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Abstract

In this paper we introduce structured pseudospectra for analytic matrix functions
and derive computable formulae. The results are applied to the sensitivity analysis
of the eigenvalues of a second-order system arising from structural dynamics and of
a time-delay system arising from laser physics. In the former case, a comparison is
made with the results obtained in the framework of random eigenvalue problems.
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1 Introduction

Pseudospectra have recently found application in analysing the sensitivity
of eigenvalues of a system [6,14]. Principally, pseudospectra are sets in the
complex plane to which the eigenvalues of a system can be shifted, under a
random perturbation of a given size. In this way, one can classify the degree
of sensitivity of the system’s eigenvalues. Moreover, for robust stability, the
pseudospectra identify the minimum size of a random perturbation required
to shift an eigenvalue such that stability is lost. In this case, one may directly
compare the size of the perturbation with the stability radius of the system
[9].

Mathematically, in the simplest setting, given a matrix A ∈ C
n×n one can

investigate the sensitivity of its eigenvalues under additive perturbations by
considering the pseudospectra (or spectral value sets)
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Λε(A) = {λ ∈ C : λ ∈ σ(A + P ) for some P ∈ C
n×n with ‖P‖ < ε}

= {λ ∈ C :
∥
∥
∥(A − λIn)−1

∥
∥
∥ > 1/ε},

where In denotes the n × n-identity matrix [13,14].

In a number of problems the matrix A has a certain structure, for example,
a block-structure, which should be respected in the sensitivity analysis. For
this, perturbations of the form A + DPE are considered in Ref. [5], where
the fixed matrices D and E describe the perturbation structure and P is a
complex perturbation matrix . This approach has been further developed in
Ref. [15] for perturbations of the form A +

∑
DiPiEi, which, in particular,

allow one to deal with element-wise perturbations.

On the other hand, specific classes of systems, like higher order systems or
systems with time-delays, lead to the study of the zeros of matrix functions
of the form

F (λ) :=
m∑

i=1

Aipi(λ), (1)

where pi, i = 1, . . . ,m, are entire functions. For example, the characteristic
matrix of the second order system A3ẍ(t) + A2ẋ(t) + A1x(t) = 0 is given by
A3λ

2 +A2λ+A1 and the characteristic matrix of the time-delay system ẋ(t) =
A1x(t)+A2x(t−τ) by λI−A1−A2e

−λτ . Although such systems can usually be
rewritten in a first order form, it is advantageous to exploit the structure of the
governing equation. Pseudospectra for polynomials matrices were introduced
in Ref. [12]. A general theory for matrix functions of the form (1) has been
presented in Ref. [9]. The latter reference deals with the distribution of zeroes
of
∑m

i=1(Ai +δAi)pi(λ), where the δAi are complex, unstructured perturbation
matrices, and a suitable joint norm for these perturbation matrices is used in
the definitions of pseudospectra.

The goal of this study is to combine the above two approaches for exploiting
a system’s structure. In light of this, we define pseudospectra for the matrix
function (1) and derive computable formulae, where, in addition to exploit-
ing the form of the matrix function, a particular structure can be imposed
on the perturbations of the individual coefficient matrices Ai. The motiva-
tion stems from the fact that in a lot of applications the coefficient matrices
have a certain structure that should be respected in a sensitivity analysis, as
unstructured perturbations may lead to irrelevant or non-physical effects. An
example is discussed in [3], where the emergence of unbounded pseudospectra
of a delay system in certain directions is explained by non-physical perturb-
ations that destroy an intrinsic property, namely the singular nature, of one
of the coefficient matrices. Other motivating examples from application areas
will be discussed in Section 3.
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The main mathematical tool to arrive at computable formulae is a reformula-
tion of the sensitivity problem in terms of structured singular values (ssv). See
the appendix, or Ref. [6,10] for more details. For a broad class of perturbation
structures a general computable expression for the corresponding pseudospec-
tra is derived. This involves the calculation of appropriately defined structured
singular values. It is outlined in which cases such ssv can be computed exactly
or how bounds can be derived otherwise. Next, it is illustrated how relaxing
the perturbation structure may lead to exact and more efficient computable
formulae, by following the approach of Ref. [9]. This allows one to weigh the
advantages of imposing structure versus computational complexity, which is
relevant from an application point of view.

