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Abstract. The Optimal–Velocity (OV) model is posed on an inhomogeneous ring–
road and the consequent spatial traffic patterns are described and analysed. Parameters
are chosen throughout for which all uniform flows are linearly stable, and a simple model
for a bottleneck is used in which the OV function is scaled down on a subsection of
the road. The large-time behaviour of this system is stationary and it is shown that
there are three types of macroscopic traffic pattern, each consisting of plateaus joined
together by sharp fronts. These patterns solve simple flow and density balances, which
in some cases have non-unique solutions. It is shown how the theory of characteristics
for the classical Lighthill-Whitham PDE model may be used to explain qualitatively
which solutions the OV model selects. However, fine details of the OV model solution
structure may only be explained by higher order PDE modelling.

1 Introduction

The aim of this paper is to understand the steady state wave profiles that emerge
in car-following models in the presence of spatial inhomogeneity. We simulate
traffic with the Optimal Velocity model [1], posed on a ring-road that is made
inhomogeneous by adding a simple model for a bottleneck, in which the Optimal
Velocity function is reduced by a constant factor for some portion of the road.
The surprise in this paper is that such a simple model set-up can display non-
trivial solution structure.

The modelling of traffic flow can be understood at two distinct levels: micro-
scopically, whereby each vehicle is considered individually, and macroscopically
whereby traffic is considered as a continuous fluid. The simple discrete model
that we consider here develops stable stationary patterns as t → ∞, which can
be understood by drawing parallels with continuum models.

The paper is set out as follows. In Sect. 2, we describe the OV model set-up
that we use for the remainder of this paper, including precise details of how the
spatial inhomogeneity is applied. Then in Sect. 3, we outline our numerical sim-
ulation and coarse-graining procedure, and we show results of three numerical
experiments with qualitatively different solution structure as t → ∞ (see Fig. 1).
Sections 4 and 5 analyse these experiments using classical kinematic wave the-
ory, firstly by analysing simple flow and density balances and then by using
characteristic arguments to explain the wave selection principles. We calculate
explicitly a phase diagram describing where the different solution types occur.
Finally in Sect. 6, we conclude and indicate the success and failures of higher
order continuum models in explaining the fine details of the solution structure.
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2 Problem Set-Up

We consider the traffic patterns formed by a large number N of identical vehi-
cles driving on a unidirectional single-lane ring-road of length L. Overtaking is
not considered. Vehicles move in continuous space x and time t, and their dis-
placements and velocities are labelled xn(t) and vn(t) respectively. We suppose
that the direction of motion is in increasing x, and moreover that vehicles are
labelled n = 1, 2, . . . , N in the downstream direction. For the vehicles’ equations
of motion, we adopt the well-known Optimal Velocity (OV) car-following model
[1] for which

ẋn = vn, (1)

v̇n = α {V (hn;x) − vn} . (2)

Here dot denotes differentiation with respect to time, and the rate constant α > 0
is known as the sensitivity. The variable hn := xn+1 − xn gives the headway,
or gap to the vehicle in front, and loosely speaking the OV model describes the
relaxation of traffic to a safe speed which is defined in terms of this gap. Note that
under open boundary conditions one would need to prescribe the trajectory of
the lead vehicle N , but on the ring-road we assume merely that it follows vehicle
1, so that hN = L + x1 − xN .

The novelty in this paper is that we use an inhomogeneous OV function
which takes the form

V (hn;x) :=

{

rBV (hn), 0 ≤ xmod L < L̂L,

V (hn), L̂L ≤ xmod L < L,
(3)

and which is thus scaled down by a reduction factor 0 < rB < 1 for a proportion
0 < L̂ < 1 of the ring-road under consideration. (Note that for sake of brevity, the
vehicles’ displacements xn(t) are set-up as monotone increasing and unbounded,
although henceforth, we interpret all displacements modulo L.)

In (3), V with a single argument denotes a spatially independent OV function,
and for concreteness, we adopt the standard [1] S-shape

V (h) = tanh(h − 2) + tanh(2). (4)

However, qualitatively similar results should be recovered by any V for which
1. V (0) = 0, 2. V ′ ≥ 0 and 3. V (h) → Vmax as h → ∞. The detailed structure
of V is not important because throughout we choose α ≥ 2maxV ′, so that all
uniform flows are linearly stable. Consequently, the patterns that we observe are
forced only by the spatial inhomogeneity and not by spontaneous flow breakdown
effects.

