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Two-Cluster Dynamics for Cellular Automata with Shuffle Update

David A. Smith∗ and R. Eddie Wilson†

Bristol Centre for Applied Nonlinear Mathematics,
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The random shuffle update method for the asymmetric exclusion process (ASEP) is introduced
and the cluster dynamics technique is extended in order to analyse its dynamics. A sequence of
approximate models is introduced, the first element of which corresponds to the classical parallel
update rule whose two-cluster dynamics is reviewed. It is then shown how the argument may be
extended inductively to solve for the two-cluster probabilities for each element of the sequence of
approximate models. A formal limit is then taken, and macroscopic velocities and flow rates are
derived.

PACS numbers: 89.40.-a, 02.50.-r

I. INTRODUCTION

The general context of this paper is the modelling of
unidirectional road traffic or pedestrian flow with one-
dimensional cellular automata of Nagel-Schreckenberg
type [1], with the maximum velocity parameter vmax set
equal to one. This type of model is sometimes referred
to as the Asymmetric Exclusion Process (ASEP) [2, 3].
In this well-known set-up, space is discretised into a one-
dimensional array of cells each of which is either empty
or occupied by exactly one agent, and each agent moves
according to a pair of very simple microscopic rules:

1. If the cell immediately downstream is occupied, re-
main stationary. (R1)

2. If the cell downstream is unoccupied, move forward
into it with probability p, 0 < p ≤ 1. (R2)

The only remaining subtlety (and the subject of this pa-
per) concerns the precise order in which rules (R1,2) are
applied.

At each time step in the parallel update scheme [1, 4],
rules (R1,2) are applied simultaneously to all agents. No
conflict resolution is necessary, since rule (R1) automat-
ically prevents multiple occupancy.

In contrast, at each time step of the random sequential

update scheme [5, 6], rules (R1,2) are applied to a single
agent chosen at random. For simulation purposes, the
most attractive feature of the random sequential update
is that single-occupancy is automatically preserved by
(R1), and this would hold even in multi-dimensional sit-
uations, where the parallel update scheme would need a
conflict resolution algorithm. However, a disadvantage of
random sequential update is that with small probability,
a single agent might receive a large number of consecu-
tive turns, and thus, in low density situations, achieve an
unphysical velocity.
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This paper however is concerned with the dynamics of
rules (R1,2) under the shuffle update scheme, which has
received very little attention in the literature to date [7–
10]. At each time step in this scheme, rules (R1,2) are
applied to each individual agent in turn, according to
a random order generated at the beginning of the time
step, which contains each agent exactly once. After all
agents have applied rules (R1,2), a new random order is
generated and the next time step begins.

The shuffle update is similar to the random sequential
scheme in that the occupancy of cells is updated incre-
mentally as each agent applies its rules and consequently,
it does not require conflict resolution to preserve single-
occupancy (even in multi-dimensional extensions). How-
ever, the shuffle update enjoys the modelling advantage
that the velocities of individual agents are bounded.

The chief result of this paper is an extension of the
two-cluster analysis of Schreckenberg et al [11], which
analyses (R1,2) under the parallel update scheme, to the
more complicated case of the shuffle update. The argu-
ment here is more involved than [11] because under the
shuffle update, it is possible for large blocks of contigu-
ous agents to move forward in a single time step, if their
turns are served in upstream order.

The paper is laid out as follows. In Sec. II, we illus-
trate with simple examples some features of the shuffle
update scheme, and we introduce a sequence of approxi-
mations to it under which the number of agents moving
forward from a contiguous block is bounded. Then in
Sec. III, we describe the cluster dynamics method, and
solve for the statistically stationary two-cluster probabil-
ity for the two coarsest approximate schemes. Secs. IV
and V then extend the argument inductively, to solve
for the two-cluster probability in a sequence of truncated
models which approximate the full scheme as close as we
like. A formal limit is taken, then Sec. VI derives quan-
tities such as the distribution of block lengths, average
velocity, and average flow, as a function of the system
density. Throughout we assume (i) that the system has
reached statistical stationarity, (ii) that it is large, and
(iii) that periodic boundary conditions are in force so
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that agents leaving the right hand end of the system re-
join on the left, so that the total number of agents, and
therefore the density, is conserved.

However, the analysis presented here is still approx-
imate, since the two-cluster approximation is based on
a spatial independence assumption that is unproven for
the shuffle update: namely that the probabilities of three-
clusters, four-clusters and so on factorise into products of
conditional probabilities of two-clusters. This limitation
and other conclusions are discussed further in Sec. VII.

II. SHUFFLED DYNAMICS AND TRUNCATED

PROCESSES

In this section we use three simple examples to illus-
trate features of rules (R1,2) under the shuffle update
scheme. We also introduce a family of truncated schemes
which are used in the analysis that follows.

Each example, depicted in Figs. 1–3, starts at time
t∗ with an identical pattern of agents which are labelled
1, 2, . . . , 7 in upstream order. To start the time step, a
turn-taking order must be chosen in which each agent
appears exactly once. For all three examples we assume
the same order

7 1 5 2 3 4 6. (1)

We then follow the sequence of moves through the time
step to derive the state at time t = t∗ +1. In each figure,
parts (a)-(g) show the decision making and incremental
updating of the state, and part (h) shows the consequent
state at time t = t∗ + 1.

There are subtle details in the model used in each ex-
ample which result in different sets of moves and different
final states.