The structure of the paper is as follows. In Section 2 structured pseudospec-
tra for matrix functions are defined and computable formulae are derived.
Section 3 describes practical applications from structural mechanics and laser
physics. Section 4 contains the conclusions. The appendix is devoted to some
background material on the structured singular value.

2 Structured pseudospectra for matrix functions

Following the work of Ref. [9], we are interested in general matrix functions
of the form (1), where Ai ∈ C

n×n and pi : C → C is an entire function, for all
i = 1, . . . ,m. In what follows, we call F (λ) the characteristic matrix and refer
to the zeros of det(F (λ)) = 0 as the eigenvalues of F . We denote the spectrum
of F as

Λ := {λ ∈ C : det(F (λ)) = 0} . (2)

A definition for the ε-pseudospectrum of the matrix function (1) is given in
Ref. [9] as

Λε(F ) :=

{

λ ∈ C : det

(
m∑

i=1

(Ai + δAi)pi(λ)

)

= 0, for some δAi ∈ C
n×n

with wi‖δAi‖2 < ε, 1 ≤ i ≤ m} , (3)

where wi > 0 are weights and ‖ · ‖2 denotes the 2-norm of a matrix. Denoting
the largest singular value of a matrix by σ̄ we have ‖ · ‖2 = σ̄(·). We observe
that the perturbations δAi considered in (3) lead to an additive uncertainty
on the characteristic matrix (1) given by

δF (λ) :=
m∑

j=1

δAj pj(λ). (4)
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Although the structure of the expression (1) is explicitly taken into account
in the definition (3), the perturbations δAi applied to the different matrices
Ai are unstructured. In other words, the element-wise structure of Ai is not
taken into account when using the corresponding perturbation δAi.

The goal of this section is to present a framework for the definition and com-
putation of pseudospectra, in which various types of structure on the per-
turbation matrices can also be imposed. For this, we assume a more general
additive uncertainty on (1) than what (4) allows. This uncertainty takes the
form:

δF (λ) :=
f
∑

j=1

Dj(λ)∆jEj(λ) +
s∑

j=1

djGj(λ)Hj(λ). (5)

In this expression ∆j ∈ C
kj×kj and dj ∈ C, denote the underlying unstructured

perturbations, and Dj ∈ C
n×kj , Ej ∈ C

kj×n, Gj ∈ C
n×lj and Hj ∈ C

lj×n are
appropriate shape matrices, whose elements are entire functions. We further
assume that lj ≥ 2 and that Gj has full column rank, for all j = 1, . . . , s. The
structured ε-pseudospectrum Λs

ε(F ) of F with respect to the uncertainty (5)
can then be defined as follows:

Λs
ε(F ) := {λ ∈ C : det(F (λ) + δF (λ)) = 0, for some δF of the form (5)

with ‖∆j‖2 < ε, 1 ≤ j ≤ f and |dj| < ε, 1 ≤ j ≤ s}. (6)

To arrive at computational formulae for Λε
s we reformulate (6) in terms of

structured singular values; see the Appendix for a short introduction. This
leads to the following general result:

Theorem 1 Considering the characteristic matrix (1) with additive uncer-
tainty (5). We define the uncertainty set ∆ as

∆ :=
{

diag(∆1, . . . , ∆f , d1Il1 , . . . , dsIls) : ∆i ∈ C
ki×ki , dj ∈ C, (7)

1 ≤ i ≤ f, 1 ≤ j ≤ s},
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where diag(·) represents a block diagonal matrix, and let

T (λ) :=




















E1(λ)
...

Ef (λ)

H1(λ)
...

Hs(λ)




















F (λ)−1 [D1(λ) · · ·Df (λ) G1(λ) · · ·Gs(λ)]. (8)

Then

Λs
ε(F ) = Λ ∪

{

λ ∈ C : µ∆(T (λ)) >
1

ε

}

, (9)

where µ∆(·) is the structured singular value with respect to the uncertainty set
(8).

Proof: If det(F (λ)) 6= 0 we have the following equivalence

det(F (λ) + δF (λ)) = 0

m

det




















I + F (λ)−1 [D1(λ) · · ·Df (λ) G1(λ) · · ·Gs(λ)] ∆




















E1(λ)
...

Ef (λ)

H1(λ)
...

Hs(λ)







































= 0

m

det (I + T (λ) ∆) = 0,

(10)

for some matrix ∆ = diag(∆1, . . . , ∆f , d1I, . . . , dsI) ∈ ∆.

