T e2 = (rH; 0)Torthogonal to the tangent direction to �, the linearization acts according to the matrix0@ 0 �

 0 1A :We see that the rotation speed is given by 
. Multiplying (4.5) by a factor (1� y) has thee�ect of slowing down the rotation speed near p0 and thus does not alter the linearizationthere. Arguing as in [San94b], it is not di�cult to show that upon increasing 
 from 0there exists a smallest 
� > 0 at which the degree of rotation causes a tangency to occurbetween W cu(p0) and W cs(p0).In order to enforce this tangency to be quadratic and not of higher order we add the term0BBB@ 00(1� �x)H2(x; y) 1CCCAwhich again a�ects neither the 
ow nor the linearization on �. A proof that the tangencyis quadratic for generic values of � is postponed to an appendix.Finally, we add the perturbation ��2 (1� y)2 0BBB@ 001 1CCCA16



to break the tangency between center-stable and center-unstable manifolds. The Melnikovintegral for this perturbation is given byM2 = � Z 1�1  3(t) (1� y(t))2 dt ;(4.6)where  is the unique bounded solution of the adjoint variational equation as in (H4). Dueto 
� being de�ned as the �rst tangency for 
 > 0, it can be shown as in [San94b] that 3(t) has a de�nite sign. Therefore, the integral (4.6) is clearly non-zero. Observe thatM1 = 0, because  (t) is perpendicular to the tangent vector to �, which in turn is thederivative of the vector �eld with respect to �1. Since p0 is an equilibrium for all �2 when�1 = 0, N2 has to be zero. Thus, M = (0;M2)T and N = (1; 0) with M2 6= 0 are linearlyindependent and hence (H4)(ii) is satis�ed.The �nal example system we obtain is0BBB@ _x_y_z 1CCCA = G(y; �1)0BBB@ �yx0 1CCCA� �sH(x; y)0BBB@ xy0 1CCCA + 0BBB@ 00�u z � �2 (1 � y)2 1CCCA(4.7) +
 (1 � y) 0BBB@ �z Hx(x; y)�z Hy(x; y)H(x; y) 1CCCA+ 0BBB@ 00(1 � �x)H2(x; y) 1CCCA ;with G and H as in (4.2).4.2 Numerical ResultsThe �rst step consists of determining 
�. To this end, a de�ning equation is derived, solu-tions to which describe tangencies between the center-stable and center-unstable manifolds.This is done by using a modi�ed adjoint variational equation_w = �(A(t)T + (�s + �) id)w;(4.8)for some small � > 0, c.f. [San94b]. Here A(t) denotes the linearization of the right handside of (4.7) along the homoclinic solution q(t) at � = 0. Let  (t) be the solution of (4.8)perpendicular to Tq(t)W cu(p0), i.e. limt!�1*  (t)j (t)j; vu+ = 0;17
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Figure 5: The L2-norm of the homoclinic solutions versus �2where vs, vc and vu are eigenvectors corresponding to the negative, zero and positiveeigenvalues respectively. Then the additional term (�s + �)id ensures that  (t) convergesto zero exponentially as time tends to in�nity. Indeed, ~w(t) solves the adjoint variationalequation ddt ~w = �A(t)T ~wi� w(t) = e�(�s+�)t ~w(t) is a solution of (4.8). A tangency occurs precisely when  satis�esthe equation limt!1*  (t)j (t)j; vs+ = 0:In order to compute the homoclinic solution as well as  (t) numerically, we have to truncateIR to a �nite interval [�T; T ]. Moreover, we have to add another condition which makes (t) unique, i.e. chooses one solution out of the family c  for c 2 IR. Using the methodsin [San94b] this leads to the following system:_w = �(A(
; t)T + (�s + �)id)w; t 2 [�T; T ]hw(�T ); vci = 0hw(�T ); vui = 0R T�T hwold(t); w(t)� wold(t)i dt = 0;(4.9)where wold(t) is a solution computed for a previous value of the continuation parameter 
.The de�ning equation for a tangency is given byhw(T ); vsi = 0:(4.10) 18
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Figure 6: The (y; z)-components of the homoclinic solutions at the parameter values la-belled in Figure 5We used the code auto [DK86] in order to solve the system (4.9). Actually, we solved alarger system computing the saddle-node equilibrium as well as the homoclinic orbit, asin [BC94], and the solution  (t) at the same time. This requires three parameters � and
, because we also force the circle to be invariant by introducing an additional integralcondition Z T�T z(t) dt = 0:Using the parameter values �s = 2:0 � = 0:0�u = 1:0 T = 1000:0;(4.11)we computed 
� to be 
� = 0:9220712(4.12)for (�1; �2) = 0.Remark 1 The method used for the detection of the tangency was speci�c to our con-structed example. In practise, a tangency would be detected by following a path of homo-clinic solutions and encountering a limit point rather than solving the adjoint variationalequation. 19
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Figure 7: The period-doubling curve (plotted as log(�2) versus 1=p�1 )Figures 5 and 6 show numerical results of the computation of the saddle-node of homoclinicsolutions merging at � = 0 for the parameter values given in (4.11) and (4.12). Figure 7illustrates the asymptotic scaling behaviour of system (4.7). The primary period-doublingcurve appearing in the H�enon map is computed and plotted in a logarithmic scale corre-sponding to the scaling (3.6) used in the proof.5 DiscussionOne motivation for this work was to describe a natural two-parameter situation whichcontains the codimension-one mechanism for chaos described by Shilnikov [Shi69], causedby the existence of more than one homoclinic orbit to a saddle-node. In contrast to hisby now famous work on another codimension-one mechanism, namely that caused by ahomoclinic orbit to a saddle-focus equilibrium [Shi70], the former has received little or noattention in applications. In fact, we are unaware of any previous example in the literaturewhich exhibits this bifurcation (see the open problem in [Gle88, p. 145]). We hope thatthis paper, together with numerical methods for the continuation of saddle-node homoclinicorbits, in [BC94] for example, will provide the applied scientist with an appropriate tool kitfor �nding and analyzing the consequences of this mechanism in speci�c examples. Upontwo-parameter continuation along a branch of saddle-node homoclinics, one need onlydetect a limit point with respect to a parameter, and generically the bifurcation sequences20



