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Abstract

A homoclinic orbit is considered for which the center-stable and center-unstable
manifolds of a saddle-node equilibrium have a quadratic tangency. This bifurcation
is of codimension two and leads generically to the creation of a bifurcation curve
defining two independent transverse homoclinic orbits to a saddle-node. This latter
case was shown by L.P. Shilnikov to imply shift dynamics. It is proved here that in
a large open parameter region of the codimension-two singularity, the dynamics are
completely described by a perturbation of the Hénon-map giving strange attractors,
Newhouse sinks and the creation of the shift dynamics. In addition, an example
system admitting this bifurcation is constructed and numerical computations are

performed on it.

1 Introduction

In recent years several authors have investigated the bifurcations in flows caused by
codimension-two homoclinic orbits. See, for example, [Fie92], [San93], [CK94] and ref-

erences therein. In this article we are interested in a homoclinic solution ¢(t) converging to
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Figure 1: Planar bifurcation of a homoclinic solution to a saddle-node equilibrium

a non-hyperbolic equilibrium pg, which undergoes a saddle-node bifurcation. This situation
is in fact of codimension one. Indeed, generically the homoclinic orbit is contained in the
transverse intersection of the center-stable and center-unstable manifolds of the equilib-
rium po. Therefore, the orbit v(¢) together with the stationary point py form a normally
hyperbolic manifold diffeomorphic to S, see figure 1(b).

Note that the normally hyperbolic manifold persists even under perturbations that break
the saddle-node. It is easy to determine the flow on that manifold. Either two heteroclinic
orbits appear connecting the two equilibria which bifurcate from the saddle-node py or the
manifold just consists of a periodic orbit, see figure 1(a),(c). Note that for systems in more
than two dimensions, it is of no extra codimension for more than one homoclinic orbit to
exist similtaneously to the same saddle-node. Moreover, if there are multiple - say & - such
distinct homoclinic solutions, Shilnikov [Shi69] proved that the Poincaré map restricted to
the invariant set in a neighborhood of the union of these homoclinic orbits is conjugate to a

shift on k& symbols under a parameter variation such that the stationary point disappears.

One of the objectives of this article is to show how a system may arise in which two ho-
moclinic solutions to a saddle-node equilibrium are present. To that end, we investigate
the following bifurcation of codimension two. We assume the existence of a saddle-node
equilibrium with center-stable and center-unstable manifolds both of dimension at least
two and such that their intersection fails to be transverse. Instead these manifolds should
possess a quadratic tangency at an intersection point ¢(0), see figure 2. This corresponds
to a “saddle-node” bifurcation of two homoclinic solutions which collide and disappear
as a parameter is varied. At the same time, the horseshoe proved to exist by Shilnikov

[Shi69] has to be annihilated, too. We will show that this annihilation process is precisely



Figure 2: A degenerate homoclinic orbit to a saddle-node equilibrium

given by the dynamics of a Hénon-like map. In fact, the Poincaré map in a neighborhood
of the homoclinic orbit turns out to be a small perturbation of the logistic map, under a
suitable scaling. Therefore, all phenomena like persistent homoclinic tangencies of periodic
orbits, infinitely many Newhouse sinks and period doubling sequences known to occur in
the Hénon map [PT93] are proved to exist for the unfolding of the degenerate homoclinic

orbit. We will discuss these issues as well as others in more detail in the last section.

Let us finally mention the related result on another bifurcation of codimension two in-
volving a homoclinic orbit to a saddle-node. Here the homoclinic solution is contained in
the intersection of, say, the center-unstable manifold with the stable manifold. The corre-
sponding scenario has been extensively studied in the literature, see [Luk82, Sch87] for the
two-dimensional case and [CL90, Den90] in higher dimensions. Essentially, this bifurcation
occurs on a two-dimensional manifold due to a homoclinic center-manifold reduction, see
[San93]. In contrast, we are unaware of any previous treatment of the case under investi-
gation here other than a certain index-theory result in [Fie92], see the Discussion for more

details.

The rest of this paper is organised as follows. In section 2 we state our main result and in
section 3 we prove it. As with many results in homoclinic bifurcation theory, we shall state

our theorem for systems of the lowest possible dimension only, in this case three dimensions.



However, using center-manifold results for homoclinic orbits as in [San93, San94a] it should
be easily possible to show the results to hold for systems in IR" for arbitrary n > 3. Then,
in section 4, we present an equation which will be proved to admit a non-transversal
homoclinic orbit to a saddle-node equilibrium as well as to possess a generic unfolding.
Although an artificial example, it allows for illustration of the preceding theory and serves
as a test example. Numerical methods are used to detect the codimension-two point and
to demonstrate the asymptotic scalings. In the last section we give conclusions and discuss

the relevance of our results to applications.