Furthermore,

‖∆‖2 < ε

⇔ ‖∆j‖2 < ε, 1 ≤ j ≤ f and |dj| < ε, 1 ≤ j ≤ s. (11)
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Considering (10) and (11) with the definition of Λs
ε, it follows that if λ ∈ Λs

ε,
then either λ ∈ Λ or the following holds:

∃∆ ∈ ∆ with ‖∆‖2 < ε, such that det (I + T (λ)∆) = 0

Hence,

min {‖∆‖2 : ∆ ∈ ∆ and det(I + T (λ)∆) = 0} < ε,

which implies µ∆(T (λ)) > ε−1. 2

Subsequently, from (9) the boundaries of structured ε-pseudospectra can be
determined as level sets of the function

µ∆(T (λ)), λ ∈ C. (12)

In general the ssv of a matrix with respect to the uncertainty set (8) cannot
be computed exactly. However, lower and upper bounds on the ssv can be ob-
tained by solving eigenvalue optimisation problems. These bounds are sharp
in many cases. If the additional restriction f +2s ≤ 3 holds for the uncertainty
set (8), then an exact computation of µ∆(·) is always possible; see the Ap-
pendix, Refs. [10,16] and the references therein. In some cases the particular
structure of T (λ) can be exploited when evaluating (12). This is illustrated
with the following result, which slightly generalises one of the assertions of
Theorem 1 of Ref. [9] and is also related to Prop. 3.4 of Ref. [11]:

Proposition 2 We consider the characteristic matrix (1) with uncertainty
(5). Furthermore, we assume that s = 0, and that there exist analytic matrix
functions D and E and functions qj : C → C such that

Dj(λ) = D(λ),

Ej(λ) = E(λ) qj(λ), 1 ≤ j ≤ f.

By defining T (λ) and ∆ as in Theorem 1, the following holds:

µ∆(T (λ)) =
∥
∥
∥E(λ)F−1(λ)D(λ)

∥
∥
∥
2





f
∑

j=1

|qj(λ)|



 . (13)

Proof: If det(F (λ)) 6= 0, then

det(F (λ) + δF (λ)) = 0

⇔ det
(

I + E(λ)F (λ)−1D(λ)
∑f

j=1 ∆jqj(λ)
)

= 0,
(14)

and we can proceed as in the proof of Ref. [9, Theorem 1]. 2
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We note that, in addition to the availability of a directly computable formula,
the dimensions of E(λ)F−1(λ)D(λ) are f times smaller than the dimensions
of T (λ). This is one of the main contributions of the approach of Ref. [9].

To conclude this section, we detail how different types of perturbations can
be written as an additive uncertainty on (1) of the form (5), where illustrative
examples are given in the next section.

• Let s = 0, Dj(λ) = Dj, and Ej(λ) =
∑m

i=1 Eij pi(λ) in (5), where Di and
Eij are constant matrices. Then the perturbed characteristic matrix (1) and
(5) reduces to

m∑

i=1



Ai +
f
∑

j=1

Dj∆jEij



 pi(λ). (15)

This corresponds to the perturbation structure used in Ref. [11] in the con-
text of stability radii for polynomial matrices. If, in addition, f = m, Eij = 0
for i 6= j and Dj and Ejj are multiples of the unity matrix, then the un-
structured case considered in Ref. [9] is obtained. The shape matrices Dj

and Eij in (15) can be used to perturb only a sub-matrix of Ai, to assign
weights to perturbations of rows, columns or elements of each Ai, and to
weight the perturbations applied to the matrices A1, . . . , Am with respect
to each other. i = 1, . . . ,m,

• Assume that the characteristic matrix of an uncertain system is given by
∑m

i=1 Ãipi(λ), where the matrices Ãi linearly depend on a number of uncer-
tain scalar parameters, say

Ãi = Ai +
∑

j

θjPij,

with θj ∈ C describing the uncertainties on these parameters. Furthermore,
assume that we wish to investigate the possible positions of the eigenvalues
when |θj| ≤ ε, ∀j. It follows that we are in the framework of (1), (5) and
(6), as we can express

∑m
i=1 Ãipi(λ) = F (λ) +

∑

j θj

(
∑m

i=1,Pij 6=0 UijV
∗
ij pi(λ)

)

= F (λ) +
∑

j θj [· · ·Uij · · · ] [· · ·Vij p̄i(λ) · · · ]∗,
(16)

where each Uij has full column rank and Uij and Vij can be computed for
instance from a singular value decomposition of Pij. Notice that (16) leads
to s > 0 in the general expression (5) if and only if one of the matrices Pij

has rank larger than one, or if one of the parameters explicitly appears in
different matrices Ãi.