3 Numerical Procedure and Simulation Results

We now supplement equations (1–3) with the uniformly spaced initial data

xn = nh∗ and vn = V (h∗) for n = 1, 2, . . . , N. (5)
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Here h∗ := L/N is the mean spacing. Note that for the limiting (no bottleneck)
cases where either rB = 1 or L̂ = 0, (5) gives a uniform flow solution of (1–3) in
which xn = nh∗ + tV (h∗). However, in general we should expect the bottleneck
to redistribute traffic. In order to investigate the resulting patterns, we solve the
initial value problem (1–5) numerically using a standard fixed step fourth-order
Runge-Kutta solver.

After some experimentation with the solver, we conclude that the traffic
always settles down to a stationary profile as t → ∞, although the transient
processes can sometimes be very long. Here stationarity means that suitably
defined macroscopic density and velocity variables become steady, although they
are non-trivially dependent on space x, and consequently vehicles’ motions are
in fact periodic as t → ∞, since as they drive around the ring-road, they move
repeatedly through the spatial pattern and experience traffic jams, free-flowing
regimes etc. Note however that if we chose smaller values of sensitivity α than
presented here, so as to force the linear instability of a range uniform flows, then
the macroscopic variables could also be non-trivially time-dependent as t → ∞.

Taking into account the above discussion, the results that we display shortly
show stationary macroscopic density profiles ρ(x) rather than individual vehicle
trajectories. The simplest way to relate microscopic and macroscopic variables is
via ρ(xn, t) = 1/hn(t), although it is well-known [2,3] that this relationship holds
exactly only for entirely homogeneous situations. Therefore we use a coarse-
grained [2] density

ρ(x, t) =

∫

L

dx′dt′φ(x − x′, t′)
∑

n

δ(xn(t′) − x′), (6)

with

φ(x, t) =
1

2πσ2
exp(−x2/2σ2)δ(t), (7)

which is thus obtained from distributional point density by convolving with a
Gaussian test function whose characteristic length scale σ is chosen large enough
so as to smooth out individual vehicles but small enough so as to retain macro-
scopic features. A macroscopic flow variable q(x, t) may be obtained in a similar
way by coarse-graining the discrete velocity vn, and then a coarse-grained veloc-
ity is given by v(x, t) := q(x, t)/ρ(x, t). Note that since we are usually seeking a
steady density, there are computational short-cuts and the cheapest procedure is
to calculate ρ(x) by coarse-graining in time the numerical trajectory of a single
vehicle as it drives once around the ring-road.

We now give three examples of the eventual stationary profiles ρ(x) which
show how the structure changes as the mean headway h∗ is varied. To simplify
matters, all other parameters are held fixed as follows: N = 100 vehicles, bottle-
neck reduction factor rB = 0.6, bottleneck nondimensionalised length L̂ = 0.25
and sensitivity α = 2.0. Later we consider how the qualitative solution structures
change as functions of the three problem parameters ρ∗ := 1/h∗, rB and L̂.
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Fig. 1. Stationary t → ∞ coarse-grained density profiles ρ(x). The portions of solution
profiles within the bottleneck are indicated by shading. (a) Light traffic h∗ = 7.0
(ρ∗ = 0.142857), see Example 1; (b) Medium traffic h∗ = 2.5 (ρ∗ = 0.4), see Example
3; (c) Heavy traffic h∗ = 1.0 (ρ∗ = 1.0), see Example 2

Example 1. We take h∗ = 7.0 which corresponds to light traffic (large h∗, small
ρ∗). See Fig. 1(a). The t → ∞ steady density profile ρ(x) adopts a two-plateau
form, with an almost constant density ρB attained in the bottleneck and a lower
(almost constant) density ρ1 on the remainder of the loop. At each end of the
bottleneck, the two density plateaus are joined by sharp, almost shock-like fronts.

Example 2. We take h∗ = 1.0 which corresponds to heavy traffic. See Fig. 1(c).
In a similar fashion to Example 1, ρ(x) adopts a two-plateau form. However this
time the bottleneck density ρB is less than the density ρ1 on the unconstrained
part of the loop. Like Example 1, there are also sharp, shock-like fronts at each
end of the bottleneck, although here they have a more complicated oscillatory
structure.