Acknowledgement. We thank Bernold Fiedler and Arnd Scheel for helpful discussions.
Collaboration was made possible through the support of WIAS and the visiting fellow
research grant GR/K /39653 from the U.K. EPSRC.

2 The main results

Consider the equation

(2.1) = f(u,p), (u, ) € R? x R™.

We assume that f is sufficiently smooth and that 0 is an equilibrium of (2.1) for g = 0
such that

(H1) o(D,f(0,0)) = {=X*,0, "} and A* # A" as well as —A* < 0 < \“.

Furthermore, suppose that ¢(¢) is a homoclinic orbit converging to 0 as ¢ tends to +oo,

which is neither contained in the stable nor the unstable manifold of 0, i.e.

(H2) ¢(0) € W) nW=(0)  but  ¢(0) ¢ W*(0) UW*(0).

Here W (0) and W*(0) denote respectively the center-stable and center-unstable mani-
folds of 0, see e.g. [Van89]. Moreover, we assume that the intersection in hypothesis (H2)

i1s not transverse, i.e.

(H3) W(0) and W(0) have a quadratic tangency at ¢(0).



In the appendix an analytical expression involving the nonlinearity of f only is derived
which determines whether the tangency is quadratic or of higher order. Now, we have to
impose non-degeneracy conditions on the dependence of the nonlinearity on the parameters
p. The saddle-node equilibrium and the quadratic tangency must unfold generically but
independently of each other. To this end, we define v, and w. to be respectively the
right and left eigenvectors corresponding to the zero eigenvalue, the existence of which is
ensured by hypothesis (H1). Moreover, let ¢ (¢) be the unique bounded solution of the
adjoint variational equation

w = —D, flq(t),0)" w,

see [San93] for further properties of this equation. Note that
(1) € (T,()W*(0) + Ty ()W (0))*

exists and decays exponentially to zero for { — +oo due to hypothesis (H3).
Define

(2.2) M = [, (1), Duf(q(t),0)) dt

N = <wc7DMf(O7O)>7

which are vectors in the parameter space R?. In fact, M is the usual Melnikov integral
measuring the rate of splitting of the center-stable and center-unstable manifolds. Then

the non-degeneracy conditions are given as follows.

(i) (we, DLf(0,0)[ve, ve] ) # 0

(H4)
(ii) M and N are linearly independent in IR*.

Hypothesis (H4)(i) is equivalent to the fact that the vector field restricted to the center
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Figure 3: The unfolding of the quadratic tangency
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Figure 4: The bifurcation diagram

manifold possesses a non-zero quadratic term for ¢ = 0. Owing to (H4)(ii) the saddle-
node and the quadratic tangency of center-stable and center-unstable manifolds unfold
generically and independently with respect to the two-dimensional parameter p, see section

3.

Now we can state our main result.

Theorem 1 Suppose that the assumptions (H1) up to (Hf) are satisfied. Furthermore,
assume A\ < X°, otherwise reverse time. Then, after a change of parameters e = e(u), we

obtain the bifurcation diagram given in figure 4.

Here the positive ¢1-axis consists of saddle-nodes of periodic orbits. There exists no recur-
rent dynamics for e > 0, e < 0. Moreover, the Poincaré map defined on a transverse

section is conjugate to a perturbed Hénon map
(1.2) o (5,22 4 8) 4 O(M (ly] 4|21, =P + o)

on each line ¢, = const. > 0. The error estimate is valid in the C?-topology. Here
6 = 20N e, for some function C(e) smooth for positive ¢; such that C(0) > 0. Hence,
changing €5 € [—n,n] corresponds to varying § € [—n eV 5 e/Va] for some fized ¢ > 0.

In particular, we have the following corollary.



Corollary 1 The Poincaré map for e > 0 contains period doubling sequences, persistent
homoclinic tangencies to periodic points and infinitely many periodic sinks. Moreover,

strange attractors exist.

Proof. This follows from the results obtained by Yorke and Alligood [YAS85], Mora and
Viana [MV93], and Palis and Takens [PT93], to which the reader is also referred for more

details of the bifurcation sequences giving rise to these diverse dynamical regions. O

The function C(e€) appearing in the scaling of the parameter § = ¢2¢(9Y"/Vae, does es-
sentially not depend on the eigenvalues A\° and A*. Hence the scaling involves only the

eigenvalue closest to zero which we have assumed to be \*.

