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Abstract

The Kirchhoff-Love equations governing the spatial equilibria of long thin elastic rods
subject to end tension and moment are reviewed and used to examine the existence of
localized buckling solutions. The effects of shear and axial extension are not consid-
ered, but the model does additionally allow for nonlinear constitutive laws. Under the
assumption of infinite length, the dynamical phase space analogy allows one to use tech-
niques from dynamical systems theory to characterise many possible equilibrium paths.
Localizing solutions correspond to homoclinic orbits of the dynamical system. Under
non-dimensionalisation the twisted rod equations are shown to depend on a single load
parameter, and the bifurcation behaviour of localizing solutions of this problem is inves-
tigated using analytical and numerical techniques.

First, in the case of a rod with equal principal bending stiffnesses, where the equi-
librium equations are completely integrable, a known one-parameter family of localizing
solutions is computed for a variety of subcritical loads. Load-deflection diagrams are
computed for this family and certain materially non-linear constitutive laws are shown to
make little difference to the qualitative picture.

The breaking of the geometrical circular symmetry destroys complete integrability and,
in particular, breaks the non-transverse intersection of the stable and unstable manifolds
of the trivial steady state. The resulting transverse intersection, which is already known
to lead to spatial chaos, is explicitly demonstrated to imply multitude of localized buckling
modes. A sample of primary and multi-modal solutions are computed numerically, aided
by the reversibility of the differential equations.

Finally, parallels are drawn with the conceptually simpler problem of a strut resting
on a (non-linear) elastic foundation, for which much more information is known about the
global behaviour of localized buckling modes.



1 Introduction

In an earlier paper (Thompson & Champneys 1995), we considered experimental aspects of the
buckling of long, thin elastic rods subject to applied end loads, and used energy methods to
compare the characteristics of two buckling modes. In the present paper we extend this analysis
using a mathematical formulation of equilibrium equations for the idealisation of an infinitely
long rod. We concentrate almost exclusively on localizing solutions, and use dynamical systems
techniques to extend our focus to a potentially infinite number of buckling modes.

The study of the three-dimensional spatial equilibria of thin elastic rods dates at least as
far back as Kirchhoff (1859). He showed that there is a direct analogy between the equations
describing equilibrium positions of an infinite rod and the dynamics of a spinning top (see also
(Mielke & Holmes 1988, Davies & Moon 1993)). This was the first example of what is now
known as the dynamic phase space analogy. Here, the arclength s along the central axis of
the rod plays the role of time. If one considers infinite rods with all constraints applied at
one end, then the analogy with an initial-value problem is complete. Care has to be taken,
however, to treat the appropriate two-point boundary-value problem when considering rods of
finite length or localizing solutions of rods that are assumed to be infinite. Love (1927) noticed
that an ordinarily straight rod whose principal bending stiffnesses are equal can be bent via
end forces and moments into the form of a helical wave, corresponding to a periodic orbit of the
spinning top. The key to this analysis was the recognition that the Kirchhoff-Love equations are
completely integrable. More recently, Coyne (1990) showed that the same integrability implies
the existence of a localizing solution, corresponding to a homoclinic orbit of the dynamical
system. An analysis of the comparative bifurcational behaviour of these two classical buckling
modes is given in (Thompson & Champneys 1995).

The modern theory of elastic rod buckling began with the work of Antman and co-workers
(see Antman & Kenney (1981) and references therein). They consider a more general formu-
lation that allows additionally for shear deformations and axial extensibility of the material of
the rod, as well as for arbitrary constitutive laws (“stress-strain” relations). Mielke & Holmes
(1988) exploited the Hamiltonian structure of such a formulation to show that, for the more
general model of Antman and Kenney, circular symmetry in the cross-section of the rod always
implies complete integrability. In the present setting, this implies the existence of a contin-
uum (a smooth manifold) of localizing solutions. Some other symmetry properties of rods with
polygonal cross-sections are taken up in Buzano, Geymonat & Poston (1985) and Pierce (1991),
but do not concern us here.

The main result of Mielke & Holmes (1988) is to show that abandoning circular symmetry
(e.g. considering a tape, rather than a tube) in general destroys complete integrability and hence
breaks the non-transverse intersection of stable and unstable manifolds along the manifold of
localizing solutions. Melnikov’s method is then used to argue the existence of spatially chaotic
solutions nearby. Davies & Moon (1993) used a physically unrealistic model of a twisted rod
subject to no external forces, but with a periodic non-uniformity along its length, to compute
beautiful 3D pictures of some spatially chaotic equilibria. It was not stated by Mielke and
Holmes, but is argued in §3 below, that the spatial chaos also implies the existence of infinitely
many multi-modal homoclinic solutions (see, for example, Fig. 12 below). These solutions
represent localized buckling modes which, as shown in (Thompson & Champneys 1995), are
the physically prefered modes for long rods.



Finally, we mention related work on the dynamics of rods, especially on solitary waves
(e.g. Coleman, Dill, Lembo, Lu & Tobias (1993), Maddocks & Dichman (1994), Dichmann,
Maddocks & Pego (1993)) which with zero wavespeed represent localized static modes.

The aim of the present paper is to present for the first time a coherent account of the
multiplicity of localized buckling modes arising in the Kirchoff-Love Theory. We present an
elementary derivation of the equilibrium equations of an infinite rod subject to applied end
moment and tension. A new non-dimensionalisation of this model shows that the equations are
characterised by only two dimensionless parameters, representing the loading and the cross-
sectional geometry. We then go on to explore by linearisation, generic dynamical systems
arguments and numerical computations, the existence of localized buckling modes in various
regions of parameter space, with both linear and nonlinear constitutive laws. In the simplest
case (when the geometric parameter is zero and with linear constitutive laws) we recover known
results, thus justifying our numerical methods. In all other cases our numerical results are
completely new.

