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Abstract - The cost and complexity of a network is 
closely related to the number of base-stations (BSs) 
required to achieve the system operator's service 
objectives. The location of BSs is not an easy task and 
there are numerous factors that must be taken into account 
when deciding the optimum position of BSs. This paper 
discusses the performance of three different algorithms 
developed to solve the BS location problem: the greedy 
algorithm (GR), the genetic algorithm (GA) and the 
combination algorithm for total optimisation (CAT). 
These three methods are compared and results are given 
for a typical test scenario. 

I. INTRODUCTION 

UMTS will provide advanced multimedia services to 
customers. These new networks will bring additional 
requirements, such as more advanced services operating 
in different propagation environments (e.g. microcells, 
which are already being installed in the second generation 
networks). New features are expected that will increase 
the complexity of the resource dimensioning and the 
expected benefits of these new networks will heavily 
depend on the capabilities of next generation planning 
tools. 

One of the main cellular network-planning tasks is the 
optimum location of BSs. The search for an optimisation 
tool that can solve the BS location problem is not new. In 
recent years, many authors have investigated the 
application of different algorithms to solve this problem 
[1,2,3]. This paper concentrates on the analysis of three 
algorithms: the greedy algorithm (GR), the genetic 
algorithm (GA) and the combination algorithm for total 
optimisation (CAT). The latter is a new algorithm 
explored for the first time in this paper. To show the 
efficiency of the CAT algorithm, results are compared 
with the GR and GA algorithm for a typical deployment 
scenario. A number of other algorithms were initially 
considered, such as the Simulated Annealing (SA) [7] 
and the Simplex algorithm [8], however the number of 
restrictions necessary to make these methods meet our 

specifications seriously limited their efficiency and 
applicability. 

11. THE PROBLEM 

The aim of the research presented in this paper is to find 
an algorithm that can automatically identify an optimum 
solution to the problem of BS deployment. The following 
section describes in detail the problem considered in this 
paper. 

Our solution is based on the following assumptions. The 
surface to cover is represented by a set of user supplied 
points or control nodes. The maximum number of 
allowable control nodes is unbounded. The initial number 
of possible BS locations is user supplied (i.e. locations 
where planning permission and/or agreements have been 
made). The possible position of BSs are pre-set to make 
the algorithms more efficient. An algorithm that does not 
have pre-set possible locations could position the solution 
anywhere in the test area, including non-sensible solutions 
such as the middle of a lake. This could make the entire 
solution completely useless even if the rest of the 
requirements are fully satisfied. Different algorithms will 
have different restrictions regarding the possible number 
of BSs that can be used. Note the initial selection of the 
user supplied sites will determine to a great extent, the 
final outcome of the radio planning procedure. This arises 
since no additional locations will be identified during the 
optimisation process, and user selected positions will not 
be modified. 

A typical problem is shown in figure 1, where a number of 
control nodes have been distributed over an area. A 
number of possible BS locations are also displayed in the 
map. The algorithm must provide coverage to all control 
nodes using the smallest sub-set of possible BSs. The 
bounds required for the algorithms are provided by the use 
of modules that supply the restricting variables. These 
modules are currently based on simple existing models. 
The propagation module is based on the Okumura-Hata 
model [4]. The traffic module is based on the simple 
assumption of equal demand from every control node. 
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More complex ray-tracing propagation models and a non- 
uniform traffic model are planned in the future. 
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Figure I .Location of BSs and control nodes 

The nature of the optimisation problem is reflected in 
figure 2. For an area of approximately 500m by 700m, 70 
control nodes and 7 possible BS locations have been 
randomly distributed. The idea is to find the optimum 
group of BSs that provide coverage to the control nodes 
dispersed in the area of interest. 

Figure 2. Number of control nodes covered per group of 
BSs 

In figure 2, the horizontal line represents the optimum 
solution (i.e. all 70 control nodes covered). When the 
curve reaches this optimum, a solution has been found. 
The curve represents all the different solutions based on 
all the different BS groups. In the x-axis "1 I' represents a 
single BS, "2" represents combinations containing two 
BSs and so on, up to 7 where all the BSs are included. 
Note different groups will contain different numbers of 

combinations. It can be observed that the probability of 
finding an optimum solution increases with the number of 
BSs per group. However it is not guaranteed that a better 
solution is found if the number of BSs is increased. In fact, 
in this case some of the solutions reached with a group of 
five BSs are worse that the best solution for two BSs 
(based on the number of control nodes covered). 

The complexity of the problem is only partially reflected 
in figure 2. Even so, it is obvious that the BS location 
problem is not an easy optimisation problem. With this in 
mind, attention is now given to the development of the 
algorithms which solve this problem. 

IV. ALGORITHMS CONSIDERED 

A. The Greedy Algorithm (GR) 

The GR is a simple algorithm that can be implemented to 
solve the BS location problem. The version of the GR 
implemented in this paper follows the restrictions and 
assumptions described in section 111. 