3 The proof

Throughout, we assume that hypotheses (H1) to (H4) are satisfied. The geometry of the

problem under investigation is depicted in Figure 2. First, we choose coordinates such that

Wi (0,0) = {(2,0,0) / |2] < n}
W0, 0) = {(2,5,0) /|2 + |yl < n}
20,0 = {(x,0,2) /2| + |2| < n}

for all u satisfying |p| < n for some small > 0. We define
U= {(EA,y.2) [yl + |2] < n}

as sections transverse to the homoclinic solution. Then we can parametrize W (0, )N Y|

as a function over W.(0,u) N X, i.e.

(3.1) W(0,m) NS ={(=Ay,2) /2 = Gly, p) = (14 Galy, ) y* + Go(w) y + Ga()

see Figure 3. Here G;(0,0) = 0 for ¢ = 1,2,3. Observe that the coefficient of the quadratic
term can be chosen to be unity for ¢ = 0 without loss of generality. Denote the unique

minimum of G/(-, ) near (0,0) by Y (u). Then we define

The next lemma gives a connection between the vectors M and DMG(O).



Lemma 1 The relation D,G(0) = ¢ M holds for some ¢ # 0.

Proof. Note first that the constant ¢ is due to the coordinate transformation at the
beginning of this section, which did not involve a change of parameters. By the geometrical
interpretation of the Melnikov integral as the rate of splitting of the center-stable and
center-unstable manifolds, under parameter variation, it is clear that the vector M will not
change its direction under this coordinate transformation. In the new coordinates we will
actually show that

D,G(0) =M.

To verify this equality, compute

G = 1+ 60 () - EE 4 G + o)

using (3.1). Then
D,G(0) = D,G5(0)

as the G; vanish for g = 0. On the other hand, by construction, the splitting distance is
given by the vertical component G(,u) The Melnikov integral, defined as the derivative of
the splitting distance at g = 0, is therefore given by

M = D,G5(0).

This proves the lemma. a

In the proof of Theorem 1 we will make use of a C*-normal form near 0 which is given
by II’'yashenko and Yakovenko in [IY91, Thm. 5]. They consider a parametrized family
of vector fields near an equilibrium with the property that for the parameter value p =0
there exists an equilibrium the linearization of which has a single zero eigenvalue. Then
for arbitrarily large & € N this family is locally C'*-conjugate to the vector fields induced
by

o= ) el e

y = —oalz,p)y

io= Bla,p)e
Here m > 2 is the multiplicity of the zero of the vector field at ¢ = 0, and «, # and the
a; are C*-functions with «(0,0) = A*, 3(0,0) = A\* and a(0) = ¢;(0) = 0 for all i. In our



case m = 2, since condition (H4)(i) implies that the vector field restricted to the center
manifold has a double zero at 0 for g = 0, see [Sot74, GHI0]. Furthermore, we will perform
a change of parameters ¢ = ¢(p) such that ag(y) = €. At the moment, ¢; has yet to be
defined. For definiteness, we will suppose that DE2G(O) < 0 such that the center-stable
and center-unstable manifold intersect each other for e; > 0, see Figure 3.

The normal form near (0,0) then reads

T = g+ 2}l +ale) )
(32) i = —aley
2 = flx,e)z.

The normal form transformation thus “almost” linearizes the vector field.

3.1 The case ¢, <0

The normal form (3.2) already shows that for ¢ < 0 there will be no recurrence inside a
tubular neighborhood of ¢(-) . Note that in this case there are two equilibria (z7,0,0) and
(23,0,0) with invariant planes given by @ = 7 and @ = «} between which the x-component
of the vector field is negative, see figure 1(a).

To verify our statements about homoclinic and heteroclinic orbits, note that (3.1) and
Lemma 1 describe exactly how the center-unstable manifold intersects the local center-
stable manifold. Varying e, basically shifts the parabola in figure 3 up and down. Thus,
for ¢ < 0 there will be no intersection of the two manifolds. For ¢, = 0 there will be
exactly one point of intersection corresponding to either a homoclinic orbit (if ¢, = 0) or
to a heteroclinic connection between the two equilibria that arise from the saddle-node
bifurcation (in the case ¢; < 0).

For €5 > 0, there will be two points of intersection between the parabola W (0,¢) N X

and the y-axis in ¥, , leading to two homoclinic respectively two heteroclinic orbits.

3.2 The case ¢; >0

For this case we are going to show the conjugacy to a Hénon map as claimed in Theorem
1. This will be achieved via a sequence of lemmata. In the following, we assume without

loss of generality that A* < A* holds. Otherwise, we consider the vector field with time



reversed.
We begin with the calculation of the Poincaré map near the homoclinic orbit. Recall the

definition of the two sections

Se = {(£A,5,2) /Iyl + |2] < n}-

Between those sections we will consider the flow-induced maps II;,. : ¥, — ¥, and
Hppr s Xy — X5

The normal form (3.2) enables us to give a sufficiently accurate estimate for 11;,. while the
assumption (H3) on the quadratic tangency between W (0) and W(0) is essential for

estimating Il;,,.