Our results show remarkable similarities with those known for a model of an infinite strut
resting on a nonlinearly elastic foundation ! for which a lot of information on the global struc-
ture of multi-modal homoclinic solutions is now known (Thompson & Virgin 1988, Hunt, Bolt &
Thompson 1989, Hunt & Wadee 1991, Amick & Toland 1992, Buffoni & Toland 1994, Champ-
neys & Toland 1993, Buffoni, Champneys & Toland 1994). In contrast, far less is known about
spatial localisation in twisted rods. Thus, the strut model gives indications of further global
results we may expect to hold for the rod.

The rest of the paper is outlined as follows. In §2 we consider the mathematical formulation
of the twisted rod problem. §3 then concerns linearisation, existence theory, normal-form and
symmetry arguments applied to this system. §4 contains numerical computations of localizing
solutions. The results in §3 and §4 are presented for three different types of rod: for circular
rods with either linear or certain non-linear constitutive laws, and for non-circular rods with
linear constitutive laws. Finally, in §5 we draw comparisons with the simpler elastic strut model
and make suggestions for future work.

2 Twisted rod equations

Our formulation of equilibrium equations for a twisted rod follows the seminal treatment in
Love (1927) using the notation of Davies & Moon (1993). We additionally allow for more
general constitutive equations (Antman & Kenney 1981). Note that, as in Love, we do not
consider the effects of shear deformations or axial extensions of the rod, although a consistent
formulation requires their inclusion (see Antman & Kenney (1981), Mielke & Holmes (1988)
and §2.1 below). We also ignore gravity or any other external forces applied other than at the
ends of the rod. While we do not expect these extra effects to qualitatively alter our results,
we shall leave their investigation to future work.

!which equation also describes in a mathematically rigorous sense, solitary water waves in the presence of
surface tension(Champneys & Toland 1993, Buffoni, Groves & Toland 1995)



2.1 Forces and Moments

Consider an infinitely long, thin rod which, when subject to no external forces, is straight and
prismatic with a uniform cross-section. We suppose that the rod is subject to loads in the form
of a twisting moment M about the centerline and tension T applied at its ends, see Thompson
& Champneys (1995, Fig. 1). In order to describe the spatial configuration of the rod, choose an
origin for an arclength co-ordinate s and then define r(s) to be the position vector of the centre
line. Define a right-handed set of co-ordinates (z,y, z) such that z points along the centre line
of the rod at s = 0, i.e. 7'(0) = (0,0,1), and any cross-section of the unstrained rod that is
orthogonal to the centre line lies parallel to the (x,y)-plane. In addition, define a rod-centred
moving orthonormal co-ordinate system (ei(s), es(s), es(s)) to be such that es(s) = 7'(s) is
everywhere tangent to the central axis of the rod, and e; »(s), which together define the cross-
section at s, are fixed to the material of the rod that, when totally unstrained, was aligned with
the r and y axes respectively.
As dependent variables for the dynamical analogy, we will take the contact forces (Fi(s), Fy(s), F3(s))

and couples (G1(s), Ga(s), G3(s)), defined such that the resultant force F () and moment G($)
exerted by the material parametrised by s < § on that with s > § are given by

f(@) = F1(§)61 + F2(§)62 + F3(§)63, Q(@) = G1(§)61 + G2(§)62 + G3(§)63. (21)

Here F} 5 are shear forces, Fjy is tension, Gy » are bending moments about the axes e; , and G
is the twisting moment about the centre line.

Now, let the strain of the rod be given by Q(s) = k1(s)e; + ka(s)es + 7(s)es, where 7 is the
torsion or rate of twist about the centerline (see Thompson & Champneys (1995, §4.1a)), and
K1, are the principal curvatures about e,y respectively. Then, balancing forces and moments
at arclength s leads to the equations (cf. egs. (10),(11) in art. 254 of Love (1927))

F = FxQ
G = GxO—eyxF,

where all vectors are expressed with respect to the moving basis (ej, s, €3). Note that to take
shear and axial-extensibility into account requires the definition of an additional ‘strain’ vector
v whose first two components are shears in the directions ey, and whose third component is
axial extension. The inclusion of these effects into the model leads only to the addition of a
term v X F to the right-hand side of (2.3) (cf. eq. (2.7) of Mielke & Holmes (1988)) and a
re-definition of the derivative since the unstrained arclength s no longer measures the length of
the centre line of an axially extended rod.

2.2 Constitutive relations

It remains to specify the strains 2 in terms of the stresses F and G. The simplest assumption
(cf. art. 255 of Love (1927)) is to take linear constitutive laws

leGl/A, KQ:GQ/B, T:Gg/c,

where A and B are the principal bending stiffnesses (about the e; and e, axes respectively) and
C the torsional stiffness of the rod. The assumption of a circular cross-section implies A = B
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(B is the constant appearing in the linear eigenvalue condition in Thompson & Champneys
(1995, eq. (2.1))).

Since we shall be interested in large-amplitude deflections it is realistic to include the effect
of nonlinearities in the constitutive relations. Following Antman & Kenney (1981), under the
assumption of transverse isotropy (i.e. the material properties obey circular symmetry about the
centre line), and keeping only the lowest-order nonlinear terms, the most general constitutive
relations take the form

k1 = GiufA, ke =Gyu/B, T =G3n/C, (2.4)
where

WF,G) = 14+ oG+ G Fy + asF} + auGs + asGoFy + agFy + oGS + agFy | (2.5)
N(F.G) = 145G+ BGiFy+ B FY + BiGy + B5G2Fy + BoFy + B:G5 + BsFy, (2.6)

for constants «;, 3;, i = 1,...8, subject to certain constraints (see Antman & Kenney (1981,
Eqgs. (2.20),(2.21))).