The GR algorithm is based on the following idea. Given a 
number of BSs and control nodes, the algorithm first 
selects the BS that covers the most control nodes. The BS 
and the control nodes are then removed from the area of 
study and the same operation is repeated until there are no 
control nodes left to cover [2]. 

The speed of the GR algorithm is obviously a function of 
the number of possible BSs, which is set in the planning 
area by the user. In general, the run-time of the GR 
algorithm is lower than that required for the rest of the 
algorithms presented in this paper. 

The GR code has been developed to allow the user 
maximum flexibility. It permits the setting of different 
parameters, such as the number of control nodes and the 
number of possible BSs. In future versions, the user will 
be able to control a wider range of parameters that affect 
the environment. However, at this stage the inclusion of 
such parameters would not contribute to the algorithm 
comparison. 

B. The Genetic Algorithm (GA) 

The GA is a popular optimisation method that has been 
studied as a possible algorithm to solve the BS placement 
problem by several research groups [3] and individuals 
[ 5 ] .  The GA optimisation is based on the election of a 
group of possible solutions or set of individuals that 
evolve toward an optimum solution, under the selective 
pressure of the fitness function [ 5 ] .  The implementation of 
the GA carried out in this paper, follows the standard 
definition that can be found in the available literature 
1331. 
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The major drawback of the GA is its run-time, which 
becomes unpredictable (very high in the majority of 
cases) when the size of the population is large [5 ] .  For the 
placement problem the population is equivalent to the 
number of possible BSs in the area of study. Some 
research groups have overcome this problem by 
modifying the GA. For example, the ACTS STORMS 
project uses the island concept [3]. They claim that this 
method reduces the run-time of the algorithm. However, it 
is not clear whether the use of this concept improves the 
efficiency of the algorithm. In this paper a standard 
version of the GA has been implemented and compared 
with results from the GR and CAT algorithms. Methods 
such as the island concept have been considered as a 
possible enhancement to improve the algorithm run-time. 
The objective of this research is to find an algorithm that 
identifies the best deployment solution within a 
reasonable run-time. 

series1 

C. The Combination Algorithm for Total 
Optimisation (CAT) 

5 10 20 40 60 80 100 

31 1023 1EN6 1E+12 1E+18 1E+24 1E+30 

The CAT is a new algorithm that follows a combinatorial 
approach. The initial idea is simple and was partially 
illustrated at the beginning of this paper. If we can 
combine all the possible BS locations in the area of study, 
the optimum combination for this set of BSs can be 
found. In some cases, more than one combination of 
suitable BSs can be found. In such a case, more strict 
bounds can be used to achieve the optimum solution for 
that group of BSs. 

The combination approach fits perfectly with the idea of 
pre-selected BSs (located by the system operator). 
Unfortunately, as figure 4 shows, the number of 
combinations increases dramatically when the number of 
possible BSs is increased. As a consequence, the 
computational time tends to infinity [6]. Equation 1 shows 
the total number of combinations, CT, that can be obtained 
when all the possible groups are formed for a given 
number of elements. 

G=B B !  

CT = c Eq. 1 
G! * (B-G)! Gl 

Where B is the total number of possible BSs in the area of 
study and G is the number of elements per group. 

Although, the combination idea could provide an 
optimum solution, the limitations regarding run-time must 
be seriously taken into account. For clarification, when 
every possible combination of elements is performed 
based on equation 1, the method is referred to as OCA 
(Original Combination Algorithm). 

Figure 4 .  Number of combinations per BSs group . 

The CAT algorithm uses the principle explained above 
combined with the following idea: splitting the possible 
BS locations into a number of groups and using the GR 
algorithm as a prediction tool. Note: the use of the GR 
algorithm is not necessary, although its use as a pre- 
processor method dramatically reduces computational 
time. 

The CAT algorithm segments the total number of possible 
BSs into smaller groups, which are randomly selected. The 
number of elements per group must be small enough to 
allow the OCA to be performed. As a consequence, a 
number of solutions are found in every group. The number 
of solutions is often very high (recall that applying the 
idea of combinations means the BSs are grouped in every 
possible way). The CAT algorithm selects the solutions 
that offer the lowest cost. The best solutions are stored and 
merged together in a unique group, after that, the process 
described above is repeated until the number of solutions 
cannot be further reduced. 

The problem frequently found when implementing this 
approach is that the best solutions, or solutions with the 
lower cost, are always kept. This implies that in some 
cases, after a number of iterations the number of possible 
BSs cannot be reduced any further because all the groups 
provide the same best solutions. The alternative solution 
depends on the final number of possible BSs. If the size of 
the group is within the limits of the OCA, then this can be 
applied and the problem will be solved. However, if the 
size of the final group of possible BSs is still too large, 
then the OCA cannot be applied. In such a case, the MCA- 
US (Multi-Combinations Algorithm Using Unique 
Solution) algorithm is introduced. 

MCA-US was developed to solve the problem raised when 
the number of possible BSs cannot be reduced using the 
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method described above. MCA-US uses every 
combination that is classified as a “best solution” and 
which are supplied by the combinations performed in 
every group. The MCA-US algorithm only uses one of the 
best possible solutions per group, chosen randomly. In 
this way, the problem of keeping all the best possible 
solutions is broken, and the number of possible BSs 
decreases to a final and smaller number. The idea is 
illustrated in figure 5 .  