Example 1. See Fig. 1. Here we assume p = 1 in rule
(R2), so that if an agent is served with an empty cell
downstream of it, then it is sure to move so as to oc-
cupy it. The set of moves under turn-taking sequence
(1) is as follows: (a) agent 7 is blocked and does not
move; (b) agent 1 moves; (c) agent 5 moves; (d) agent 2
moves; (e) agent 3 moves; (f) agent 4 moves; (g) agent
6 moves. Note here that the contiguous block of agents
1–4 all move, since they are served in upstream order. In
contrast, under the parallel update scheme, only agent
1 would move from this block. However, agent 7 does
not get to move even with the shuffle update, since it
is served before agent 6 which heads its block. Thus the
turn-taking order is crucial, and this scheme is stochastic
even when p = 1 because the turn-taking order is cho-
sen randomly. Note further that holes cannot recombine,
since the leading agent of each block will always move. In
fact it may be shown that as t → ∞, one obtains either
a situation where the holes occur only as singletons, or
where the agents occur only as singletons, depending on
whether the mean density is greater or less than one half
respectively.
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FIG. 1: One time step of the shuffled dynamics with p = 1 and
turn-taking order 7,1,5,2,3,4,6: see Example 1. Each line of
the figure in turn shows an agent highlighted in bold applying
rules (R1,2). Note that the contiguous block of agents 1–4 all
move.

Example 2. See Fig. 2. We take p < 1, so that agents
may turn down the chance to occupy an empty cell down-
stream. Here the sub-steps are as follows: (a) agent 7 is
blocked and does not move; (b) agent 1 is able to move
and choses to; (c) agent 5 is able to move and choses to;
(d) agent 2 is able to move but choses not to; (e) agent 3
is blocked and does not move; (f) agent 4 is blocked and
does not move; (g) agent 6 is able to move but choses not
to. The first point to note is that now only the lead agent
from block 1–4 has moved, because agent 2, in choosing
not to move, has impeded those that follow. Neverthe-
less all four agents might have moved in a different in-
stantiation. Secondly, note that for p < 1, hole blocks
may recombine, here by the singleton agent 5 choosing
to move but agent 6 refusing the space in front of it.

An interesting feature of the shuffle update, which we
have seen demonstrated in Example 1, but which by
chance we have avoided in Example 2, is that large blocks
of contiguous agents may move forward together in a
single time step, if the turn-taking order permits. This
potentially unbounded behaviour renders intractable the
cluster dynamics method that we apply later. We fix this
problem by defining truncated processes as follows.

Definition. By the truncated process of order n, we
mean that rules (R1,2) are applied under the shuffle up-
date scheme, with the proviso that the opportunity to
move is offered only to agents who are in the first n po-
sitions of a contiguous particle block at the beginning of
the time step.

Example 3. See Fig. 3. We apply the truncated process
of order two, and for simplicity we assume p = 1. The
sequence of moves is as follows: (a) agent 7 is blocked
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FIG. 2: One instantiation of one time step of the shuffled
dynamics with p < 1 and turn taking order (1): see Example
2. Note that for p < 1, holes may recombine.
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FIG. 3: One time step of the truncated process with n = 2,
p = 1 and turn-taking order (1): see Example 3. Note that
only the front two agents of block 1–4 are now able to move.

and does not move; (b) agent 1 is able to move and does;
(c) agent 5 is able to move and does; (d) agent 2 is able
to move and does (position 2 of its block at time t∗);
(e) agent 3 is able to move, but does not because of the
truncation (position 3 of its particle block at time t∗); (f)
agent 4 is blocked and does not move; (g) agent 6 is able
to move and does. Note that the final state (Fig. 3(h))
is quite different from Fig. 1(h).

An interesting point, that we examine in more detail
shortly, is that the truncated process of order one is iden-
tical to the parallel update scheme. However, the limit of
interest is that of truncated processes of order n, n → ∞,

under which one converges to the dynamics of the (full,
untruncated) shuffle update scheme.

III. CLUSTER DYNAMICS METHOD

In order to compute distributions of block sizes and
hence mean velocities and flow rates, we generalise the
cluster dynamics method of Schreckenberg et al [11].

The chief idea is to compute the so-called two-cluster

probabilities P2 for the possible states of two adjacent
cells, i.e., the probabilities of two adjacent cells having
the states (1, 0), (0, 1), (1, 1) and (0, 0), where 0 and
1 denote empty and occupied respectively. Through-
out we consider a statistically stationary situation where
the two-cluster probabilities have converged to time-
independent values. The argument is simplified by noting
that the probabilities of the two-clusters (0, 1), (1, 1) and
(0, 0) may be computed from the probability of the (1, 0)
two-cluster alone, which we denote y. To see this, note

P2(1, 0) + P2(0, 1) + P2(0, 0) + P2(1, 1) = 1, (2)

P2(1, 0) = P2(0, 1), (=: y), and (3)

1

2
(P2(0, 1) + P2(1, 0) + 2P2(1, 1)) = c, (4)

where c denotes the prescribed mean density, i.e., the
probability that a single cell is occupied. We thus have
three equations in four unknowns and the goal is to derive
an algebraic equation to solve for y, which then fixes
other quantities thus:

P2(1, 1) = c − y, (5)

P2(0, 0) = 1 − c − y. (6)

Next we consider a window of adjacent cells surround-
ing a two-cluster whose time evolution is monitored: see
e.g. Fig. 4 for the case of the parallel update scheme
(identical to the truncated process of order one). Here
the window is four cells wide, and we label the cells 0, 1,
2, 3 in downstream order, and we denote their contents
by τ0, τ1, τ2, τ3 at the backward time step t = t∗ − 1
and by σ0, σ1, σ2, σ3 at t = t∗. Our task is to catalogue
all of the states at time t = t∗ − 1 that can give rise to
(σ1, σ2) = (1, 0) at time t = t∗. Such window states are
listed in the left hand column of Fig. 4. Note that if a
cell’s occupancy is denoted by ?, then all moves carry
through with the same transition probabilities irrespec-
tive of whether that cell is occupied or not.