Given the relations (2.4)-(2.6), the equations (2.2), (2.3) define a dynamical system in a
six-dimensional phase space with co-ordinates (G4, Gy, G3, Fy, Fy, F3).

2.3 Transformation to physical space co-ordinates

Under the given assumptions, a solution to (2.2), (2.3) completely specifies an equilibrium
configuration of the rod. However, in order to interpret such a solution in terms of the fixed
co-ordinates (x,y, z), one has also to solve the so-called Frenet-Seret equations of differential
geometry (cf. egs. (5) of art. 253 in Love (1927))

e,=0xe, i=1,23, (2.7)
as well as the obvious defining equations for the centre line
' = es. (2.8)

Taking as dependent variables the x, y and z components of each of the vectors e;, 1 =
1,...,3, and 7, the equations (2.7) and (2.8) form a coupled system of twelve ODEs that
should be solved in tandem with (2.2) and (2.3), but contain no new dynamical information.
Instead they should be considered as “slaves” which post-process the data obtained from the
dynamical system. (Here we are thinking of an initial-value problem; when solving a boundary-
value problem one may have to consider (2.2), (2.3), (2.7) and (2.8) as a completely coupled
system, depending on how exactly the boundary conditions are imposed, cf. Mahadevan &

Keller (1993, 1995)).

2.4 Non-dimensionalisation

First note that the applied twisting moment M and tension 7' do not enter equations (2.2) and
(2.3). However, if we make the change of variables

ﬁgZFng, égZGng, (29)



then, under a given (pre-fixed or controlled) load (M, T'), the trivial equilibrium position of the
rod is (Fy, Fy, Fy, G1, Gy, G3) = (0,0,0,0,0,0), the origin of the new phase space.
Second, note that we can non-dimensionalise by defining new variables

leFl/Ta 'TQZFQ/Ta 'TSZF?)/T

JI4:G1/M, ZE5:G2/M, ZE(;:ég/M, (210)
re-scaling the axial length via
t M (2.11)
=—35 .
B 3
and introducing the dimensionless parameters
m=M/VBT, p=(B/A)—-1, v=(B/C)-1. (2.12)

In the dimensionless variables the equations (2.2) and (2.3) become

i1 = (1+v) (@) s (1+ 26) — i(x) (1+ x3) 25 )

iy = (1+p) a(x) (1+x3) x4 — (1 +v) () 21 (1 + 26)

i3=ﬂ() x5 — (1+p) f(x) T9 74 (2.13)
iy =[(1+ )77() i(x) | 25 (1 + x6) + 22/m? '
a5 = [(1+p) jp(x) = (1+v)i(x)] 2 (1 +26) — 21/m

T = —pii(T) 14 15 )

where ‘-’ denotes differentiation with respect to the new arclength ¢ and j(x),7(x) are non-
dimensionalised versions of u(F,G),n(F,G):

[L(ﬂf) =1+ (]/11‘42 + o4 + (]/31‘12 + (L4.’I)52 + a5T5%T9 + (1/61‘3 + (]/7(]. + 1‘6)2 + (]'8(]- + .’Eg)z, (214)
ﬁ(ﬂj) =14+ blxﬁ + b2$4$1 + bq(E% + b4(E§ + b5(E5JI2 + bﬁl‘% + b7(1 + IE(;)2 + bg(l + (Eg)z, (215)

for dimensionless constants a;,b;, i = 1, ..., 8, related to the «;, ;.
The dimensionless versions of (2.7) and (2.8) are

e = QOxe, i=1,23, (2.16)
o= e, (2.17)

where
Q: (1+p)ﬂ1‘4 €1 +/~LJI5 €2+(1+V)ﬁ(1+1'6) €3 and 7= (M/B)’l”

2.5 Integrals of the motion

Mielke & Holmes (1988) show that, for general constitutive laws (including the case where shear
and axial extensibility are included), the equations (2.2) and (2.3) represent an autonomous
Hamiltonian system of three degrees of freedom (i.e. a six-dimensional phase space). The
Hamiltonian function is related to the strain energy function of elasticity theory. Furthermore,
in Mielke & Holmes (1988, §3) it is shown that the Hamiltonian system is degenerate, because
there always exist two independent integrals of the motion corresponding to the conservation



of the magnitude of force and the component of torque about the loading axis along the axial
length of the rod. That is, for any given solution of (2.13),

|FI” = 27+ x5+ (z3+ 1)* = const., (2.18)
(F,G) = xaxqg+zoxs+ (14 x3) (14 26) = const., (2.19)

for all £. Thus, the dynamics of a trajectory of (2.13) with given |F| and (F, G) may be regarded
as evolving in a four-dimensional phase space, independent of the constants a;, b;, p and v.

Love (1927, art. 260) considers the special case of linear constitutive laws, i.e. taking 77 =
fo = 1. Then, note that eliminating z; and z, in the third equation of (2.13) using the last
three equations, results in a total derivative, namely that

H =25 +m” [(1+ p)a} + 22 + (1 +v)(ws + 1)?] = const. (2.20)

The function H is the Hamiltonian for this case. A similar (but algebraically more cumbersome)
expression for the Hamiltonian function could be derived in the case of general 77 and . Note
that (2.18), (2.19) and (2.20) do not represent three independent isolating integrals of (2.13)
and therefore, the Hamiltonian system is not necessarily completely integrable in the classical
sense (see for example Lichtenberg & Lieberman (1992, §1.3)).