Example 3. We now take h∗ = 2.5 which may be regarded as an intermediate
case. See Fig. 1(b). In contrast to the two previous examples, ρ(x) now has
a three-plateau form. The density as before adopts an almost constant (but
slightly S-shaped) profile ρ ≃ ρB within the bottleneck, with fronts at each end.
Downstream of the bottleneck is a low density ρ1 region, whereas upstream is a
high density ρ2 region, which may be thought of as a queue waiting to enter the
bottleneck. There is thus an extra internal shock-like front in the unconstrained
part of the loop, where the fast traffic that has come out of the bottleneck rejoins
the queue to enter it. Unlike the other fronts we have encountered so far, that
joining ρ1 and ρ2 is not locked on a discontinuity in the model; nevertheless, it
is stationary.

Further simulation may be used to show how the Fig. 1 profiles are related to
each other. If one starts with the Fig. 1(b) structure (Example 3) and decreases
the mean headway (increases the mean density), then the queue upstream of
the bottleneck grows in length until it reaches the downstream boundary of the
bottleneck, and swamps the entire unconstrained part of the loop. At this point,
the internal shock vanishes and the Fig. 1(c) structure is recovered. Conversely,
if one starts with Fig. 1(b) and decreases the mean density, the queue upstream
of the bottleneck shortens until it vanishes altogether. At that point, the internal
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shock is absorbed into the upstream boundary of the bottleneck and the Fig. 1(a)
structure is recovered.

4 Density and Flow Balances

We now begin an explanation of the structures seen in Section 3. Later we
derive a phase diagram which predicts when each will occur. Since the observed
structures resemble constant density plateaus separated by classical shocks, we
attempt an explanation based on kinematic wave theory [6]. To this end, we
introduce the fundamental (flow) diagram Q(ρ) = ρV̂ (ρ) where V̂ (ρ) = V (1/ρ)
is the continuum counterpart to the discrete OV function V . As is well-known,
Q is usually a unimodal function. With choice (4), Q attains its maximum value
Qmax ≃ 0.58 at ρmax ≃ 0.36. In the bottleneck, the fundamental diagram Q is
scaled by rB.

Firstly we consider the two-plateau structures of Figs. 1(a) and (c). Since the
fronts are sharp, negligibly few vehicles are contained within them at any one
time. We may therefore approximate the density ρ(x) with a piecewise-constant
profile consisting of ρB within the bottleneck and ρ1 in the unconstrained part
of the loop. It thus follows that

L̂ρB + (1 − L̂)ρ1 = ρ∗, (8)

Q(ρ1) = rBQ(ρB), (9)

which describe respectively the conservation of vehicles and a flow balance (the
latter is necessary since the observed profiles are stationary). Equations (8,9) are
thus a pair of simultaneous equations to solve for ρ1 and ρB, where the remaining
parameters ρ∗, rB and L̂ are prescribed.

We must therefore examine the (ρ1, ρB) solution structure of (8,9) and this
is achieved via Fig. 2. To see this, note that ρB may be eliminated from (8,9) to
give

Q(ρ1) = rBQ

(

ρ∗ − (1 − L̂)ρ1

L̂

)

, (10)

and the left and right hand sides of this equation are plotted against ρ1 in
Figs. 2(a-c)(i). Note alternatively that ρ1 can be eliminated from (8,9) to give

rBQ(ρB) = Q

(

ρ∗ − L̂ρB

1 − L̂

)

, (11)

and as a cross-check, the left and right hand sides of this equation are plotted
against ρB in Figs. 2(a-c)(ii). Further, parameters have been chosen so that the
panels (a-c) correspond directly to panels (a-c) in Fig. 1. Firstly, the light traffic
diagrams Figs. 2(a)(i,ii) indicate a unique (ρ1, ρB) solution pair and it may be
shown that this is indeed corresponds to values obtained in Example 1.
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Fig. 2. Solution structure of (8,9). Panels (a-c) correspond directly to panels (a-c) in
Fig. 1. Top row (i) indicates solutions of (10) and bottom row (ii) of the equivalent
equation (11). The extra numbering in panels (c)(i,ii) allows the (ρ1, ρB) solution pairs
to be identified

However, in the heavy traffic diagrams Figs. 2(c)(i,ii), there are clearly three
(ρ1, ρB) solution pairs: what determines which pair is selected in the correspond-
ing Example 2? Finally, in the intermediate case of Figs. 2(b)(i,ii), there is a
unique (ρ1, ρB) solution pair, however, the corresponding Example 3 selects in-
stead a three-plateau structure. It now remains to identify extra principles which
explain the solution selection in cases (b) (Example 3) and (c) (Example 2).