There are two remaining tasks. Firstly, we must find
the transition probabilities W for each of the left hand
to right hand column moves. These are calculated from
the rules of the cellular automata and involve the pa-
rameter p. The second (more problematic) task is to to
compute the probability of each left hand column win-
dow state in terms of the two-cluster probability y and
the mean density c. Once these two steps are complete,
y = P2(1, 0) = P (σ1 = 1, σ2 = 0) may be expressed as a
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FIG. 4: The list of all possible transitions to a (σ1, σ2) = (1, 0)
two-cluster (highlighted in bold) at time step t∗, for the trun-
cated process of order n = 1. The list is identical to that for
the parallel update rule. Transition probabilities are denoted
by W . Cells marked by ? can be either occupied or empty,
with no effect on the transition probability calculation since
the movement or lack of movement of an agent in this cell
cannot affect the monitored (σ1, σ2) two-cluster. The fami-

lies of left hand column states labelled by F
(n)
i , G

(n),m
i are

the building blocks of the inductive process that follows later.

sum product of the left hand window state probabilities
(involving c and y) and the transition probabilities (in-
volving p). Thus if c and p are fixed, we obtain a single
scalar equation to solve for y, which may then be used to
compute all the other quantities of interest.

Unfortunately the above argument is not rigorous, be-
cause the left hand window states involve three- and four-
clusters, and consequently there is a spatial independence
approximation involved in expressing their probabilities
in terms of the two-cluster probability y. In fact, the
results of the two-cluster analysis have been proven ex-
act for the parallel update case [11], which as we have
remarked, is the same as our truncated process of order
n = 1. However, it remains to be shown whether the
exactness holds or fails as we increase n.

Recall that so far, our discussion has centred not on the
shuffle update, but on Fig. 4 which concerns the parallel
update (equivalent to the truncated process of order n =
1). When using the shuffle update, there is no longer
an upper bound on the number of agents who may move
forward in a single time step from a contiguous block of
agents. There is consequently the difficulty that no finite
window of cells gives a full catalogue of the transitions
to the (1, 0) two-cluster.

Our procedure is thus to approximate the full shuffle
update by the sequence of truncated processes for in-
creasing n → ∞. The argument is laid out as follows.
In the remainder of this section, we provide the remain-
ing details for the n = 1 case, in particular explaining
the procedure for approximating large cluster probabilies.
We then show how the argument may be extended to the
truncated process with n = 2, by considering a larger
catalogue of states of five-wide cell windows. Then, in
Sec. IV, we show how inductively the argument may be
extended to consider the truncated process for any finite
n. At each level, the calculation involves a window which
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FIG. 5: Probabilities of the window states for the left hand
column of Fig. 4. These are calculated approximately by com-
bining two-cluster probabilities, and are expressed in terms of
y = P2(1, 0) and the mean density c. Cells marked as ? are ef-
fectively ignored, since their probability contribution is equal
to 1.

is n+3 cells wide, and a family of states with 2n+2 mem-
bers.

A. Truncated process with n = 1

This section completes the two-cluster analysis of the
truncated process of order n = 1. Since this process
is identical to the parallel update rule, this material is
standard but it is necessary to present it here as it is the
first step of our inductive process.

As we have explained, Fig. 4 lists all of the four-wide
windows of cells at t = t∗−1 which give rise to (σ1, σ2) =
(1, 0) at time t = t∗. There are two sets of quantities
to be worked out: (i) transition probabilities W (results
listed in Fig. 4), and (ii) probabilities of left hand states
in terms of the two-cluster probability y (results listed in
Fig. 5).

Take for example the left hand state F
(1)
1 . This gives

the corresponding right hand state if the occupant of cell
1, which has a hole in front of it, remains stationary, and
all other moves, in particular the motion of the occupant

of cell 3 (if there is one) are irrelevant. Thus W (F
(1)
1 ) =

1− p, i.e. the probability of non-movement given by rule
(R2).

For a second example, consider G
(1),1
2 . The agent in

cell 0 must move (with probability p) and independently
the agent in cell 2 must move (with probability p). Conse-

quently W (G
(1),1
2 ) = p2. The remaining transition prob-

abilities are worked out in a similar fashion.
We now calculate the window state probabilities. The

easy case is P (F
(1)
1 ) = P2(1, 0), = y. However, in general

the probabilities of three- and even four-clusters must

be computed. For example, P (F
(1)
2 ) = P (τ0 = 1, τ1 =

0, τ2 = 0) = P3(1, 0, 0), extending the cluster probability

notation in the most natural way. Similarly, P (G
(1),1
1 ) =

P3(1, 1, 0) and P (G
(1),1
2 ) = P4(1, 0, 1, 0).

To approximate higher order cluster probabilities, we
use the conditional two-cluster probabilities which are
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given as follows:

P2(1, 1) = P2(1, 1) = 1 − y/c, (7)

P2(0, 0) = P2(0, 0) = 1 − y/(1 − c), (8)

P2(1, 0) = P2(0, 1) = y/c, (9)

P2(0, 1) = P2(1, 0) = y/(1 − c). (10)

Here we have adopted the notation of [11], so that e.g.,
P2(1, 0) denotes the probability of a cell being unoccupied
if its left hand neighbour is occupied. Quantities (7-10)
are computed simply from (3) and (5,6).