described by Theorem 1 and its corollary must occur.As we have shown in Theorem 1, the unfolding of a quadratic tangency of the center-unstable and center-stable manifolds of a saddle-node equilibrium contains the H�enon map.Actually, another motivation for our work was the article by Homburg, Kokubu and Krupa[HKK93]. They conjectured that similar behaviour should occur near an inclination-
ipbifurcation due to the annihilation of a horseshoe. Up to now their conjecture remainsunsolved. In contrast to the results expected for 
ip bifurcations, the horseshoe existsin a large region of parameter space in the case studied here. Indeed, it is almost onequadrant in IR2. Another contrast with the 
ip-bifurcations is that here the scaling ofparameters depends only on the eigenvalue closest to zero rather than on the ratio ofstable and unstable eigenvalues as expected for 
ip bifurcations. The reason is that the\time of 
ight" does not depend on the non-zero eigenvalues.Fiedler [Fie92] has already proved that a non-transverse homoclinic orbit to a saddle-nodecannot be strati�ed (in his terminology) and thus must be accompanied by complicatedbehaviour, for topological reasons. Indeed, as he pointed out, a certain topological indexof one of the homoclinic orbits existing for �2 > 0 must be �1, while the index of the otheris 0. Hence it is not possible to continue the index continuously through the bifurcationpoint. However, there do not exist any N -homoclinic solutions in the unfolding of thecodimension-two point. In fact, if one considers only homoclinic and heteroclinic orbits,the bifurcation is quite simple; only the two homoclinic solutions and the heteroclinic loopdescribed in Theorem 1 exist in a neighborhood of the bifurcation, see Figure 4. Hencethe topological index introduced by Fiedler [Fie92] appears to be strongly a�ected by thenearby dynamics steming from the periodic and aperiodic solutions.The results in [Shi69] also apply in higher dimensions, including the case where someor all of the non-zero eigenvalues of the saddle-node are complex. The existence of aquadratic tangency in the complex case must therefore also force the creation of shiftdynamics. Though our analysis relied on the fact that the hyperbolic eigenvalues werereal, the methods used should be readily applicable to cases where complex eigenvaluesare present. In particular, the Poincar�e map can be constructed in a similar manner.The resulting map, however, would be de�ned on a higher dimensional section and nodescription in terms of a well-known mapping like the H�enon map seems available. Hencethe precise annihilation mechanism of the horseshoe in this case remains unknown.In addition to the two homoclinic solutions disappearing in a limit point bifurcation, other21



- say k - homoclinic orbits may exist as transverse intersections of the center-stable andcenter-unstable manifolds for the same parameter value. Then, as well as the creation ofa shift on two symbols due to the saddle-node of the homoclinic orbits, a shift on k + 2symbols must be created from a shift on k symbols, by Shilnikov's results. It should bepossible to use the analysis presented here in order to investigate this scenario also.In the introduction, another bifurcation was mentioned involving a homoclinic orbit to asaddle-node equilibrium. There, the homoclinic solution is contained in the intersection ofstable and center-unstable manifolds, for example. Assuming that k additional homoclinicsolutions are present as transverse intersections of center-stable and center-unstable mani-folds, again a shift on k+1 symbols bifurcates from a shift on k symbols. The mechanismis likely to be described by a H�enon-like map, although we are not aware of rigorous results.Appendix A. The quadratic tangencyWe start by rewriting (4.7) in the form0BBB@ _x_y_z 1CCCA = f(x; y; z) + 0BBB@ 00(1� �x)H2(x; y) 1CCCA =: F (x; y; z):(A.1)Throughout this section, � is equal to zero. Moreover, we shift time such that q(0) =(0;�1; 0). The aim of the appendix is to prove that the second term in (A.1) ensures aquadratic tangency of W cu(p0) and W cs(p0) for generic values of �. The �rst step is toderive an expression for the quadratic terms of the expansion of the center-stable manifoldat q(0). To this end, de�ne�i := q(0) + �1 vi(0) + �2  (0); i = s; u;for small � 2 IR2, as sections transverse to the homoclinic orbit at q(0). Here vi(0) 2 Tq(0)F idenotes a unit vector in the tangent space of the stable (unstable) �bre F i of the center-stable (center-unstable) manifold for i = s (i = u). Furthermore,  (t) is the uniquebounded solution of the adjoint variational equation mentioned in section 2. We willcompute the coe�cients of the quadratic terms describing the intersection of the center-stable and center-unstable manifolds with �s or �u respectively as graphs over the commontangent space Tq(0)W cs(p0) = Tq(0)W cu(p0). However, an easy calculation, using the fact22