Given the additional simplification of a rod with circular cross-section (or a rod with linear
constitutive relations for which the principal bending stiffnesses are equal, e.g. a rod having
square cross-section) we have that A = B and hence p = 0. Note that the right-hand side
of the final equation of (2.13) then becomes identically zero. Hence, we obtain the additional
integral (cf. eq. (33) in art. 269 of (Love 1927))

xg = const. (2.21)

Now (2.18), (2.19) and (2.21) do represent three independent isolating integrals, and hence the
system is completely integrable, which specifically precludes the possibility of chaotic solutions.
It is the existence of the three integrals (2.18)-(2.21) in this special case that has allowed a
detailed analysis of the helix and localizing solution (Love 1927, Coyne 1990, Coleman et al.
1993, Thompson & Champneys 1995).

2.6 The three cases

In what follows we shall consider the above model in the three special cases:
1. Circular cross-section, linear constitutive relations; p =0, g =n = 1.
2. Circular cross-section, simplest non-linear constitutive relations; p =0, g =1, by, bg # 0.
3. Non-circular cross-section, linear constitutive relations; p # 0, p =171 =1.

Note that, according to the theory of §2.5, Cases 1 and 2 imply complete integrability,
whereas 3 does not. We remark that the nonlinear constitutive relations in Case 2 describe a
softening (or hardening) in the twisting moment vs. torsional strain relation, which may well
be realistic for the modeling of helically reinforced electrical and marine cables (Coyne 1990,
p. 73).



3 Analytical considerations

In this section we discus some analytical results applied to (2.13) of relevance to the torsional
buckling of long rods Our interest is in localizing solutions, that is solutions that satisfy the
homoclinic boundary conditions

x — 0ast — +o0,

as these were shown in Thompson & Champneys (1995) to be the physically preferred buck-
ling modes for long rods. Hence, employing the Kirchhoff dynamical analogy of the spatial
configuration of rods, we regard (2.13) as a six-dimensional dynamical system on the real line,
for which we are interested in only homoclinic solutions to the origin. First we consider the
linearisation at the origin, which is crucial for the multiplicity results which follow.

3.1 Linearisation

Upon linearisation of (2.13) about the trivial equilibrium & = 0, one obtains the characteristic
polynomial

M+ (02 = a(Q+bN)) R—a(Q +bN) + 2*N?| M
+[((Q% + 1 N? — 2QbN)a? + (QU*N? — B'N*)a) R+ (QU*N? — 'N¥)a + b'N'| X (3.1)

where
b=1+4+b;+bs, a=1+a;+as, N=(1+v), R=(1+p) and Q=1/m’.

Note that there are thus always two trivial eigenvalues. The corresponding eigenvectors are
aligned along the x3 and x4 axes, due to the existence of other equilibria with arbitrary non-
zero constant values of x3 and x5. Moreover, the eigenspace corresponding to the other four
eigenvalues is orthogonal to these axes. We now consider the behaviour of the four non-trivial
eigenvalues in each of the three special cases mentioned above, and the implications for the
physical stability of the trivial equilibrium position.

Case 1 Under the substitution p = 0, i = 7) = 1, the non-trivial roots of (3.1) become

% (j:\/m +i(1+ 21/)) (3.2)

From the form of these eigenvalues we note that when m = m,. = 2, there are a two double
imaginary eigenvalues +i (1 + 2) and that as m varies through m,., a Hamiltonian Hopf
bifurcation occurs (van der Meer 1985). As m varies, the stability of the trivial equilibrium
is as depicted in Fig. 2(b) of Thompson & Champneys (1995); the origin is a saddle-focus
(a complex quadruple of eigenvalues) for 0 < m < 2, and it is a center (four imaginary
eigenvalues) for m > 2. Recall also from that figure that a saddle-focus corresponds to the
spatial stability of the trivial equilibrium and a center to its instability. Note finally, that
m. = 2 corresponds to the dimensionless version of the classical Timoshenko eigenvalue
condition; the condition (2.1) in Thompson & Champneys (1995).



Case 2 Substituting just p = 0, into (3.1) results in the non-trivial roots

% (i\/W +i(2b(1 + v) — a)) . (33)

Putting « = 1 and b = 1 + b; 4+ bg we get that the critical load is still m, = 2 and that
the stability of the trivial equilibrium is qualitatively the same as case 1, provided

1
— — 1. 3.4
5 (3.4)
Recall Thompson & Champneys (1995, §2) that v is Poisson’s ratio in the case of linear

constitutive relations, and taking v ~ 1/3 in the limit of small b — 1, we see that (3.4) is
satisfied in this limit.

v #

Case 3 Upon introduction of non-zero p into (3.1), the nice closed form expression (3.3) for the
non-trivial eigenvalues disappears, even after assuming linear constitutive laws (setting
a = b = 1). However, by setting (3.1) and its A-derivative equal to zero, we can find
an expression for m,, the m-value at which a Hamiltonian-Hopf bifurcation occurs (more
specifically this is the condition for a double eigenvalue and will also pick up other bi-

furcations or degeneracies in eigenvalues). Hence we obtain that m, is given by solutions
of

pzmg4+(—16 v—16v° —8pv’ +2p —4+2 pQV) m, 4 pr*+4 v +1+4v+2 pr+p°v = 0.
(3.5)

Solutions of (3.5) for the typical value v = 1/3 are given in Figurel(a). Here, for each
1/3 = pmin < p < Pmaz = 5/3, there are three branches of roots. The branch m =
me > 0, that emanates from m = 2 at p = 0 corresponds to a locus of Hamiltonian-
Hopf points. This branch reaches an end point at p = ppe, by forming a limit point
with another branch m = m,;, which emanates from m = 0 in the integrable case, and
corresponds to a curve of pairs of double real eigenvalues; i.e. eigenvalues of the form — A\
(twice) and A (twice). This is not a bifurcation in the classical sense, but corresponds
to the transition at P = —2 for the strut problem. Thus we have that the eigenvalues
form a complex quadruple for my < m < me (see Fig. 1(b)). On the highest branch,
m = M., there is a bifurcation caused by two zero eigenvalues (see the Fig. 1(h) for the
implications of this for p < p,..). This curve of steady-state bifurcations emanates from
infinity at p = pmin = 1/3, and there is a quadratic tangency between the top two curves
at p = p. = 1.106395, at which point all eigenvalues are zero.