We now write, for example,

P (F
(1)
2 ) = P (τ0 = 1, τ1 = 0, τ2 = 0),= P3(1, 0, 0)

' P2(1, 0)P2(0, 0), =
y

1 − c
(1 − c − y). (11)

This is only an approximate result since the factorisation
of the three-cluster probability relies on spatial indepen-
dence which has not been proven. For a second example,
we have

P (G
(1),1
2 ) = P4(1, 0, 1, 0)

' P2(1, 0)P2(0, 1)P2(1, 0) =
y3

c(1 − c)
. (12)

The remaining window state probabilities are approxi-
mated similarly. In what follows we suppose that the
above factorisation is exact, so that we may drop the '
symbol.

We may now write down the probability y = P2(1, 0)
in terms of the sum product of the probabilities of left
hand window states and their corresponding transition
probabilities. We have

y :=
∑

i=1,2

(((

W (F
(1)
i )P (F

(1)
i ) + W (G

(1),1
i )P (G

(1),1
i )

)))

,

(13)

which on substitution of the calculated probabilities sim-
plifies to

(((

p2

c(1 − c)

)))

y2 −

(((

p

c(1 − c)

)))

y + p = 0. (14)

This quadratic has one valid root between 0 and 1 given
by

y =
1

2p

(((

1 −
√

1 − 4pc(1 − c)
)))

, (15)

see [11]. As we extend the analysis to truncated processes
of higher order n, we shall see that y solves in general a
polynomial of degree n + 1.

B. Truncated process with n = 2

We now extend the (so-far standard) two-cluster anal-
ysis to the truncated process with n = 2, where up two
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FIG. 6: The list of all possible transitions to a (1, 0)
two-cluster at time step t∗ for the n = 2 case.

W (F
(n)
i ), W (G

(n),m
i ) denote the transition probabilities from

the left column to the right column. The highlighted cells in-
dicate the (1, 0) two-cluster that we seek. A ? symbol means
that the cell can be filled or empty, and effectively ignored
since it has no effect on the monitored (σ1, σ2) two-cluster,
and contributes nothing to the window state, or transition,
probability.

agents may move from the front of each block in one
time step. Later, in Sec. IV, we extend this procedure
to arbitrarily large n, thus analysing truncated processes
arbitrarily close to the full system.

The first step is to extend Fig. 4, which deals with the
n = 1 process and which lists windows of cells at time
t∗ − 1 which can give rise to (σ1, σ2) = (1, 0) at time t∗.
Whereas with n = 1 there were four such window states
to consider, with n = 2 there are now six, labelled F

(2)
1,2

and G
(2),1,2
1,2 , see Fig. 6. Here the parenthesised super-

script denotes the order n of the truncated process, and
the subscripts and letters F and G describe an hereditary
relation with the window states for n = 1. Note that the
G states also have a second superscript whose meaning
we explain shortly. In some sense, we may think of the
n = 2 states as descendants of those for n = 1, and the
crux is to understand how the ‘propagation’ works.

Firstly, note that the propagation of the F family of

states is trivial. To see this, note that the state F
(1)
1

has (τ1, τ2) = (1, 0): consequently, it produces (σ1, σ2) =
(1, 0) via the occupant of cell 1 not moving. Likewise,

state F
(1)
2 has (τ0, τ1, τ2) = (1, 0, 0): so we require only

the agent in cell 0 to move forward. Since the occupant
of cell 0 is either an isolated agent, or the head of a block,
the nature and probability of this transition is unaffected
by the order n of the truncated process.

The difference between the n = 1 and n = 2 cases
concerns the G family of states. Each of these has τ2 = 1,
and hence requires the occupant of cell 2 to move to
produce σ2 = 0. In the n = 1 case, this can only happen
if the occupant of cell 2 is either the head of a block

(case G
(1),1
1 ) or isolated (case G

(1),1
2 ). When n = 2, there

are more exotic possibilities. For example, we could have
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(τ2, τ3) = (1, 1), and provided the occupant of cell 3 is
the head of its block, it is possible for both the occupants
of cells 2 and 3 to move, leaving σ2 = 0. To determine
whether the occupant of cell 3 is the head of its block, it
is thus necessary to consider the occupancy of the next
cell downstream. Therefore, for the truncated process
with n = 2, we must consider a five-wide window of cells.

We now turn our attention to the calculation of tran-
sition probabilities W : results are summarised in Fig. 6.
For the n = 2 process we allow two agents to move from
each block in one time step, but the second agent is only
able to move if the front one has moved before it: with
the (random) shuffle update order there is a probability
1/2 of the front agent having its turn before the second.
We thus have the following five cases to consider:

1. Front agent is updated and moves, then second
agent is updated and moves, probability = p2/2.

2. Front agent is updated and moves, then second
agent is updated and does not move, probability
= p(1 − p)/2.

3. Front agent is updated and does not move, then
second agent is updated and cannot move, proba-
bility = (1 − p)/2.

4. Second agent is updated and cannot move, then
front agent is updated and moves, probability =
p/2.

5. Second agent is updated and cannot move, then
front agent is updated and does not move, proba-
bility = (1 − p)/2.

For states F
(2)
i , we have W (F

(2)
i ) = W (F

(1)
i ) because

there is no second agent in a block to come in to play.