Furthermore, weighted combinations of uncertain scalar parameters and
matrix valued perturbations can be considered, provided the characteristic
matrix depends linearly on the uncertainty.
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• Finally, we observe that a nonlinear dependence on the uncertainty can
sometimes be removed by a model transformation. As an illustration, the
uncertain system

ẋ(t) = (A + δA)x(t) + (B + δB)(C + δC)x(t − τ)

can be rewritten in a descriptor form as

ẋ(t) = (A + δA)x(t) + (B + δB)y(t),

0 = (C + δC)x(t − τ) − y(t).

It has a nominal characteristic matrix

F (λ) =






λI − A −B

Ce−λτ −I




 ,

to which we may apply structured perturbations.

It is worthwhile to mention that from a conceptual point of view it is possible
to further refine the structure of the allowable perturbations (5) and to char-
acterise the resulting pseudospectra using appropriately defined structured
singular values as in Theorem 1. For example, an extension to uncertainty
sets which include repeated non-scalar blocks, non-rectangular blocks, or only
real elements might be of interest in applications. From a computational point
of view, however, such a transformation to a structured singular value prob-
lem makes sense only if the corresponding structured singular value can be
computed or well approximated. In light of this, the choice of (5) stems from a
trade-off between both the generality of the matrix function (1) and the extend
to which structure can be imposed on the uncertainty, and the availability and
effectiveness of computational schemes.

3 Applications

We now use the theory developed in Section 2 to analyse the sensitivity of
eigenvalues in two physical systems. The first example, from structural dy-
namics, is of an undamped spring-mass system [1]. This leads to studying
structured pseudospectra of a second order system. Our second example, from
laser physics, is of a semiconductor laser subject to optical feedback [7], leading
to a study of structured pseudospectra of delay differential equations.
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3.1 An example from structural dynamics

In Ref. [1] the effect of random perturbations on the eigenvalues of a second-
order system is studied. The authors consider the three degrees of freedom
undamped spring-mass system shown in Fig. 1.

It is described by the second-order differential equation

Mẍ(t) + Kx(t) = 0, (17)

where the mass matrix M and the stiffness matrix K have the following struc-
ture:

M =










m1 0 0

0 m2 0

0 0 m3










and K =










k1 + k4 + k6 −k4 −k6

−k4 k2 + k4 + k5 −k5

−k6 −k5 k3 + k5 + k6










.

In this example, we assume that all mass and stiffness parameters, mi and ki,
are constant but uncertain. Specifically,

mi = m̄i(1 + ǫmxi), i = 1, . . . , 3

ki = k̄i(1 + ǫkxi+3), i = 1, . . . , 6,
(18)

where m̄i and k̄i are the expected values and xi are complex random variables,
whose real and imaginary parts are uncorrelated Gaussian random variables
with zero mean and standard deviation one. In the numerical experiments that
follow, the parameter values are taken as m̄i = 1, i = 1, . . . , 3, k̄i = 1, i =
1, . . . 5, k̄6 = 1.275 and the degree of uncertainty is described by

ǫm = ǫk = 0.15;

see the second example of Ref. [1]. The eigenvalues of (17) are the zeros of
the random matrix polynomial P (λ) := Mλ2 + K. The characteristic matrix,
obtained by taking the expectation of the parameters,

P0(λ) :=










1 0 0

0 1 0

0 0 1










λ2 +










3.275 −1 −1.275

−1 3 −1

−1.275 −1 3.275










, (19)

has eigenvalues

λ±1 = ±i, λ±2 = ±2i, λ±3 = ±2.1331i.
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To investigate the effect of the uncertainty on the parameters given by (18)
we first perform Monte Carlo simulations. The eigenvalues of 2000 simulations
are shown in Fig. 2. The eigenvalues λ±2 and λ±3 appear to be most sensitive
to perturbation. Furthermore, a clear separation between the perturbations of
λ±2 and λ±3 cannot be observed.