For a general value of the ratio v, we have the same qualitative picture as Fig. 1, including
the tangency between m,, and m.,, but with

32 — 1V +5 (1 4 v)®/2
2+ 4v

Pmin =V, Pe= ; pmaz:1+2l/-

Thus we have identified two codimension-two points which warrant further investigation;
which occur as m varies for p = p. and p = pp4.- A normal form respective to the former
codim 2 point has been partially analysed by Iooss (1992).



Im Im

Re Re

O<m<m, my<m<m, mMy<m<m, m>mg

Figure 1. (a) Loci m,. of bifurcation points against p in Case 3 with v = 1/3, see text for
interpretation of curves; (b) the non-trivial eigenvalues of the linearisation about 0 for a typical

value of pmin < p < Pmaz-
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3.2 Symmetry and multiplicity of homoclinic orbits

Recall from §2.5 that (2.13) may be regarded as a Hamiltonian system in a four-dimensional
phase space. Moreover, as mentioned in the §2.6, in Cases 1 and 2 (2.13) completely integrable.
As a consequence of this, for m < m,. when the origin is a saddle-focus, it is known that the
unstable manifold of the origin coincides with the two-dimensional stable manifold, giving a
one-parameter family of homoclinic solutions. Computations of solutions in this one-parameter
family are presented in §4 below.

Breaking the circular symmetry, by introducing non-zero p (Case 3), was shown by Mielke
& Holmes (1988) to lead to isolated homoclinic orbits which represent transverse intersections
of the stable and unstable manifolds of 0. The result of Devaney (1976a) (see also Wiggins
(1988, p. 275)) applied to such a homoclinic orbit implies the existence of spatial chaos via
the explicit construction of Smale horseshoes. Of more importance to us, although not stated
explicitly by Devaney or Mielke & Holmes, is the existence of infinitely many extra multi-modal
homoclinic orbits implied by the construction (see (Belyakov & Shil'nikov 1990, Buffoni et al.
1994), see also §4.4 below for the computation of such solutions for the present model). Note
that Mielke & Holmes’ is a local perturbation result valid for small p. However, transversality,
the only additional requirement for Devaney’s theory to apply, is a generic phenomenon for
homoclinic orbits to saddle-focus equilibria in Hamiltonian systems.

An important feature of (2.13) is that, independent of the values of the constants p, a; and
b;, it is invariant under two different transformations

Rl : (xy,79,%3, %4, T5,26) — (—T1, %9, T3, — T4, T5,T) t— —1, (3.6)

R2 (xlam27x3ax4am5ax6) - ('1/‘177'1"27'7"3ax4a7'7"5ax6) t— —t.

For these transformations to define a reversibility in the sense of (Devaney 1976b), we require
that the dimension of the set that is fixed by the transformation is half that of the underlying
phase space. Recalling the result that solutions of (2.13) with given |F| and (F,G) may be
viewed as evolving according to a four-dimensional dynamical system, we see that R1 and R2
do indeed define reversibilities in the classical sense. For transverse homoclinic orbits to saddle-
focus homoclinic orbits in systems which are reversible, it is known (Champneys 1994, Hirterich
1993) that there will be infinitely many multi-modal homoclinic orbits that are symmetric,
that is invariant under the reversibility. This observation will prove useful in the numerical
computations that follow.

Also, Tooss & Peroueme (1993) have analysed the normal form for a Hamiltonian-Hopf
bifurcation in a reversible system. They showed that if a certain coefficient of the normal form
is negative then, generically, a pair of symmetric small-amplitude homoclinic orbits bifurcate
subcritically at the Hamiltonian Hopf bifurcation (that is, they exist for m < m, in the present
context). Here, though, if such a condition holds we should expect the bifurcation of four small
amplitude homoclinic orbits; one pair for each of the transformations (3.6) and (3.7). Again,
if these orbits satisfy a transversality condition, there will exist infinitely many multi-modal
homoclinic orbits (localized buckling modes) in the vicinity of the Hamiltonian Hopf point. By
computing just such solutions in §4.4 below, we present strong a posteriori numerical evidence
that the normal-form and transversality conditions do hold for a non-zero value of p < p4z-

Furthermore, the system (2.13) is Zy-symmetric, independent of the values of the physical
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parameters. Specifically, it is invariant under the transformation
Z : (x17$27$37x47x57$6) - (_xla_x27$37_x47_x57x6)- (38)

Note that this transformation defines a symmetry rather than a reversibility and implies that
all orbits not in the invariant subspace {x; = 23 = x4 = x5 = 0} must either be themselves
symmetric (i.e invariant under Z and a time shift) or come in pairs that are the images of
each-other under Z (see, e.g., Golubitsky & Schaeffer (1985)). Note from (2.13), however, that
if z;(f) = 0 for i = 1,2, 4,5 at some time #, then @(f) = 0 and hence () = 0 for all . The only
such solutions are given by x3 = const., xg = const. and correspond to the trivial equilibrium
position at different applied loads M and T'. Hence, we have that all non-trivial solutions must
occur in pairs, being images of each other under Z. This symmetry has a simple interpretation
in terms of the physical space variables r(¢). It corresponds to a half-rotation about the z-axis
(the centerline of the unstrained rod). For Cases 1 and 2, where the cross-section of the rod is
circular (p = 0), this is just one example of the wider symmetry of arbitrary rotations of the
equations about the z-axis. In case 3, the symmetry is again obvious on physical grounds; one
can rotate a tape through 180° and find exactly the same equations.