We also have W (G
(2),1
2 ) = W (G

(1),1
2 ) since there are

no blocks of length greater than one. However, we do
see changes in the transition probabilities for the other

G
(2),m
i states. For G

(2),1
1 we have the front agent of the

block moving but not the second: this can occur through
either case 2 or case 4 as listed above, giving transition

probability p(1 − p)/2 + p/2. So W (G
(2),1
1 ) = p − p2/2.

The transition probabilities for the G
(2),2
i states are re-

lated to those for G
(1),1
i by W (G

(2),2
i ) = (p/2)W (G

(1),1
i ),

which comes from there being one more agent needing to
move in the n = 2 case, doing so with probability p. Also
this agent is the second in a block, so there is a proba-
bility of 1/2 that the update order will allow it to move.
This completes the discussion of transition probabilities.

We now see how the window state probabilities relate
to those for n = 1 (see Fig. 7). Here we consider five-
wide cell windows, since we need to consider vmax cells
upstream, and n cells downstream of our monitored two-
cluster. The top four window states in the left column of
Figs. 6, 7 can be easily identified with the n = 1 window
states (Figs. 4, 5), since the fifth cell takes the ? state,
contributing a factor of 1 to the probability. So we have

? ?

?

?

?

?

?

?

?

PSfrag replacements

State Probability P

y

(y/(1− c))(1− c− y)

y(1− y/c)

y(y/c)(y/(1− c))

y(1− y/c)2

y(y/c)(y/(1− c))(1− y/c)

F
(2)
1

F
(2)
2

G
(2),1
1

G
(2),1
2

G
(2),2
1

G
(2),2
2

τ0 τ1 τ2 τ3 τ4

FIG. 7: Probabilities of the window states for the left hand
column of Fig. 6. These are calculated approximately by com-
bining two-cluster probabilities, and are expressed in terms of
y = P2(1, 0) and the mean density c. Cells marked as ? are ef-
fectively ignored, since their probability contribution is equal
to 1.

P (F
(2)
i ) = P (F

(1)
i ) and P (G

(2),1
i ) = P (G

(1),1
i ). Then, as

indicated by our choice of F and G notation, we relate

the remaining two n = 2 window states G
(2),2
i to the

n = 1 states G
(1),1
i . We can imagine them as the same

window state, but with an occupied fifth cell inserted
into the middle, giving a contribution to the probability

of P2(1, 1) = (1 − y/c). So we have P (G
(2),2
i ) = (1 −

y/c)P (G
(1),1
i ).

We can now write down the probability y of finding
(σ1, σ2) = (1, 0) according to the formula

y := P2(1, 0) =
∑

i

W (F
(2)
i )P (F

(2)
i )

+
∑

m≤2

∑

i

W (G
(2),m
i )P (G

(2),m
i ). (16)

On substitution of the transition and window state prob-
abilities, this simplifies to

0 = f2(y; c, p) := p − y
( p

c(1 − c)
+

p2

2c

)

+ y2
( p2

c(1 − c)
+

p2

2c2
+

p3

2c(1 − c)

)

− y3
( p2

2c2(1 − c)

)

, (17)

which we want to solve for y between 0 and 1.

IV. INDUCTIVE CONSTRUCTION FOR

TRUNCATED PROCESSES

In the previous section we showed explicitly how the
calculation is done for the truncated processes with n = 1
and n = 2. We saw how the window states needed for
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consideration at order n = 2 (Fig. 6) were related to
those at order n = 1 (Fig. 4). We now generalise this so
that we can look at the truncated process for any order
n.

Our choice of labels for the states was chosen with this
in mind, and we treat the F

(n)
i and G

(n),m
i separately as

they have quite different extensions into higher n.
As was seen for the n = 1, 2 cases, the states denoted

F
(n)
i propagate unaltered as n increases (see Fig. 8).

The cell window widens by one cell (on the right) at
each step up in n, and this cell may take value ei-
ther τn+2 = 0 or 1, with no effect on the calculations:
this effect is indicated on the figures by ?. We thus

have P (F
(n)
i ) = P (F

(1)
i ) for all n. Similarly, we find

W (F
(n)
i ) = W (F

(1)
i ) for all n because we need never

consider the motion of more than one agent. In the F
(n)
i

states, we require that the front agent of a block does
not move, so that all other motion is blocked and does
not depend on the order n. Agents downstream have
no effect on the monitored (σ1, σ2) two-cluster. In the

F
(n)
2 states, the only motion is the front agent of a block

moving into σ1, and it does not matter how many agents
move behind this one, as they do not enter the monitored
(σ1, σ2) two-cluster. Again, agents downstream have no
effect on the monitored (σ1, σ2) two-cluster.

The G
(n),m
i states are more interesting in their propa-

gation in n. They breed new states as well as propagating
themselves (see Fig. 9). We define those states who, in
Fig. 9, have arrows linking the n state to two n+1 states
as ‘breeding’ states, while those with only one (horizon-
tal) linking arrow we denote ‘dormant’ states. For clar-
ity, we refer to extension along the horizontal arrows as
propagation, and extension along the diagonal arrows as
breeding. We now define the properties that make up
these breeding and dormant states, before going on to
discuss how their transition probabilities W to the mon-
itored (1, 0) two-cluster, and their window state proba-
bilities P , change with increasing n.

To explain the inductive process, we use Figs. 9 and

10. In the G
(n),m
i notation, the n,m specify the horizon-

tal and vertical coordinates of the corresponding pair of
G states measured from the top-left hand corner. The
superscript m also gives the number of agents which
are required to move from a single block in the corre-

sponding window states. For instance, for G
(3),2
1 to have

(σ1, σ2) = (1, 0) at the next time step, two agents must
move from the block, and the third must remain station-
ary.