We now perform a rigorous sensitivity analysis using structured pseudospectra.
Starting from the characteristic matrix (19), we express all uncertainty as an
additive perturbation of the form (5), as follows:

δP (λ) =










1

0

0










︸ ︷︷ ︸

D1(λ)

δm1 [1 0 0]λ2

︸ ︷︷ ︸

E1(λ)

+










0

1

0










δm2[0 1 0]λ2 +










0

0

1










δm3[0 0 1]λ2

+










1

0

0










δk1[1 0 0] +










0

1

0










δk2[0 1 0] +










0

0

1










δk3[0 0 1]

+










1

−1

0










δk4[1 − 1 0] +










0

1

−1










δk5[0 1 − 1] +










1.275

0

−1.275










︸ ︷︷ ︸

D9(λ)

δk6 [1 0 − 1]
︸ ︷︷ ︸

E9(λ)

Observe that the weights entering the shape matrices Di and Ei are chosen
according to the distribution (18). In this way pseudospectra can be computed
from Theorem 1, where ∆ reduces to the set of complex 9×9 diagonal matrices
and

T (λ) =

















λ2I3

I3

1 −1 0

0 1 −1

1 0 −1

















P0(λ)−1










1 0 1.275

I3 I3 −1 1 0

0 −1 −1.275










. (20)

The computation of the structured pseudospectra is performed using the
MATLAB Routine mussv, contained in the Robust Control Toolbox, [8]. We
compute µ∆(T (·)) on a 300 × 300 grid over a region of the complex plane. A
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contour plot then yields the boundaries of the structured pseudospectra. Note
that, for the perturbation structure under consideration, only upper and lower
bounds on the structure singular value can be computed. Along the grid the
maximum relative difference between the bounds, obtained by the function
mussv, is of order 10−3.

Figure 3(a) shows the boundaries of structured ε-pseudospectra for ε/0.15 =
10−1.5, 10−1, 10−0.5, 1, and 100.5. We find a good qualitative agreement with
the simulations, in the sense that the eigenvalues furthest from the real axis
are the most sensitive to perturbation.

To illustrate the importance of taking the structure of the perturbations into
account, let us compare the results with unstructured pseudospectra of P0

in the sense of Ref. [12]. This corresponds to definition (3). The weights of
the perturbations of M and K were chosen as the 2-norm of the matrices
obtained by taking the standard deviation element-wise, namely wM = 1/0.15
and wK = 1/0.8081. The contours of the computed pseudospectra Λε are
shown in Fig. 3(b), for ε/0.15 = 10−1.5, 10−1, 10−0.5, and 1. In contrast to
Fig. 3(a) and the simulation results shown in Fig. 2, the eigenvalues closest
to the real axis appear as the most sensitive. This indicates that unstructured
pseudospectra do not adequately describe the sensitivity of eigenvalues in this
problem.

Finally, we interpret the structured pseudospectra in a quantitative way by
relating the corresponding ε-values with the uncertainty measures ǫm,k in (18).
In particular, the ε = 0.15 contour fits well with the simulation results shown
in Fig. 2 (for ǫm,k = 0.15). This correspondence is again illustrated in Fig. 4 (a),
where we display both the pseudospectrum contour for ε = 0.15 and the eigen-
values of 2000 random simulations. Thus indicating that for the system under
consideration the relation ε = ǫm,k leads to a good qualitative and quantitat-
ive agreement between both approaches. Note that ǫm and ǫk are the standard
deviation of the normalized uncertain parameters, which have a Gaussian dis-
tribution, whereas ε bounds the allowable perturbations on the mean values
of these parameters in the definition of the ε-pseudospectrum. This explains
why some eigenvalues lie outside the pseudospectrum contour in Fig. 4 (a). For
comparison, Fig. 4 (b) shows the boundary of the ε = 0.15-pseudospectrum
and the results of 2000 simulations, where it is assumed that mi and ki sat-
isfy (18) but with the xi being uniformly distributed over the complex unit
circle. All the eigenvalues obtained from the simulations are now inside the
pseudospectrum contour, as expected. Observe also that the pseudospectrum
contour is hardly approached. As pseudospectrum contours are related to a
worst-case behaviour of the eigenvalues subjected to bounded perturbations,
it seems unlikely to generate perturbations that push eigenvalues close to the
boundary. Such an observation has also been made in Ref. [13].
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3.2 An application from laser physics