It is not clear, without further analysis, whether the two reversible homoclinic orbits pre-
dicted by the normal form for a given reversibility will be images of each other under Z or not.
If they were not, then we would expect the local birth of eight, rather than four, reversible
homoclinic orbits from the Hamiltonian Hopf bifurcation when p # 0.

4 Numerical Results

4.1 Boundary Conditions

In order to compute localized buckling responses, we shall treat the dimensionless load parame-
ter m as prescribed and look for solutions to (2.13) with ¢ € (—o0, ), satisfying the homoclinic
boundary conditions

T = ($1,$2;«T3,$4,$5,$6) —0 as t— +oo.

Computations on an infinite interval are not feasible, and so we truncate to a finite interval
t € [0,7], and apply approximations to the asymptotic boundary conditions, described as
follows. For (2.13), with 0 < m < m, (or 0 < m < m3 in Case 3), the trivial equilibrium has
eigenvalues of the form
0,0, £X £+ w

(A,w > 0). An appropriate left-hand boundary condition is then
23(0) = 26(0) =0, Ls(m)x(0)=0 (4.1)

(cf. Beyn (1990) and references therein), where Ls(m) is the projection matrix onto the left
eigenspace corresponding to the stable eigenvalues —\ + iw. This boundary condition places
the solution in the unstable eigenspace of 0. An appropriate right-hand boundary condition
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for reversible homoclinic orbits would be to place the solution in the symmetric section (fixed-
point set) of either of the reversing transformations (Champneys & Spence 1993). Thus, the
boundary conditions

21(T) = 24(T) = 0, (4.2)
2o(T) = 25(T) = 0 (4.3)

specifically pick up solutions which are invariant under R1 or R2 respectively. Alternatively, we
can pose boundary conditions analogous to (4.1) that place (7)) in the linearised eigenspace
corresponding to the stable eigenvalues of 0.

When trying to understand the nature and multiplicity of homoclinic solutions it is often
easier and instructive to solve an initial-value problem, i.e. to specify a six-dimensional initial
condition for (2.13). In that case, we can explicitly place x(0) in the unstable eigenspace by
setting

x(0) = €(vy cos 6 + vy sin 0), (4.4)

where v, £ iv9 are the eigenvectors corresponding to A £ iw, € is small, and 0 < § < 27.

In order to compute load-deflection bifurcation diagrams for localizing solutions, it is nec-
essary to measure the end displacement D and end rotation R from the trivial straight-rod
position at that value of m. When doing the computations we always think of m as fixed and
D and R as passive. Of course, load-deflection diagrams so computed can always be interpreted
for other loading sequences (Thompson & Champneys 1995). To measure dimensionless end
displacement D = DM/B and end rotation R, we solve (2.16) and (2.17) subject to the initial
conditions

#(0) = (0,0,0), e(0) = (1,0,0), es(0)=(0,1,0), es(0)=(0,0,1),

in tandem with (2.13), and take

D=T —-713(7), R (mod2r)=arccos(< ei(7),(1,0,0)>). (4.5)

4.2 Case 1: circular cross-section linear rod

We begin by computing the Coyne localizing solution for p = 0, 7 = g = 1. Note that this
one-dimensional manifold of homoclinic solutions to (2.13) is contained in the three-dimensional
subspace given by taking the constants of integration 1, 1 and 0 in (2.18), (2.19) and (2.21)
respectively. Henceforth we shall fix Poisson’s ratio to be v = 1/3.

Numerically obtained solutions are depicted in Figs. 2 4, which were all obtained by solving
an initial-value problem with initial conditions given by (4.4), with e = 107° or smaller. Fig. 2
shows the evolution of a typical trajectory in the homoclinic manifold (defined by setting 6 = 0
in (4.4)) as the load parameter m is decreased. The solutions are depicted in physical space
co-ordinates by solving (2.16) and (2.17) in tandem with (2.13). Fig. 3, which was obtained by
taking eight different values of 6 in (4.4), gives an idea of the shape of the homoclinic manifold
in spatial co-ordinates for m = 1.9. Note that these solutions may be obtained analytically in
closed form, using the formulae in Coleman et al. (1993) derived for solitary traveling waves.

Fig. 4 shows four of the solutions in Fig 3 as graphs of the phase-space variables z; against
arclength t. Figs. 4(a) and 4(b) show the non-dimensionalised forces (defined by x;—x3) and
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(a) (b)

(c) (d)

Figure 2: Evolution of the localized helix in Case 1 for (a) m = 1.99, (b) m = 1.98, (¢) m = 1.96,
(d) m =1.93, () m = 1.9 and (f) m = 1.8.
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7 100

Figure 3: The manifold of homoclinic solutions in Case 1 at m = 1.9.
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moments (defined by x4 xg) respectively along the rod, for a single initial condition. Note
that z4(t) = 0, owing to (2.21). Also note that z3(¢) is a non-oscillatory function that has a
minimum at the mid-point of the localizing solution (i.e. at maximum deflection). Note also
that x3(t) is the same function for all solutions within the manifold of homoclinic solutions at
this parameter-value. However, as shown in Figs. 4(c)—(f), the functions x(t), (), z4(t), and
x5(t) vary between solutions in the manifold. Note, with reference to (¢) and (d) that there are
precisely two solutions which have a minimum or maximum of z; and x, simultaneously at the
mid-point of the rod (where x5 has a minimum). These solutions are invariant under R1 and
will prove important in §4.4 below. Similarly, there are precisely two solutions with extrema of
T9 and x5 at the mid-point, and these are invariant under R2.

4.3 Case 2: nonlinear constitutive relations

Fig. 5 was computed in exactly the same way as Fig. 2 but with the softening nonlinear
constitutive relations defined by b; = bg = —1. Note that the qualitative results are the same,
but that the amplitude of the buckling mode grows much more rapidly with m for the present
results (for example, compare figs. 2(f) with 5(d) which are for the same m-value). Qualitative
similarities between solutions (although not the homoclinic case considered here) with linear
and nonlinear constitutive laws were also found by Antman & Jordan (1974).