Breeding states are those labelled G
(n),n
i , and are char-

acterised by having τ2, . . . , τn+2 = 1 (indicated on Fig. 9
by the dashed outlines). Thus n agents are required to
move from a block in order that σ2 = 0 at t = t∗. We say

that these states ‘breed’ because G
(n),n
i can be related to

both G
(n+1),n
i and G

(n+1),n+1
i . By examining Fig. 9, we

see that the G
(n+1),n
i state is obtained along a horizontal

arrow by the window state growing in the manner of the

F states, with an added right-hand ?. The G
(n+1),n+1
i

state manifests itself by a diagonal arrow, with the block
length growing accordingly.

These breeding states account for all changes in prob-
abilities W and P as n increases, see Fig. 10. We see
that along the diagonal arrows, state probabilities P
gain a factor of P2(1, 1) = 1 − y/c, from the increased
length of the block, while transition probabilities W gain
a factor of p/n from the extra agent that is being re-
quired to move. On the horizontal lines from breed-
ing states, we see that the window state probabilities
are unchanged, while the transition probabilities only al-

ter for the G
(n),m
1 states. Here we have W (G

(n),m
1 ) =

W (G
(n−1),m
1 ) − (p/n)W (G

(n−1),m
1 ), which can be inter-

preted as Prob (n − 1 agents move)−Prob (n agents
move). We have this relation because with the increase
in n, it becomes neccesary to specify that the last agent
in the block does not move.

States labelled G
(n),m
i with n 6= m are ‘dormant’ and

propagate unaltered in the same manner as the F
(n)
i

states. Transition probabilities do not change, as the
number of agents required to move is already less than n
and so is independent of n as it increases.

We can then summarise the probabilities shown in
Fig. 10 inductively. For the state probabilities, we

have P (G
(n),m
i ) = P (G

(n−1),m
i ) and P (G

(n),m
i ) = (1 −

y/c)P (G
(n−1),m−1
i ), and for the transition probabilities,

we have W (G
(n),m
i ) = (p/n)W (G

(n−1),m−1
i ); then (i)

for m < n, W (G
(n),m
i ) = W (G

(n−1),m
i ); and (ii) for

m = n, W (G
(n),m
1 ) = W (G

(n−1),m
1 )− (p/n)W (G

(n−1),m
1 )

and W (G
(n),m
2 ) = W (G

(n−1),m
2 ).

By applying these rules we can write down all the terms
needed to construct the algebraic equation fn(y; c, p) = 0
(which we look to solve for y), in terms of fn−1(y; c, p).
This task is tackled in the next section.

V. GENERAL SOLUTION FOR THE

TWO-CELL CLUSTER PROBABILITY

In the previous section we have demonstrated the
structure present in the sequence of truncated approx-
imations. Our next task is to translate that structure
into an equation to solve for y for any n,m, in the form

y =
∑

i

P (F
(1)
i )W (F

(1)
i ) +

∑

i,m

P (G
(n),m
i )W (G

(n),m
i ).

(18)
As n is increased some terms, corresponding to the

F
(n)
i states remain the same. Further new terms ap-

pear, and accumulate, corresponding to the breeding and

dormant G
(n),m
i states. We therefore seek an iterative

process in the form y = base terms + dormant terms +
new terms.

The base term comes from the contribution of the F
(1)
i

states, since this remains unaltered for all n. The con-
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FIG. 8: The propagation of F
(n)
i states as n increases. These states correspond to the left-hand columns in Figs. 4 and 6. The

added right hand cell in each window takes the value ? meaning that it can be either occupied or empty but we need not
consider which, since it has no effect on the ability or probability to produce (σ1, σ2) = (1, 0).
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FIG. 9: Propagation of the G
(n),m
i states as n increases. Existing states breed new ones as well as propagating in the same

manner as the F
(n)
i states (shown in Fig. 8). The characteristic feature of states which breed is that all cells with the dashed

outline should be filled. For any given n, F
(n)
i and G

(n),m
i encompass all states capable of producing (σ1, σ2) = (1, 0) at the

next time step. The breeding of G
(n),m
i means that the number of states increases by two each time n is increased by one.

tributing terms are therefore those we saw for n = 1 in

Sec. IIIA in the form
∑2

i=1 P (F
(1)
i )W (F

(1)
i ). Thus we

have

base = y(1 − p) +
y

1 − c
(1 − c − y)p,

= y −
py2

1 − c
. (19)

As dormant states and breeding states all come from

the G
(n),m
i states, which all originate from G

(1),1
i via the

inductive development, we consider them together.
We start by writing down the terms contributed by the

G
(1),1
i states (which are classed as breeding states) and

then build the inductive argument from there. These

terms are of the form
∑2

i=1 P (G
(1),1
i )W (G

(1),1
i ). Thus

breeding1 = y
((
(

1 −
y

c

))
)

p + y
((
(y

c

))
)
((
( y

1 − c

))
)

p2. (20)

We note here that by solving

y = base + breeding1,

we obtain equation(15) for the n = 1 case, as we would
expect.

Now, to proceed with our inductive argument we re-

call that the breeding states are those labelled G
(n),n
i

and the dormant states are those labelled G
(n),m
i with

m < n. So new dormant states and new breeding states
are produced by the respective propagation and breeding

of G
(n−1),n−1
i states. The first dormant states appear for

n = 2, and are labelled G
(2),1
i in Figs. 6, 9. We examine

the G
(2),m
i contribution to the equation for y as an exten-

sion of the breeding1 terms, and note which correspond
to the dormant states, and which to the breeding states.