In Ref. [3] pseudospectra have been applied to the analysis of the robust
stability of a model for a semiconductor laser subject to optical feedback. For
certain fixed model parameters, the problem leads to the study of the delay
differential equation

ẋ(t) = A0x(t) + A1x(t − 1), (21)

where

A0 =










−0.84982 0.14790 44.373

0.0037555 −0.28049 −229.23

−0.17537 0.022958 −0.36079










, A1 =










0.28 0 0

0 −0.28 0

0 0 0










. (22)

The stability of the zero solution of (21) is inferred from the eigenvalues, which
are the zeros of the characteristic matrix

F (λ) = λI − A0 − A1e
−λ. (23)

As a characteristic of delay equations of retarded type, there are infinitely
many eigenvalues, yet the number of eigenvalues in any right-half plane is
finite, [4]. Figure 5 shows the rightmost eigenvalues of (21)-(22), computed
with the software package DDE-BIFTOOL [2]. Notice the typical shape with a
tail of eigenvalues to the left.

In this example we investigate the effect which an uncertainty on specific ele-
ments of A0 and A1 has on the eigenvalues by computing structured pseudo-
spectra. From physical considerations an important requirement on the uncer-
tainty is that in A1 only the elements on positions (1,1) and (2,2) are nonzero
and remain opposite to each other. Physically, these elements describe the feed-
back process of the laser; see Ref. [7] for full details. We can take this structure
into account by considering perturbations on A1 of the form diag(δa,−δa, 0),
with δa ∈ C, in addition to unstructured perturbations on A0. The resulting
additive uncertainty on F has the general form (5), namely

δF (λ) = −I3
︸︷︷︸

D1(λ)

δA0 I3
︸︷︷︸

E1(λ)

+δa










−1 0

0 1

0 0










︸ ︷︷ ︸

G1(λ)






1 0 0

0 1 0




 e−λ

︸ ︷︷ ︸

H1(λ)

. (24)
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An application of Theorem 1 yields

Λs
ε(F ) =







λ ∈ C : µ∆



















I3

e−λ 0 0

0 e−λ 0










F (λ)−1










−1 0

−I3 0 1

0 0



















>
1

ε







,

where ∆ is the set of complex block-diagonal 5 × 5 matrices with one full
3 × 3 block and one repeated scalar 2 × 2 block. For this type of uncertainty
structure (f = s = 1), the structured singular value can be computed exactly
as the solution of a convex optimisation problem; see the Appendix. We have
once again combined the mussv routine of MATLAB with a contour plotter to
visualise the structured pseudospectra and the results are shown in Fig. 6(a).

For comparison, unstructured pseudospectra of (23) in the sense of Ref. [3]
are shown in Fig. 6(b). This corresponds to

δF (λ) = δA0 + δA1e
−λ,

where δA0 and δA1 are unstructured. This allows to combine Theorem 1 and
Proposition 2 to:

Λε =
{

λ ∈ C : ‖F (λ)−1‖2

(

1 +
∣
∣
∣e−λ

∣
∣
∣

)

>
1

ε

}

.

As a significant qualitative difference, the ε-pseudospectra stretch out infin-
itely far along the negative real axis, even for arbitrarily small values of ε.
In Ref. [9, Section 3.3], this phenomenon is related to the behaviour of ei-
genvalues, which are introduced by perturbations that make the matrix A1

nonsingular. Such perturbations are, however, non-physical and, as we have
shown, can be excluded by applying the novel structured uncertainty (24).

4 Conclusions

We have presented a general theory for computing structured pseudospectra of
analytic matrix functions. Our novel method allows one to direct perturbations
to specific elements (or, indeed, groups of elements) of the individual matrices
of a corresponding eigenvalue problem.

As an illustration, we first applied these methods to an example from struc-
tural dynamics. In this case the eigenvalue problem was of second-order. We
showed how structured perturbations could be directly compared to probabil-
istic uncertainties on the parameters. The pseudospectra were used to derive
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bounds on the position of the eigenvalues obtained through a computationally
intensive Monte Carlo simulation.

Our second example involved an infinite-dimensional eigenvalue problem ob-
tained from the modeling of a feedback laser using delay differential equations.
Here, structured perturbations were applied in order to preserve the structure
of the matrix associated with the delayed variable. Specifically, in the govern-
ing system this matrix was singular. With the structured approach we could
allow physically realistic perturbations only, which have the property of main-
taining the singularity of the matrix. This leads to pseudospectra which are
quantitatively and qualitatively different from the case where unstructured
perturbations are allowed. This stems from the fact that the latter generically
increase the rank of the matrix.