Fig. 6 shows bifurcation diagrams of end rotation R (mod 27) and dimensionless end dis-
placement D against load m for the localizing solutions in Figs. 2 and 5. Note that D and
R are invariant for all solutions in the homoclinic manifold at a given m-value. Observe from
Fig. 6 that end displacement is unaffected by the softening, but that there is a rapid increase
in end-rotation for a given load in Case 2 compared with the linear constitutive laws (in order
to plot the two curves in Fig. 6(b), we have shifted the dashed curve downwards through 27).

4.4 Case 3: non-circularly-symmetric rods

We now consider the non-integrable case of a rod with linear constitutive laws but with a
non-circular cross-section. Specifically, we shall take p = 0.5. For this value of p the two
Hamiltonian-Hopf bifurcations occur at m., = 0.155739 and m,, = 1.751187. We shall consider
solutions at m = 1.7, which is just below the value at which the higher Hamiltonian-Hopf
bifurcation occurs. Hence we are in the subcritical region into which the homoclinic orbits given
by the normal-form theory would emanate. All computations were performed with e = 107 in
(4.4).

Fig. 7 shows what happens for two randomly-chosen values of the angle ¢ in the initial
conditions (4.4). These solutions appear spatially chaotic (but, of course, do not satisfy the
asymptotic right-hand boundary condition). Thus we no longer have the situation that all
solutions in the unstable manifold of 0 are homoclinic. Instead, any homoclinic trajectory
should generically be isolated and represent the transverse intersection of stable and unstable
manifolds.

Fig. 8 11 show four homoclinic orbits computed using a shooting algorithm that varies the
value of ¢ in (4.4) in order to satisfy one of the right-hand boundary conditions (4.2) or (4.3)
(Champneys & Spence 1993). Fig. 8 shows the four orbits predicted by the normal-form theory
recalled in §3.2; which we shall call the primary homoclinic buckling modes. Data relating to
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Figure 4: Forces and moments against arclength for the solutions in Fig. 3 at m = 1.9. (a), (b)
x1 g for a single orbit. (c¢) (f) Four representative solutions in the manifold: (¢) z; against
t, (d) xy against ¢, (e) x4 against ¢, (f) x5 against t.
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(a) (b)

Figure 5: Evolution of the localized helix in Case 2 with b; = bg = —1 for (a) m = 1.99, (b)
m =198, (¢)m=1.9and (d) m=1.8

Figure 0 Mid-point T | Modality | Reversible under | Image under 7
10(a) | 6.0664 71.4986 primary R1 10(b)
10(b) |2.9248 | 71.4986 | primary R1 10(a)
10(c) | 1.3318 | 71.4674 | primary R2 10(d)
10(d) |4.4734 | 71.4674 | primary R2 10(c)
12(a) | 6.2382 99.1416 bi-modal R1 not depicted
12(b) | 5.9794 | 101.0853 | bi-modal R1 not depicted
12(c) | 0.1503 97.1052 bi-modal R2 not depicted
12(d) | 1.4985 99.1069 bi-modal R1 not depicted
12(e) | 1.3301 | 112.8061 bi-modal R2 not depicted
12(f) | 6.2457 | 125.5414 | tri-modal R1 not depicted

Table 1: Data relating to the computation of localized buckling solutions for p = 0.5 and m =
1.7, with € = 1075, v; = (0.6964, 0.0563, 0.3810, —0.0413) and vy = (0,0.5422, 0.0857,0.2524)
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Figure 6: Numerically computed bifurcation diagrams of the localized mode in cases 1 and 2.
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Figure 7: Two spatially chaotic solutions with linear constitutive relations and p = 0.5 at
m = 1.7
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(a) (b)

(c) (d)

Figure 8: The four primary localized buckling modes for p = 0.5, m = 1.7
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these orbits are given in Table 1. Note that the first two orbits presented, likewise the final two,
are images of each other under the reflection Z. Consequently the values of ¢ for the two orbits
of a pair differ by exactly w. The reversibility properties of the first and third orbits in Fig. 8
are elucidated in Fig. 9, where the components z; are plotted against £. Note that the first one
is reversible under R1 (see (3.7)) because x9(0) = x5(0) = 0 where ¢ = 0 now represents the
midpoint of the rod, and the second one is similarly reversible under R2 (see (3.6)).

Figs. 10 and 11 show some multi-modal homoclinic orbits computed at m = 1.7, data for each
of which are summarised in Table 1. The fact that we have been able to compute these modes
provides a posteriori evidence of the transverse intersection of stable and unstable manifolds
along the primary orbits and that Devaney’s theory recalled in §3.2 can be applied here to give
infinitely many localized buckling modes. Note, with reference to Fig. 11, that we have here
an even greater multiplicity of localized buckling modes than the theory applied to a single
primary homoclinic orbit would suggest. As well as infinitely many bi-modal orbits that are
like two copies of any given primary orbit (those in Fig. 11(a) and (b) are the first two in such
a sequence relating to the primary orbit 10(a)), there are also mized-mode bi-modal orbits (e.g.
Fig. 11 (c¢) and (d)) that are like a copy of each of two distinct primary orbits. Clearly, there
are even more possibilities when one considers tri-modal orbits (Fig. 11 (f)) and higher.

The numerical methods of Champneys & Spence (1993) could now be applied to (2.13)
to systematically compute families of the localized buckling modes. Similarly, one could use
AUTO (Doedel, Keller & Kernévez 1991), to path-follow representatives of the multitude of
homoclinic solutions, as was performed for a simpler model of an elastic strut resting on a
nonlinear foundation in Buffoni et al. (1994). Such a comprehensive numerical investigation is
the subject of on-going work, but in the Conclusion which follows we indicate what one might
expect in the light of what is known for the strut model.