By applying the rules outlined in Sec. IV, we have for
n = 2,

y = base + breeding1

(((

1 +
p

2

(((

1 −
y

c

))))))

−
((
(p

2

))
)

P (G
(1),1
1 )W (G

(1),1
1 ), (21)

where

dormant2 = breeding1 −
(((p

2

)))

P (G
(1),1
1 )W (G

(1),1
1 ), (22)

and

breeding2 =
p

2

(((

1 −
y

c

)))

breeding1. (23)

There was nothing special about the extension of n = 1
to n = 2, since the inductive form holds generally. By
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FIG. 10: The state and transition probabilities for the G
(n),m
i for increasing n. We see unaltered state probabilities along

the propagating (horizontal) arrows, but gaining a factor of P2(1, 1) = 1 − y/c on the breeding (diagonal) arrows. Transition

probabilities gain a factor of p/n on diagonal arrows, while W (G
(n),n−1
1 ) = W (G

(n−1),n−1
1 )(1 − p/n), and others remain

unchanged on the horizontal arrows.

recalling that the dormant terms remain in our equation
for all higher n, we can write down the complete equation

y = base +
n−1
∑

j=1

((
(

breedingj

−
((( p

j + 1

)))

P (G
(j),j
1 )W (G

(j),j
1 )

)))

+
p

n

(((

1 −
y

c

)))

breedingn−1, (24)

as a sum of all terms up to n. Here, the sum contains

the terms from all the 2(n − 1) dormant G
(n),m
i states,

and the last term is the contribution from the breeding

G
(n),n
i states.
We consider the breeding terms shortly, but now we

write down the form of P (G
(j),j
1 )W (G

(j),j
1 ) (see Fig. 10).

We can do this because this state always consists of j +1
contiguous occupied cells (τ1, . . . , τj+1) and one empty
cell (τj+2), as well as a ? cell with no contribution to the
state probability. Thus we have

P (G
(j),j
1 ) = y

(((

1 −
y

c

)))j
, (25)

which is derived from the two-cluster probabilities for
(1, 0) and (1, 1). Then also (see Fig. 10),

W (G
(j),j
1 ) =

pj

j!
. (26)

So

y = base +

k−1
∑

j=1

(((

breedingj

−
((
( pj+1

(j + 1)!

))
)

y
((
(

1 −
y

c

))
)j

)))

+
p

k

(((

1 −
y

c

)))

breedingk−1, (27)

which we can write as

y = base +

k−1
∑

j=1

(((

breedingj

− y
pj+1

(j + 1)!

j+1
∑

i=1

(

j
i − 1

)((
(

−y

c

))
)i−1

))
)

+
p

k

(((

1 −
y

c

)))

breedingk−1. (28)

In order to fully express our equation for y, we need to
write explicitly, and generally, the terms from breeding
states. These, unlike the dormant state terms, do not
accumulate. There is one pair of breeding states at each

order n, labelled G
(n),n
i ; the information on lower order

breeding states is included in the dormant state terms.
Again we refer to the breeding rules described in

Sec. IV and Figs. 9 and 10. We see that in the change
from n to n + 1, the cell window has become one cell
wider, and this extra cell is accounted for by an extra
agent in the main block. Therefore, using the two-cluster
method to write down state probabilities, the extra occu-
pied cell manifests itself as the inclusion of a extra factor
P2(1, 1) =

(((

1 − y/c
)))

. The transition probabilities obey

W (G
(n),n
i ) =

(((

p/n
)))

W (G
(n−1),n−1
i ), since one more agent

is required to move with probability p, and there is a 1/n
probability that the agent is allowed to move due to the
update order. We can then write any breedingn terms by
building inductively from the breeding1 terms (20). We
have already seen (23) that

breeding2 =
p

2

(((

1 −
y

c

)))

breeding1

= y
(((

1 −
y

c

)))2 p2

2

+y
(((y

c

)))((( y

1 − c

)))(((

1 −
y

c

)))p3

2
. (29)
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We can go on to say that for general n,

breedingn = y
(((

1 −
y

c

)))n pn

n!

+ y
(((y

c

)))((( y

1 − c

)))(((

1 −
y

c

)))n−1 pn+1

n!
, (30)

which we can rewrite as

breedingn = y
pn

n!

n
∑

i=1

(

n − 1
i − 1

)(((

−y

c

)))i−1

×

(((

1 −
y

c
+

((
(y

c

))
)
((
( py

1 − c

))
)

)))

. (31)

We now have all the necessary ingredients to write
down our equation to solve for y in the form

y = base terms + dormant terms + breedingn. (32)

We divide this through by y, and rearrange to get
fn(y; c, p) = 0, which we then need to solve for y. We
have

fn(y; c, p) = −
py

1 − c

+

n−1
∑

j=1

pj

j!

j
∑

i=1

(

j − 1
i − 1

)((
(

−y

c

))
)i−1

×

(((

1 −
y

c
+

((
(y

c

))
)
((
( py

1 − c

))
)

)))

−
pj+1

(j + 1)!

j+1
∑

i=1

(

j
i − 1

)(((

−y

c

)))i−1

+
pn

n!

n
∑

i=1

(

n − 1
i − 1

)(((

−y

c

)))i−1

×

(((

1 −
y

c
+

(((y

c

)))((( py

1 − c

)))

)))

, (33)

which can be simplified to give

fn(y; c, p) = p −
py

1 − c

+
n

∑

i=1

((
(

−y

c

))
)i n

∑

j=i

pj

j!