5 Wave Selection via Characteristics

We now use characteristic arguments from kinematic wave theory [6, Chap. 2]
to explain the observed wave selection behaviour. We focus initially on Example
2 (heavy traffic), see Figs. 1(c) and Figs. 2(c)(i,ii), and then later we consider
the three-plateau case.

We recall that in kinematic wave theory, characteristics are lines (or line
segments) in the (x, t) plane on which density is conserved. Further, it is well-
known that the local velocity of a characteristic with density ρ is given by Q′(ρ).
Consequently, characteristics propagate downstream in light traffic and upstream
in heavy traffic. When characteristics converge, one obtains a classical shock,
whereas when they diverge, one obtains a (non-stationary) expansion fan.

Figure 3 develops a characteristic analysis of the (ρ1, ρB) solution pairs found
in Fig. 2(c)(i,ii). The key point to note is that the solution pairs numbered 1
and 3 straddle ρ = ρmax at which both the unconstrained Q(ρ) and bottleneck
rBQ(ρ) fundamental diagrams attain their maxima. These solution pairs can
be disregarded, because the consequent density profiles would involve patterns
of characteristics with both positive and negative slopes. This means that at
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Fig. 3. Characteristic analysis for the (ρ1, ρB) solution pairs from Figs. 2(c)(i,ii). Panel
(iii) shows the location of solution pairs, joined by horizontal lines representing flow
balance, on the fundamental diagrams Q and rBQ. Characteristic pictures for each of
the three root pairs are shown in panels (iv), (v) and (vi): the bottleneck is denoted
by shading. Panels (v) and (vi) cannot give stationary profiles since they predict an
expansion fan at the up- and down-stream ends of the bottleneck respectively. Hence
solution pair 2 from panel (iv) is selected. Note that in panel (iii), this solution pair is
non-straddling in the sense that both ρ1 and ρB are the same side of the fundamental
diagram maximum

either the upstream or downstream boundary of the bottleneck, there would
necessarily be a non-stationary expansion fan which would not agree with the
t → ∞ stationary results.

In contrast, solution pair 2 is non-straddling and involves only characteristics
with negative slopes, see Fig. 3 panel (iv). In this sketch, neither the upstream
or downstream boundary of the bottleneck has a classical (compressive) shock.
Rather, at each boundary the characteristics cross through the shock which is
forced solely by the model discontinuity at that point. It may be shown that this
solution agrees with that found by discrete simulation in Section 3 and moreover
that it is a proper solution of the Lighthill-Whitham-Richards model in that it
may be reached via the solution of the initial value problem [8].

We now turn our attention to the three-plateau case (Example 3, Fig. 1(b)),
for which it may be shown that the analysis of Section 4 predicts a straddling,
and hence invalid solution pair (ρ1, ρB). The resolution is thus to approximate the
density ρ(x) by a piecewise-constant profile with three components: ρB (density
in bottleneck) and ρ1, ρ2 (densities in unconstrained part of loop). The density
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Fig. 4. Characteristic analysis for the three-plateau case: only the configuration shown
with flow maximised in the bottleneck avoids expansion fans. Note that the charac-
teristics inside the bottleneck have zero velocity and hence this structure is on the
very boundary of becoming an expansion fan. The internal shock between ρ1 and ρ2 is
classical since at it the characteristics converge

and flow balances thus yield respectively

L̂ρB + β(1 − L̂)ρ1 + (1 − β)(1 − L̂)ρ2 = ρ∗, (12)

Q(ρ1) = Q(ρ2) = rBQ(ρB), (13)

where 0 < β < 1 parametrises the internal shock position separating ρ1 and ρ2.
We thus have three equations, but four unknowns, namely β, ρ1, ρ2 and ρB, and
we require extra information to fix a unique solution. By studying characteristic
diagrams, it becomes clear that a solution without diverging characteristics (and
hence non-stationary expansion fans) is only possible if

ρB = ρmax, (14)

i.e., if the flow inside the bottleneck is maximised. Further, when supplemented
by (14), system (12,13) can be solved uniquely for ρ1, ρ2 and β, and it may be
shown that this solution agrees with the discrete simulations. The characteristic
structure is shown in Fig. 4. In particular, it involves non-standard waves at the
up- and down-stream ends of the bottleneck. However it may be shown via the
solution of the initial value problem that these are admissible solutions of the
Lighthill-Whitham-Richards model [8].