5 Conclusion

This paper has focussed on a mathematical investigation, via the celebrated Kirchhoff analogy
with an initial-value problem, of localized buckling in rods subject to end tension and moment.
The significance of localized, rather than periodic buckling, for long rods was shown experi-
mentally and analytically in the companion paper Thompson & Champneys (1995). Several
unexplained theoretical issues arising from that paper need further investigation, not least the
experimental observation of a perturbed one-twist-per wave mode H; in the pre-buckled state.
From the structure of the Frenet-Seret equations (2.7), note that a one-twist-per wave mode
in the Kirchoff-Love formulation corresponds to a non-trivial equilibrium of (2.13). A careful
study is required of which perturbing influences, such as initial curvature, asymmetric loading,
gravity inclusion of shear deformations, axial-extensibility and finite-radius effects can cause
such non-trivial equilibria to occur.

For rods without circular symmetry in the cross-section, we have demonstrated in this paper
that a realm of additional complexity enters the solution structure of the mathematical problem,
even when one restricts attention to localizing solutions. We remark that there is a qualitative
similarity with the known situation for a strut resting on a nonlinear elastic foundation, the
vertical displacement u of which is given, in dimensionless form, by

U +Pii+u—u” =0, (5.1)
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Figure 12: Schematic bifurcation diagram of a representative sample of periodic and homoclinic
solutions of (5.1) for the strut on a nonlinear elastic foundation.

where a dot denotes differentiation by a dimensionless horizontal variable = (see (Hunt et al.
1989, Hunt & Wadee 1991) and references therein). The dynamical system corresponding
to (5.1) is reversible under ¢ — —t and, like (2.13), (5.1) depends on a single dimensionless
load parameter, P. On varying P the eigenvalues of the trivial equilibrium undergo a se-
quence of transitions equivalent to the first three pictures of Figure 1(b), with the supercritical
Hamiltonian-Hopf bifurcation occuring at P = 2 and m,; corresponding to P = —2. Figures
12 and 13 summarise the known analytical and numerical results for the global behaviour of
localized buckling modes of (5.1), which are collected in (Buffoni et al. 1994). The figures also
present what is known about periodic orbits with zero value of the Hamiltonian, which relies
on unpublished work by Toland (1992) that there is a bifurcation of two such solutions for
P = m/n+n/m for all integers m and n, and some numerical experiments by the first author.

We conjecture that an overall similar pattern of behaviour should be observed for the twisted
rod problem for non-zero p. In particular, we expect that loci of multi-modal orbits upon in-
creasing m < m, should undergo limit points, or coalescences with respect to m, with the
coalescent solution at the limit point having a greater modality. Note also from Figures 12 and
13 that there also exist asymmetric multi-modal localized buckling modes, and that certain of
these solutions bifurcate from symmetric modes immediately before the coalescence (see (Buf-
foni et al. 1994) for the details). We should expect similar bifurcations to occur for the twisted
rod, because an examination of Devaney’s theory for reversible systems predicts asymmetric
as well as symmetric multi-modal solutions. Moreover, Knobloch (1994) has recently shown
that such bifurcations and coalescences are generic codim 1 bifurcations of homoclinic solutions
in reversible Hamiltonian systems. However, as highlighted in §4.4, there is an even greater
multiplicity of localizing solutions for (2.13), due to the extra symmetry and reversibility. Not
least because of this extra mathematical structure, there clearly remains a lot of work to be
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Figure 13: Schematic graphs of some of the solutions depicted in Fig. 13; (a) primary homoclinic
orbit for P < —2, (b) primary orbit for P > 0, (¢) bi-modal orbit that survives to P = 2, (d)
another bi-modal orbit, (e) an asymmetric 4-modal orbit, corresponding to the integer sequence
(4,2,8), (f) one of the zero-energy periodic orbits emanating from the resonance at P = 10/3.
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done before a comprehensive picture of localizing solutions to (2.13) emerges similar to that for
the strut.

An additional complication for the rod is that there are more possibilities for the linear
problem, depending on the parameter p. We have identified two codimension-two points of
interest, which occur as m varies for p = p. and p = p,... Beyond the latter p-value, the
Hamiltonian-Hopf bifurcation disappears. The physical interpretation of these two points needs
to be investigated. In fact, the complete bifurcation diagram of the linear problem, Fig. 3, is
qualitatively the same as that for water waves in the presence of surface tension (Iooss &
Kirchgéssner 1992, Fig. (2.1)). Numerical continuation techniques should be used to see the
effect of each of these parameter regions on the existence of localizing solutions. Finally, it would
be nice to put our tentative statements on transversality and genericity on a mathematical
rigorous framework, perhaps by using normal form theory applied at the codimension-two
points, c.f. Tooss (1992).

It remains to be seen what the ramifications of our results on non-circular cross-section rods
are for the outcomes of experiments. The major caveat to the approach adopted here of using a
dynamical systems analogy is that no information is obtained about the physical stability of the
computed localized buckling solutions. It would be interesting to see if under certain loading
conditions, any of the multiplicity of multi-modal buckling modes can be stable, or meta-stable,
solutions of the structural problem. A necessary condition for stability is that the equilibrium
configuration minimises a potential energy functional. Variational methods, which take account
of the different possible loading conditions should prove useful for answering questions about
stability (cf. (Dichmann et al. 1993, Buffoni 1994, Maddocks & Sachs 1995) for example). Such
an investigation is left for future work. Nonetheless, despite this obvious limitation of the
method, regarding the equilibrium equations as a dynamical system with arclength playing the
role of time, has enabled us to understand with very little effort the existence of a multitude
of localized buckling solutions for the twisted rod problem.
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