Lemma 2 The local Poincaré map l,. : X1 — X4 is given by
C(e)A® Cle)a™
(33) Hloc(yvz) = (eL = y,e Ve Z) 9

where C(€) is a smooth function of € and ), < Cle) < C, for some positive constants C,
and Cy. The mapping 1o is CF with respect to e,.

Proof. We start with a calculation of the “time of flight” between the sections ¥, and
Y. The flow is induced by the normal form (3.2). We assume here that the sections are

taken in such a way that, for all |y, |z| < 5 and |z] < A, we have |a(e) A| < 1 and

a(x,e)  Pla,e)
a(0,0) 7 5(0,0) =G

for some positive constants C; and Cy. Note that the z-equation of (3.2) does not depend

0<01§

on y or z and hence can be integrated. This leads to

xr

tHx) = / L dw.

| a + w? + a(e)w?

The equation

thus implies

10



Writing Il in the form (—=A, ¥in, 2in) — (A, Yout, Zout), We arrive at

(a)

Your = Yin exp | — / a(x(r), €)dr
0
A

a(x,€)

dx

3.4 — _ /
(3.4) Yin €XP €1+ 22 4 a(e)x®
A

Since the integral in the exponent does not depend on y or z, it can be estimated by

/Acla(o,()) de/A ol 0 </02a0 0)
A 1L

3
61—|-§$2 A61‘|‘=’1? —I—a € + a2

Calculating explicitly the integrals on the left and right hand sides we get

~ A ~
C1a(0,0) < / a(x,€) de < C2a(0,0)
NG | a + 2?2 + a(e)a® NG

for some positive constants C; and (5 independent of y, z and e. Therefore, there exists a

C*-function

Ce) := Ve /A alz, ) dx

a(0, O)LA e1 + 2% + a(e)z?
with 0 < (4 < C(e) < Cy such that
C(e)a(0,0) Ce)A8
Yout = Yin eJ_ Ve = Yin GJ_ Ve,

The same arguments apply also to the z-equation and in exactly the same manner we get

C(€)8(0,0) Cloa™
Zout = Zip € VI = Zzye VI

For later purposes we need to show that 1I;,. is differentiable with respect to ¢;. That
this holds true is obvious from the integral representation (3.4) as the denominator never
vanishes for |y|,|z] < 7 , |z|] < A. Inductively, it can be shown that y,, and z,,; are

k-times differentiable with respect to ¢,. a

Lemma 3 After an appropriate coordinate transformation

y = §+g(¢
(3.5) L Sl
7z = Z—I—@Lﬁh()—z—l—e VT h(e)

11



the Poincaré map 11 = 1,4, o II;,. takes the form

Pz + betoy o (e lyl + €°|2]) (e*ly| + e|z] + |e])
€262 4 cePy + €9 (eLa|y| + 625|Z|2) (eLa|?J| + €ﬁ|2| + |6|)

I (y,z,¢) = (

J_cgep\s Cle)A™
for some b,c € R. Here we have set as abbreviations e*® := ¢~ va  and e’ 1= ¢ va |

while O(-) denotes the Landau order symbol.

Proof. Owing to the quadratic tangency condition (H3) and by stretching the y- and

z-axis appropriately, Il;,, can be written in the general form

A —A
Y = Z—|—f1(Z,6)Z—|—bly—|-f2(y,Z,6)y—|-f3(6)
z 4 filz. )27 + [5(z,6) 2+ bay + Joly, 2, €) y + fa(e)

with f; € C* and f;(0) = 0 for all 7, that is, when each of the arguments of f; is equal to
zZero.
An expression for the Poincaré map Il can be derived by substituting (3.3) into the above

equation. Upon making the coordinate transformation (3.5), and henceforth omitting

tildes, the map II takes the form

Fi(y,z,¢) )

Wy, 2,0) = ( Fyy, z,€)

with

Fi(y,z,e) = €24 h(e)+ fi(e’z+ h(e),¢) (¢°2 + h(e)) + by e (y + g(¢))
+ha(e™(y + gle), "z + h(e), ) e (y + g(e)) + fale) — gle)

By, o)) = (e 4 h(O) 4 il h(e), ) (% + h(O) + f(e)(e= + h())
+by e (y + g(e)) + fo(e™(y + 9(€)), "z + h(e), €) e (y + g(c))
+fr(€) — e’ h(e).

)
)

For the scaling to work it is important to remove the terms of [y that are linear in y and

to keep only terms depending on y or z in Fj. Note that

fi(e?2z 4+ hie),e) = fi(h(e),e)+ eﬁZ/DZfl(Teﬁz + hie),e) dr

= filh(e),€) +€’= D. fi(h(e), €) + O(e*|]).