We now turn our attention to the computation of a phase diagram. Since
in the three-plateau case we have ρB = ρmax, the values of ρ∗ where solutions
change from two plateau solutions to three plateau solutions can be calculated.
At the thresholds, β is either 0 or 1 and ρB = ρmax, thus eliminating ρ1 or ρ2 in
(13) using (12), leaves only

rBQ(ρmax) = Q

(

ρ∗ − L̂ρmax

1 − L̂

)

, (15)

as a relation between the problem parameters that holds at the transition, see
Fig. 5. In particular, we may partition the (ρ∗, rB) plane according to whether
the three-plateau solution occurs, or according to which type of two-plateau
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line segments denoted A and B indicate to where the phase boundary would move for
L̂ = 0.5 and L̂ = 0.75 respectively

solution occurs, and the boundary in this plane depends on L̂ in a manner that
we can determine explicitly. In particular, increasing the length of the bottleneck
shrinks the domain where the three-plateau solution occurs.

6 Higher Order Modelling

We have shown how first order kinematic wave theory explains the principal
qualitative features of the discrete simulation results presented in Fig. 1. This
theory however is based on a piecewise-constant ansatz for the density profile
ρ(x), and does not explain, for example, the S-shaped profile in the bottleneck
in Fig. 1(b), nor does it explain the internal structure of the shocks. To analyse
these features, we should resort to higher order PDE approximations of the
OV model [2,3]. Using the work of [7] as motivation, we use finite differences to
obtain the spatial derivative of the coarse-grained density so that we may display
numerical (ρ, ρx) phase portraits: see Figs. 6(a–c).

In each of these phase portraits, trajectories spend most time in the vicinity
of fixed points which correspond to the constant density plateaus in Figs. 1(a–c).
These fixed points are then linked via rapid transits across the phase portrait
which describe the interior structure of the shocks. Note that in Figs. 6(a–c),
the bottleneck boundaries are in fact ‘mid-shock’ and are denoted by small solid
discs.
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Fig. 6. Numerical (ρ,ρx) phase plots corresponding to Figs. 1(a–c). The discs mark
the boundaries of the bottleneck. (a) Light traffic: heteroclinic cycle connecting (ρ1, 0)
and (ρB, 0). (b) Three plateau case: saddle at (ρ1, 0); saddle–node at (ρB, 0) explaining
S–shaped structure; complex fixed point at (ρ2, 0). (c) Heavy traffic: complex fixed
points at (ρ1, 0) and (ρ2, 0)

In the light traffic portrait Fig. 6(a), we observe a heteroclinic-cycle connect-
ing saddle-like fixed points, which agrees with the analytical prediction of [7].
However, in the heavy traffic portrait Fig. 6(c), the numerical trajectory crosses
itself, and we observe complicated fixed-points which resemble projections of
Shilnikov points. The conclusion in this case is that the dynamics cannot be rep-
resented in two dimensions. In fact, one may show that the second-order theory
[7] predicts a pair of stable node fixed points, and hence cannot produce the re-
quired connections. Instead, the solution seems to adopt a sharper profile which
brings higher derivatives into play, and which thus permits the required connec-
tions in a higher dimensional phase space. In the three-plateau case Fig. 6(b),
[7] predicts that the bottleneck fixed point is at saddle-node bifurcation, in the
vicinity of which, trajectory behaviour is polynomial in x. This observation can
be used to explain the S-shape bottleneck profile in Fig. 1(b).

Thus to sum up, from a simple model for a bottleneck on a loop, we have
observed interesting, stationary wave patterns in the OV model as t → ∞.
These patterns consist generally of two or three plateaus separated by shock–
like structures. We have built an understanding of these patterns using a PDE
approach, principally by using first order kinematic wave theory. However, the
fine details require higher order modelling with a momentum equation – this is
work in progress.
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