(

j − 1
i − 1

)((
(

1 −
py

1 − c

))
)

. (34)

Note that we must solve fn(y; c, p) = 0 for the two-cluster
probability y = P2(1, 0) for the truncated process of order
n. In fact, (34) has an n → ∞ limit which we may exploit
to find an equation f(y; c, p) = 0 to solve for the full
untruncated process. We have

f(y; c, p) = −(1 − p)

+
1

c − y

(((

1 −
py

1 − c

)))(((

c − yep(1−y/c)

)))

. (35)

To solve this, in general, one needs to use numerical
methods, but once that is done, y can be used as a build-
ing block for more interesting quantities, discussed in the
next section.

VI. STEADY STATE VELOCITIES AND FLOW

RATES

Once we have found y we can write down the prob-
abilities for different block lengths. We formulate this
as ‘given an agent, what is the probability it is in a
block of length l?’ and construct it from the same
two-cluster probabilities we used in the previous sec-
tion. For instance, the probability of a block of length
2 is the probability that, given an agent, there is an
empty cell on one side of it, and an occupied cell on
the other side, and then an empty cell next to that, i.e.

P2 = P2(1, 0)P2(1, 1)P2(1, 0) =
(((

y/c
)))2(((

1 − y/c
)))

. We can
extend this similarly for other lengths, to give

Pl =
(((y

c

)))2(((
1 −

y

c

)))l−1
. (36)

From this we can calculate the average velocity of the
system. Since all peak velocities are one, the average
velocity v̂ is given by the proportion of agents moving at
each time step.

There are now two possible approaches. Firstly, we
may select an agent at random, find the probability that
it is in a block of length l, and then calculate the proba-
bility that the agent moves from the kth position in that
block. The second approach is to select a block of agents
at random, find the probability that it has length l and
then calculate the probabilities of k agents moving from
the block. Here we use the first method.

Using the agent-oriented approach the probability that
an agent chosen at random is in a block of length l is
lPl/

∑

i iPi. But
∑

i iPi = 1, so we have obtained lPl.
We then use the fact that the agent is equally likely to
be in any position within the block, introducing a 1/l
term, and we sum over all k the probability that it moves
from the kth position. Using the block length probability
found in equation (36), we have

v̂ =

∞
∑

l=1

lPl
1

l

l
∑

k=i

P (block serves at least k agents),

=
∞
∑

l=1

((
(y

c

))
)2(((

1 −
y

c

))
)l−1

l
∑

k=1

pk

k!
,

=
((
(y

c

))
)2

∞
∑

k=1

pk

k!

∞
∑

l=k

((
(

1 −
y

c

))
)l−1

. (37)

We can simplify this expression, since the sum in l is
the tail of a geometric series. We therefore have

v̂ =
(((y

c

)))2
∞
∑

k=1

pk

k!

(((

1 −
y

c

)))k−1
∞
∑

l=0

(((

1 −
y

c

)))l
,

=
((
( y

c − y

))
)

(((

exp
((
(p

c
(c − y)

))
)

− 1

)))

. (38)

So, with a global density c and an average velocity v̂,
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we can write down flow in the form

q = cv̂,

=
((
( cy

c − y

))
)

((
(

exp
((
(p

c
(c − y)

))
)

− 1

))
)

. (39)

This result agrees with that found by Wölki et al [8],
using a car-oriented mean field (COMF) method. The
relationship between our site-oriented (SOMF) method
and that paper is that P0 in their notation is equivalent
to P2(1, 1) = 1 − y/c here.

VII. CONCLUSIONS AND DISCUSSION

In this paper we have extended the two-cluster analysis
of the well-known Nagel-Schreckenberg cellular automata
model, with vmax = 1, to the case of shuffle update.

We introduced the shuffle update model, and we dis-
cussed the similarities and differences with the standard
parallel update and random sequential update models.
We then defined the truncated process of order n as an
approximation to the full model, where a maximum of n
agents are allowed to move from any contiguous block,
and we noted that for n = 1 this is equivalent to the
standard parallel update model.

The two-cluster method of analysis gives exact results
for the parallel update model because neighbouring two-
cluster probabilities are independent of each other. We
extended this method to the n = 2 truncated process,
and then by considering the general extension from n
to n + 1 we constructed a sequence of approximations
to the full shuffle update dynamics. We have therefore
shown that, if the spatial independence of two-clusters

is maintained for n > 1, we can obtain full expressions
for the distribution of agents on the lattice, and further,
their velocity and flow rates.

To investigate whether or not the spatial independence
condition holds, one should investigate higher order (i.e.
three- and four-) clusters. If the results for higher order
clusters agree with the two-cluster method, then it would
seem likely that spatial independence holds (and hence
the results here would be exact), but it would still need
to be proven.

The particular formulae obtained here are in agree-
ment with the recent print by Wölki et al [8], which came
to our attention while our manuscript was in preparation.
Their analysis was done by using a car-oriented mean
field (COMF) method and they considered the lengths
of the hole blocks in front of a given agent. The results
can be compared directly, since their quantity P0 is equiv-
alent to our conditional probability P2(1, 1). Further, in
[8] it is shown that the results are exact for p = 1.

For future work it would be interesting to study the
shuffle update model for vmax > 1 and compare with
the parallel and random sequential models. Also an
extension into multi-lane traffic may be worth pursuing,
since as we have seen here, the shuffle update scheme
guarantees collision avoidance, even in higher dimen-
sions.
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