12



Then

Fi(y,z,¢) = e’ z+h+ filh,e) (= +h)
+hiet(y +9)+ (e b ) e (y 4+ 9) + fole) =g
FO((lyl + el ey +9] + |e7= + 1),

and

Fa(yoz06) = (P24 )P+ falh,©) (%= + b)Y 4 D.falhoc) P=("= + h)?
+fs(e) €z + h) + by e™(y + g) + fole™ g, he) e (y + g)
+D. fa(e g, h,e) " z(y + g) + f=(€) — e Ph(e)
+O((e“ [yl + e |2P) (e [y + gl + "= + h]) ).

In order to remove the terms of F; that do not depend on 3 and z we have to solve the

equation

ht filhoe) h+bie™g + foe™g, hye) e g + fale) —g = 0.
For the z-term of F;, to vanish we have to satisfy the condition
2h + 2fs(h,€)h + D. fs(h,e) h* + fs(€) + D. fe(e**g, h.e) e**g = 0.

Obviously, ¢(0) = h(0) = 0 is a solution and by the Implicit Function Theorem the
equations can be solved locally near € = 0. The solutions ¢ = g(¢) and h = h(e) determine
the transformation given in Lemma 3. Note also that h(e) = O(|¢|). Thus, the mapping II

so far has the form

( e’z + bety ) +O( (e?lzl + ety (2] + ety | + [e])
( b

il (y,z) = P
€22 + cety + f(e) |z + e fyl)(e”|z] + e y[ + le])

where f is C* with f(()) = (. To arrive at the form of II given in Lemma 3 we set

& = f(e)

and write again ¢; instead of ¢€;. O

The following lemma completes the proot of Theorem 1.

13



Lemma 4 After the scaling

the mapping 11 is a diffeomorphic perturbation of the Hénon map
(u,v) — (v,0* +§).

Proof. After straightforward calculation, the scaling transformation leads to

I (w0, ) = ( et ) +0 ( e (Jo] + e ul) (Mol + e ul + e ) |

v? + ceftoy + e, (etfv?] + et lul)(Jv] + et]u| + e’|e])

To arrive at the form given in Theorem 1 set

(3.6) §:= ey =e VI 6.
Since C(€) is bounded, the curves § = constant are exponentially flat curves in (e, €;)-

space. As ¢ tends to 0 (with 6 fixed and therefore with e — 0 as well) the mapping II
tends to the mapping
(3.7) (u,v) — (v,0* +§)

due to our assumption A\* < A%,
For ¢; > 0, II is clearly a diffeomorphism as it is the return map of a flow. Since we have
lost one degree of differentiability in the transformation performed in Lemma 3, the map

II will be C*+'. This completes the proof. a

For the conclusions of the corollary to hold it suffices that f € C?, since our Poincaré map

IT is then C* and a diffeomorphic perturbation of the mapping (3.7), see [PT93].

4 An example

In this section an example is constructed which exhibits the codimension-two bifurcation
of the preceeding theory. The general methodology of the construction is the same as in
[San94b]. Numerical calculations performed on this example are then used to illustrate the

results in Theorem 1 and its corollary.

14



4.1 Construction

The construction is carried out step by step; the final equation being given later in (4.7).

We begin by considering the planar vector field

w () () e (7).
Y T Y

where X > 0 and

Gly,a) = sin’ (BBE) +a=1(1-y)+q

2 H(z,y) = 3(*+y*—1),

with ¢ = arctan (%) Note that (4.1) is constructed such that the zero level set of the

algebraic curve H(x,y), namely the unit circle
['={(x,y)/2* +y* =1},
is invariant under the flow. Note further that
VH(z,y)| | =1

and hence I' is normally hyperbolic and attracting with exponential rate equal to —\*.

The flow on I' is given by

205 —
(4.3) o =Gp,€e) = sin? ( 994 ﬂ-) + €1,

and therefore, when €; = 0, there exists a saddle-node equilibrium py at (x,y) = (0,1)
with eigenvalues 0 and —\®. Note that the coefficient of the quadratic term in the Taylor
expansion of the nonlinearity in (4.3) does not vanish. Hence, hypothesis (H4)(i) is satisfied
according to the statement following (H4). With ¢, =0, I'\ po is a homoclinic orbit to the
saddle-node py. Moreover, ¢; unfolds the saddle-node in a generic way, in fact, Ny = 1.
Another way of calculating N is by computing w,. and v..