that the homoclinic orbit is contained inW cu(p0) andW cs(p0), shows that these coe�cientsdo not depend on this speci�c choice of sections.Now, let u(t) be a solution of (A.1) lying in the center-stable manifold close to q(t) suchthat u(0) 2 �s. Decompose this solution asu(t) = q(t) + y(t);where y(t) satis�es_y(t) = DF (q(t)) y + (F (q(t) + y(t))� F (q(t))�DF (q(t)) y) :Since we are interested in second-order terms, y(t) can be decomposed intoy(t) = � vs(t) + �2 z(t);for � small, where vs(t) 2 Tq(t)F s was de�ned above. Note that vs(t) converges exponen-tially to zero as time tends to in�nity due to vs(0) 2 Tq(0)F s. A straightforward calculationshows that z satis�es_z = DF (q) z + 12D2F (q)[vs; vs] +O (� (jzj+ jvsj2) (� jzj+ jvsj))= DF (q) z + 12D2F (q)[vs; vs] +O (�) :The coe�cient of the quadratic term in the expansion of W cs(p0) \ �s is therefore equalto ws(0), where ws(t) denotes the unique bounded solution of_w = DF (q)w + 12D2F (q)[vs; vs]satisfying hw(0); vs(0)i = 0. Moreover, ws(0) is given byws(0) = Z 01h (t);D2F (q(t))[vs(t); vs(t)]i dt:Proceeding in the same manner for the quadratic term of the center-unstable manifold weobtain �nally the quadratic coe�cientscs := ws(0) = R 01 h (t);D2F (q(t))[vs(t); vs(t)] i dtcu := wu(0) = R 0�1 h (t);D2F (q(t))[vu(t); vu(t)] i dt:(A.2)Next, we compute the coe�cients by substituting the vector �eld (A.1) into (A.2). Thethird component of the second derivative of (0; 0; (1��x)H2(x; y))T is given by the matrix2 (1 � �x) 0BBB@ x2 xy 0xy y2 00 0 0 1CCCA :23



Decomposing vi(t) = �i(t) 0BBB@ �y(t)x(t)0 1CCCA + �i(t) 0BBB@ x(t)y(t)0 1CCCA + 
i(t) 0BBB@ 001 1CCCAfor i = s; u yields D2�(1� �x)H2(x; y)�[vi; vi] = 2 (1 � �x)�2i :Hence we obtain for (A.2)cs(�) = R 01 (h (t);D2f(q(t); 0)[vs(t); vs(t)]i+ 2 3(t) (1 � �x(t))�s(t)2) dtcu(�) = R 0�1 (h (t);D2f(q(t); 0)[vu(t); vu(t)]i+ 2 3(t) (1� �x(t))�u(t)2) dt;where q(t) is denoted by (x(t); y(t); 0). Suppose that cs(0) = cu(0). The derivative of thecoe�cients with respect to � are given byD�cs(0) = �2 R 01  3(t)x(t)�s(t)2 dtD�cu(0) = �2 R 01  3(t)x(t)�u(t)2 dt:Recall that  3(t) possesses a de�nite sign. Moreover, �s(t) is non-zero for large times.Therefore, at least D�cs(0) is non-zero. Furthermore, note that D�cs(0) and D�cs(0) areof di�erent sign because x(t) is positive or negative for t positive or negative, respectively.This proves that cs(�) and cu(�) do not coincide as soon as � becomes non-zero and hencethe existence of a quadratic tangency of the example is proved for generic values of �.References[BC94] F. Bai and A.R. Champneys. Numerical detection and continuation of saddle-node homoclinic bifurcations of codimension one or two. Preprint, University ofBath, 1994.[CK94] A. Champneys and Yu. A. Kuznetsov. Numerical detection and continuation ofcodimension-two homoclinic bifurcations. Int. J. Bifurcation & Chaos, 4 (1994),785{822.[CL90] S.-N. Chow and X. B. Lin. Bifurcation of a homoclinic orbit with a saddle-nodeequilibrium. Di�. Integr. Eq., 3 (1990), 435{466.24
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