Initial Set of Base- 
Stations. 

split into small groups 

Each group is analysed 
combining all the 

elements. 

Best solutions are stored 
and merged together an 

a unique group 

Can the OCA 
be applied to 
the group? 

I 

FINAL SOLUTIONK 

Figure 5 .  Flow chart for the CAT algorithm. 

The CAT algorithm can also be used in conjunction with 
the GR algorithm, to reduce run-time. The GR algorithm 
offers an initial solution, which contains the number of 
possible BSs. This initial number would be introduced as 
a alternative parameter in the CAT algorithm reducing the 
run-time required to find a solution or set of solutions. 

The number of possible solutions offered by CAT is 
generally greater than one. This condition allows the user 
to introduce more tighter bounds or restrictions to find the 
best possible solution between the groups that contain the 
same number of elements or BSs. For example it may 
select the BSs that provide more equal coverage to the 
control nodes. This means that the CAT algorithm offers 
the best possible solution according to the user’s need, not 
just the first solution found, which is the case for the other 
two algorithm described in this paper. 

The speed and complexity of the CAT algorithm is a 
function of the number of possible BSs. In general, the 
run-time is shorter than that required by our GA but longer 
than the GR. However, the run-time depends on the 
technique used, in other words, it depends on the uselnon- 
use of the GR algorithm. The quality of the solutions is 
unaffected by the use of the GR solutions, but in some 
cases, the run-time is shorter if the GR algorithm is not 
used (e.g. for a small number of BSs, <30). 

V. CASE STUDY RESULTS 

In this section the performance of the three methods are 
now compared. The most effective way to evaluate the 
accuracy of each algorithm is to compare its results with 
measurements taken in a real environment. However, 
given the complex nature of the environment, this is not 
possible at this stage of the research. For this reason, a 
generic problem has been configured, in which all the 
algorithms are evaluated under the same conditions so as 
to compare their efficiency and performance. 

The results shown here are a representative sample of the 
work performed in this study. The algorithms were tested 
under many different conditions and the results tend to 
follow the same trend in efficiency. The case presented 
here is shown in figure 6. 

The surface covers an area of approximately 1Km2. The 
initial selection of possible locations for the BSs is user 
supplied, as discussed in section U. The total number of 
possible BS sites is 60. The control nodes are distributed 
evenly over the area of study (or in the locations where the 
operator needs coverage/capacity). The different control 
node densities can represent capacity requirements in 
different areas. The total number of control nodes is 140. 
Table 1 shows the different solutions found by each 
algorithm. A number is associated with each BS, this 
number reflects the order in which each BS was supplied 
by the user. 
As can be seen, the solutions supplied by each algorithm 
are different, both the GR algorithm and the GA provide 
one unique solution, which is automatically selected. This 
selection obeys the necessity of finding the minimum cost 
solution, which in these cases is related to the minimum 
number of BSs needed to cover the control nodes supplied. 
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The CAT algorithm behaves in a different way, finding a 
number of solutions with the same cost, or number of 
BSs, but goes further by selecting the best possible 
solution (among the solutions with the minimum number 
of BSs). This solution is found by applying a tighter 
bound as described in section 1V.C. Figure 6 shows the 
CAT solution, which is represented by larger and shaded 
BSs. 

1 

1000 _....* _" ............ ._: ............ ~ ....... ~ ~ 

1 8 

I 
I 

200 400 600 800 1000 

Figure 6. Illustration of test problem. 

Algorithm 
Solution/s 
Found 

Number of 
solutions 
Solution 
Selected 

Number of 
BSs needed 

Table I. S 

2,6,14,22, 
29,36,45 

utions offer by the different algorithms. 

VI. CONCLUSION 

Three different algorithms were presented in this paper. 
They were tested under the same conditions and shown to 
perform in different ways with different run-times. 

For the previous case study, the solution reached in every 
case, covered 100% of the control nodes. However every 
algorithm found different sets of BSs to cover the control 

nodes effectively. The cost of the solutions depends on the 
algorithm used. The GR algorithm found the solution with 
the higher cost (9 BSs) followed by the GA (8 BSs) and 
the CAT (7 BSs). 

The GR algorithm is relatively easy to implement. 
Although the results were not the best, this is compensated 
by the fact that the run time required is short. The GA 
performs well, and offers quality solutions in every case, 
however its major drawback is the run time. There are 
numerous studies looking to achieve lower and more 
predictable run times. The CAT algorithm performed 
better than the other two algorithms presented here. The 
structure of the algorithm is flexible due to the way it links 
to the different modules (coverage and capacity). The 
performance and flexibility of this new algorithm makes it 
a very appropriate for solving the BS placement problem. 

This paper has shown that automated BS deployment is 
possible providing user supplied site and control node 
information is supplied. Of the algorithms considered, the 
CAT is currently providing the most reliable solutions, 
and offers the flexibility required for future enhancement 
and modification. 
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