Upon adding a third equation via
T —y x
(e () e ()
z AYz
for A* > 0, it is clear that (4.4) satisfies hypotheses (H1) and (H2) but that the center-

stable and center-unstable manifolds intersect transversally along I'. It remains to modify

15



(4.4) to ensure a quadratic tangency between W (pg) and W(py). To this end, we add
terms that describe a rotation along I' which does not affect the dynamics on the invariant

circle. The additional term is given by

0 H(x,y)
(4.5) YH(z,y) | 0 | =7z | Hy(z,y) |,
1 0

with linearization

0 0 —vH,
0 0 —H,
~vH, vH, 0
on I'. With respect to the basis

€1 = (0707 1)T €y = (VH,O)T

orthogonal to the tangent direction to I, the linearization acts according to the matrix

)

We see that the rotation speed is given by v. Multiplying (4.5) by a factor (1 —y) has the
effect of slowing down the rotation speed near py and thus does not alter the linearization
there. Arguing as in [San94b], it is not difficult to show that upon increasing v from 0
there exists a smallest v* > 0 at which the degree of rotation causes a tangency to occur
between W (pg) and W (pq).

In order to enforce this tangency to be quadratic and not of higher order we add the term

0
0
(1 —ra) H(z,y)

which again affects neither the flow nor the linearization on I'. A proof that the tangency
is quadratic for generic values of x is postponed to an appendix.

Finally, we add the perturbation

0
—e (1 —y)2 0
1
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to break the tangency between center-stable and center-unstable manifolds. The Melnikov
integral for this perturbation is given by

(4.6) My == [ st (1= y() dt,

loo

where 1 is the unique bounded solution of the adjoint variational equation as in (H4). Due
to v* being defined as the first tangency for v > 0, it can be shown as in [San94b] that
Ys(t) has a definite sign. Therefore, the integral (4.6) is clearly non-zero. Observe that
My = 0, because (t) is perpendicular to the tangent vector to I, which in turn is the
derivative of the vector field with respect to €. Since pg is an equilibrium for all e; when
¢; = 0, Ny has to be zero. Thus, M = (0, M3)T and N = (1,0) with M, # 0 are linearly
independent and hence (H4)(ii) is satisfied.

The final example system we obtain is

T —y x 0
(4.7) gl = Ga)| o | =NH@y) [y [+ 0
z 0 0 Nz —e(l —y)?
—z H,(x,y) 0
ty(L=y) | —zHy(z,y) |+ 0 ;
H(z,y) (1 —wa) H*(z,y)

with G and H as in (4.2).

4.2 Numerical Results

The first step consists of determining ~*. To this end, a defining equation is derived, solu-
tions to which describe tangencies between the center-stable and center-unstable manifolds.

This is done by using a modified adjoint variational equation
(4.8) W= —(A1)" + (X +1)id)w,

for some small n > 0, c.f. [San94b]. Here A(t) denotes the linearization of the right hand
side of (4.7) along the homoclinic solution ¢(t) at € = 0. Let ¢(¢) be the solution of (4.8)
perpendicular to T, W (po), i.e.
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Figure 5: The L*-norm of the homoclinic solutions versus ¢,

where v, v. and v, are eigenvectors corresponding to the negative, zero and positive
eigenvalues respectively. Then the additional term (A* 4 7)id ensures that (%) converges
to zero exponentially as time tends to infinity. Indeed, w(#) solves the adjoint variational
equation

d

i = —AW)Tw

iff w(t) = e Hap(1) is a solution of (4.8). A tangency occurs precisely when ¢ satisfies

A <%> =0

In order to compute the homoclinic solution as well as 1 () numerically, we have to truncate

the equation

R to a finite interval [—T,T]. Moreover, we have to add another condition which makes
() unique, i.e. chooses one solution out of the family ¢4 for ¢ € IR. Using the methods
in [San94b] this leads to the following system:

w=—(A(y )T+ (W +y)idw, e [-T,T]
{
1.9
(4.9) <

S (woa (), w(t) = wera(t)) dt =0,

where w,4(1) is a solution computed for a previous value of the continuation parameter ~.

The defining equation for a tangency is given by

(4.10) (w(T), v,) = 0.
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Figure 6: The (y, z)-components of the homoclinic solutions at the parameter values la-

belled in Figure 5

We used the code AUTO [DKS86] in order to solve the system (4.9). Actually, we solved a
larger system computing the saddle-node equilibrium as well as the homoclinic orbit, as
in [BCY4], and the solution 1 (#) at the same time. This requires three parameters e and
~, because we also force the circle to be invariant by introducing an additional integral

condition

/T 2(t)dt = 0.

1T

Using the parameter values

A* = 2.0 k = 0.0
(4.11)

AY = 1.0 T = 1000.0,
we computed v* to be
(4.12) ~* =0.9220712

for (€1, €) = 0.