A The structured singular value

In this appendix, we introduce the concept of structured singular values of
matrices and outline the main principles behind the standard computational
schemes, based on the review paper [10] and Chapter 11 of Ref. [16].

A classical result from robust control theory, which lays the basis for the
celebrated small gain theorem, relates the largest singular value σ̄(G) of a
matrix G ∈ C

N×M to the solutions of the equation

det(I + G∆) = 0, (25)

in the following way:

σ̄(G) =







0, if det(I + G∆) 6= 0, ∀∆ ∈ C
M×N ,

(

min
{

σ̄(∆) : ∆ ∈ C
M×N and det(I + G∆) = 0

})−1
, otherwise.

(26)

We refer to ∆ as the ‘uncertainty’. As in a robust control framework, (25) typ-
ically originates from a feedback interconnection of a nominal transfer function
and an uncertainty block.

Next we reconsider the solutions of equation (25), where ∆ is restricted to
having a particular structure by imposing ∆ ∈ ∆, with ∆ a closed subset of
C

N×N . In analogy with (26) one defines the structured singular value of the
matrix G with respect to the uncertainty set ∆ as

µ∆(G) :=







0, if det(I + G∆) 6= 0, ∀∆ ∈ ∆,

(min {σ̄(∆) : ∆ ∈ ∆ and det(I + G∆) = 0})−1 , otherwise.
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In what follows we restrict ourselves for simplicity to square matrices, G ∈
C

N×N , and to uncertainty sets of the form (8), with
∑f

i=1 ki +
∑s

i=1 li = N (see
the book [6] for a general theory). In this way, we always have

ρ(G) ≤ µ∆(G) ≤ σ̄(G), (27)

where ρ(·) is the spectral radius. For this, we note that σ̄(G) equals the struc-
tured singular value corresponding to the least structured uncertainty set of
the form (8) (1 full block, f = 1, s = 0) and that ρ(G) equals the structured
singular value corresponding to the most structured set (1 repeated diagonal
block, f = 0, s = 1). With the sets U and D defined as

U := {U ∈ ∆ : U∗U = I} ,

D :=
{

diag(a1Ik1
, . . . , afIkf

, D1, . . . , Ds) : ai > 0, Di ∈ C
li×li , D∗

i = Di > 0
}

,

the following invariance property holds:

µ∆(G) = µ∆(GU) = µ∆(DGD−1), ∀D ∈ D,∀U ∈ U . (28)

Most computation schemes for µ∆ rely on the fact that this invariance property
is not generally valid for the functions ρ(·) and σ̄(·), which can be exploited to
tighten the bounds in (27). Namely, by combining (27) and (28) one obtains

max
U∈U

ρ(GU) ≤ µ∆(G) ≤ min
D∈D

σ̄(DGD−1). (29)

Therefore, optimisation algorithms can be used to compute improved estim-
ates for µ∆. Moreover, one can show that the lower bound in (29) is in fact
an equality, that is,

µ∆(G) = max
U∈U

ρ(GU). (30)

However, the objective function on the right-hand side of (30) may have sev-
eral local maxima and, for this, a local optimisation algorithm may get stuck
in a local maximum which is not global. On the other hand, the computation
of the upper-bound in (29) can be recast into a standard convex optimisation
problem. However, in general µ∆ is not equal to the upper-bound. An excep-
tion to this holds if the number of blocks in the uncertainty set ∆ satisfies
f + 2s ≤ 3.
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Fig. 1. A three degrees-of-freedom spring-mass system, taken from Ref. [1].
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Fig. 2. Eigenvalues of 2000 simulations of the random 2nd order system (17).
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Fig. 3. Structured (a) and unstructured (b) pseudospectra of the matrix polynomial
M0λ

2 + K0.
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Fig. 4. Comparison of the structured pseudospectrum for ε = 0.15 and correspond-
ing simulation results for normally distributed perturbations (a) and uniformly dis-
tributed perturbations (b) (see text for details).
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Fig. 5. Roots of (23) in the complex plane.
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Fig. 6. Structured (a) and unstructured (b) pseudospectra of the delayed character-
istic F (λ), given by (23).
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