Remark 1 The method used for the detection of the tangency was specific to our con-
structed example. In practise, a tangency would be detected by following a path of homo-
clinic solutions and encountering a limit point rather than solving the adjoint variational

equation.
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Figure 7: The period-doubling curve (plotted as log(e;) versus 1/,/¢1 )

Figures 5 and 6 show numerical results of the computation of the saddle-node of homoclinic
solutions merging at € = 0 for the parameter values given in (4.11) and (4.12). Figure 7
illustrates the asymptotic scaling behaviour of system (4.7). The primary period-doubling
curve appearing in the Hénon map is computed and plotted in a logarithmic scale corre-

sponding to the scaling (3.6) used in the proof.

5 Discussion

One motivation for this work was to describe a natural two-parameter situation which
contains the codimension-one mechanism for chaos described by Shilnikov [Shi69], caused
by the existence of more than one homoclinic orbit to a saddle-node. In contrast to his
by now famous work on another codimension-one mechanism, namely that caused by a
homoclinic orbit to a saddle-focus equilibrium [Shi70], the former has received little or no
attention in applications. In fact, we are unaware of any previous example in the literature
which exhibits this bifurcation (see the open problem in [Gle88, p. 145]). We hope that
this paper, together with numerical methods for the continuation of saddle-node homoclinic
orbits, in [BC94] for example, will provide the applied scientist with an appropriate tool kit
for finding and analyzing the consequences of this mechanism in specific examples. Upon
two-parameter continuation along a branch of saddle-node homoclinics, one need only

detect a limit point with respect to a parameter, and generically the bifurcation sequences
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described by Theorem 1 and its corollary must occur.

As we have shown in Theorem 1, the unfolding of a quadratic tangency of the center-
unstable and center-stable manifolds of a saddle-node equilibrium contains the Hénon map.
Actually, another motivation for our work was the article by Homburg, Kokubu and Krupa
[HKK93]. They conjectured that similar behaviour should occur near an inclination-flip
bifurcation due to the annihilation of a horseshoe. Up to now their conjecture remains
unsolved. In contrast to the results expected for flip bifurcations, the horseshoe exists
in a large region of parameter space in the case studied here. Indeed, it is almost one
quadrant in IR®?. Another contrast with the flip-bifurcations is that here the scaling of
parameters depends only on the eigenvalue closest to zero rather than on the ratio of
stable and unstable eigenvalues as expected for flip bifurcations. The reason is that the

“time of flight” does not depend on the non-zero eigenvalues.

Fiedler [Fie92] has already proved that a non-transverse homoclinic orbit to a saddle-node
cannot be stratified (in his terminology) and thus must be accompanied by complicated
behaviour, for topological reasons. Indeed, as he pointed out, a certain topological index
of one of the homoclinic orbits existing for €2 > 0 must be +1, while the index of the other
is 0. Hence it is not possible to continue the index continuously through the bifurcation
point. However, there do not exist any N-homoclinic solutions in the unfolding of the
codimension-two point. In fact, if one considers only homoclinic and heteroclinic orbits,
the bifurcation is quite simple; only the two homoclinic solutions and the heteroclinic loop
described in Theorem 1 exist in a neighborhood of the bifurcation, see Figure 4. Hence
the topological index introduced by Fiedler [Fie92] appears to be strongly affected by the

nearby dynamics steming from the periodic and aperiodic solutions.

The results in [Shi69] also apply in higher dimensions, including the case where some
or all of the non-zero eigenvalues of the saddle-node are complex. The existence of a
quadratic tangency in the complex case must therefore also force the creation of shift
dynamics. Though our analysis relied on the fact that the hyperbolic eigenvalues were
real, the methods used should be readily applicable to cases where complex eigenvalues
are present. In particular, the Poincaré map can be constructed in a similar manner.
The resulting map, however, would be defined on a higher dimensional section and no
description in terms of a well-known mapping like the Hénon map seems available. Hence

the precise annihilation mechanism of the horseshoe in this case remains unknown.

In addition to the two homoclinic solutions disappearing in a limit point bifurcation, other
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- say k - homoclinic orbits may exist as transverse intersections of the center-stable and
center-unstable manifolds for the same parameter value. Then, as well as the creation of
a shift on two symbols due to the saddle-node of the homoclinic orbits, a shift on & + 2
symbols must be created from a shift on £ symbols, by Shilnikov’s results. It should be

possible to use the analysis presented here in order to investigate this scenario also.

In the introduction, another bifurcation was mentioned involving a homoclinic orbit to a
saddle-node equilibrium. There, the homoclinic solution is contained in the intersection of
stable and center-unstable manifolds, for example. Assuming that £ additional homoclinic
solutions are present as transverse intersections of center-stable and center-unstable mani-
folds, again a shift on &+ 1 symbols bifurcates from a shift on k& symbols. The mechanism

is likely to be described by a Hénon-like map, although we are not aware of rigorous results.

Appendix A. The quadratic tangency

We start by rewriting (4.7) in the form

T 0
(A.1) gy | = fla,y,2) + 0 =: F(x,y,z).
p? (1 —rax)H*(z,y)

Throughout this section, € is equal to zero. Moreover, we shift time such that ¢(0) =
(0,—1,0). The aim of the appendix is to prove that the second term in (A.1) ensures a
quadratic tangency of W (pg) and W(po) for generic values of k. The first step is to
derive an expression for the quadratic terms of the expansion of the center-stable manifold

at ¢(0). To this end, define
1= q0) +mr vi(0) 4 ma (0), i =s,u,

for small n € IR?, as sections transverse to the homoclinic orbit at ¢(0). Here v;(0) € Tq(o)}—i
denotes a unit vector in the tangent space of the stable (unstable) fibre F* of the center-
stable (center-unstable) manifold for ¢ = s (¢« = w). Furthermore, ¢(t) is the unique
bounded solution of the adjoint variational equation mentioned in section 2. We will
compute the coefficients of the quadratic terms describing the intersection of the center-
stable and center-unstable manifolds with ¥* or X" respectively as graphs over the common

tangent space Ty o)W (po) = Tyo)W(po). However, an easy calculation, using the fact
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that the homoclinic orbit is contained in W (po) and W (pg), shows that these coefficients
do not depend on this specific choice of sections.

Now, let u(t) be a solution of (A.1) lying in the center-stable manifold close to ¢(?) such
that u(0) € ¥°. Decompose this solution as

u(t) = q(t) +y(1),

where y(t) satisfies
(1) = DF(q(t))y + (Flq(t) + y(t)) — Fq(t)) — DF(q(t)) y).
Since we are interested in second-order terms, y(t) can be decomposed into
y(t) = vos(t) + v 2(1),

for v small, where v,(t) € Ty»F*® was defined above. Note that v,(t) converges exponen-
tially to zero as time tends to infinity due to v,(0) € TyyF*. A straightforward calculation
shows that z satisfies
¢ = DF(q)z+ 3 D*F(Q)vs,vs] + O (v (|2] + [vs]?) (v |2] + [vs]))
= DF(q)z+ 3D*F(q)[vs,vs] + O (v).

The coefficient of the quadratic term in the expansion of W (py) N X° is therefore equal

to w,(0), where w;(t) denotes the unique bounded solution of
1
w=DF(qg)w+ §D2F(q)[v5, vs]

satisfying (w(0),v5(0)) = 0. Moreover, w,(0) is given by
0

w,(0) = [ {0 (0), DAF(g(0)[eaft), 0s(1)]) di.

Proceeding in the same manner for the quadratic term of the center-unstable manifold we

obtain finally the quadratic coefficients

cs = wi(0) = [ (e(1), D2F(q(t))[oslt), vs(t)]) dt

(A.2) -
co = wa(0) = [0 (0(1), DEF(g(t)[oult), vul(1)]) dr.

Next, we compute the coefficients by substituting the vector field (A.1) into (A.2). The
third component of the second derivative of (0,0, (1 —x x)H?*(z,y))? is given by the matrix

22 zy 0
2l —ra) | 2y y* 0
0 0 0
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Decomposing

—y(t) (1) 0
vilt) =au(t) | w(t) [ +8:(0) | y) | +%() | 0
0 0 1

for ¢« = s, u yields
D? ((1 — k) Hz(x,y))[vi,vi] =2(1 —ra) .

Hence we obtain for (A.2)

es(m) = [ ((0(1), D2 f(q(t), 0)[vs(t), vs(t)]) + 2005(t) (1 — s () Bs(1)?) dt
cu(r) = Lo (((1), D*f(q(t), 0)[vu(t), vu(D)]) + 2b5(t) (1 — £ (1)) Bu(1)?) dL,

where ¢(t) is denoted by («(¢),y(t),0). Suppose that ¢;(0) = ¢,(0). The derivative of the

coefficients with respect to k are given by

Deca(0) = =2 2 () x(t) Bu(1)* dr
Daca(0) = =2 2 u(t) alt) Bu(1)? di.

Recall that t5(t) possesses a definite sign. Moreover, 3s(t) is non-zero for large times.
Therefore, at least D,cs(0) is non-zero. Furthermore, note that D,cs(0) and D,c,(0) are
of different sign because x(t) is positive or negative for ¢ positive or negative, respectively.
This proves that ¢;(x) and ¢,(x) do not coincide as soon as £ becomes non-zero and hence

the existence of a quadratic tangency of the example is proved for generic values of «.
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