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A nonlinear car-following model of highway traffic is considered, which includes the
reaction-time delay of drivers. Linear stability analysis shows that the uniform flow
equilibrium of the system loses its stability via Hopf bifurcations and thus oscilla-
tions can appear. The stability and amplitudes of the oscillations are determined
with the help of normal-form calculations of the Hopf bifurcation that also handles
the essential translational symmetry of the system. We show that the subcritical
case of the Hopf bifurcation occurs robustly, which indicates the possibility of bista-
bility. We also show how these oscillations lead to spatial wave formation as can be
observed in real-world traffic flows.

Keywords: vehicular traffic, reaction-time delay, translational symmetry,
subcritical Hopf bifurcation, bistability, stop-and-go waves

1. Introduction

The so-called uniform flow equilibrium of vehicles following each other on a road
is a kind of steady state where equidistant vehicles travel with the same constant
velocity. Ideally, this state is stable. Indeed, it is the goal of traffic management that
drivers choose their traffic parameters to keep this state stable and also to reach
their goal, that is, to travel with a speed close to their desired speed. Still, traffic
jams often appear as congestion waves travelling opposite to the flow of vehicles
(Kerner 1999). The formation of these traffic jams (waves) is often associated with
the linear instability of the uniform flow equilibrium, which should be a rare occur-
rence. However, it is also well known among traffic engineers that certain events,
such as a truck pulling out of its lane, may trigger traffic jams even when the
uniform flow is stable. We investigate a delayed car-following model and provide
a thorough examination of the subcriticality of Hopf bifurcations related to the
drivers’ reaction-time delay. This explains how a stable uniform flow can coexist
with a stable traffic wave.
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2 Gábor Orosz and Gábor Stépán

The car-following model analyzed in this paper was first introduced in (Bando
et al. 1995) without the reaction-time delay of drivers, and that was investigated by
numerical simulation. Then numerical continuation techniques were used in (Gasser
et al. 2004; Berg & Wilson 2005) by applying the package auto (Doedel et al.
1997). Recently, Hopf calculations have been carried out in (Gasser et al. 2004) for
arbitrary numbers of cars following each other on a ring.

The reaction-time delay of drivers was first introduced in (Bando et al. 1998),
and its importance was then emphasized by the study (Davis 2003). In these papers
numerical simulation was used to explore the nonlinear dynamics of the system. The
first systematic global bifurcation analysis of the delayed model (Davis 2003) was
presented in (Orosz et al. 2004a) where numerical continuation techniques, namely
the package dde-biftool (Engelborghs et al. 2001), were used. The continuation
results were extended to large numbers of cars in (Orosz et al. 2004b) where the dy-
namics of oscillations, belonging to different traffic patterns, were analyzed as well.
In this paper we perform an analytical Hopf bifurcation calculation and determine
the criticality of the bifurcation as a function of parameters for arbitrary numbers
of vehicles in the presence of the drivers’ reaction delay.

While the models without delay are described by ordinary differential equations
(ODEs), presenting the dynamics in finite-dimensional phase spaces, the appearance
of the delay leads to delay differential equations (DDEs) and to infinite-dimensional
phase spaces. The finite-dimensional bifurcation theory that is available in basic
textbooks (Guckenheimer & Holmes 1997; Kuznetsov 1998) have been extended
to DDEs in (Hale & Verduyn Lunel 1993; Diekmann et al. 1995; Kolmanovskii
& Myshkis 1999; Hale et al. 2002). The infinite-dimensional dynamics make the
bifurcation analysis more abstract. In particular, the Hopf normal form calculations
require complicated algebraic formalism and algorithms, as is shown in (Hassard
et al. 1981; Stépán 1986, 1989; Campbell & Bélair 1995; Stone & Campbell 2004;
Orosz 2004). Recently, these Hopf calculations have been extended for systems with
translational symmetry in (Orosz & Stépán 2004) which is an essential property of
car-following models. This situation is similar to the S1 symmetry that occurs in
laser systems with delay, see (Verduyn Lunel & Krauskopf 2000; Rottschäfer &
Krauskopf 2004). In (Orosz & Stépán 2004) the method was demonstrated on the
over-simplified case of two cars on a ring. Here, these calculations are extended
to arbitrarily many cars, providing general conclusions for the subcriticality of the
bifurcations and its consequences for flow patterns. Our results are generalization of
those in (Gasser et al. 2004) for the case without reaction-time delay. In particular,
we prove that this delay makes the subcriticality of Hopf bifurcations robust.

2. Modelling Issues

The mathematical form of the car-following model in question was introduced and
non-dimensionalized in (Orosz et al. 2004a). Here we recall the basic features of this
model. Periodic boundary conditions are considered, i.e., n vehicles are distributed
along a circular road of overall length L; see Fig. 1. (This could be interpreted
as traffic on a circular road around a large city, e.g., the M25 around London,
even though such roads usually possess higher complexity.) As the number of cars
is increased the significance of the periodic boundary conditions usually tends to
become smaller.
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Figure 1. Vehicles flowing clockwise on circular road.

We assume that drivers have identical characteristics. Considering that the ith
vehicle follows the (i+1)st vehicle and the nth car follows the 1st one, the equations
of motion can be expressed as

ẍi(t) = α
(
V (xi+1(t− 1)− xi(t− 1))− ẋi(t)

)
, i = 1, . . . , n− 1 ,

ẍn(t) = α
(
V(x1(t− 1)− xn(t− 1) + L)− ẋn(t)

)
,

(2.1)

where dot stands for time derivative. The position, the velocity, and the acceleration
of the ith car are denoted by xi, ẋi, and ẍi, respectively. The so-called optimal
velocity function V: R+ → R+ depends on the distance of the cars hi = xi+1 − xi,
which is usually called the headway. The argument of the headway contains the
reaction-time delay of drivers which now is rescaled to 1. The parameter α > 0 is
known as the sensitivity and 1/α > 0 is often called the relaxation time. Due to
the rescaling of the time with respect to the delay, the delay parameter is hidden
in the sensitivity α and the magnitude of the function V(h); see details in (Orosz
et al. 2004a).

Equation (2.1) expresses that each driver approaches an optimal velocity, given
by V(h), with a characteristic relaxation time of 1/α, but reacts to its headway via
a reaction-time delay 1. The general features of the optimal velocity function V(h)
can be summarized as follows.

1. V(h) is continuous, nonnegative, and monotone increasing, since drivers want
to travel faster as their headway increases. Note that in the vicinity of the Hopf
bifurcation points, V(h) is required to be three times differentiable for the
application of the Hopf Theorem (Guckenheimer & Holmes 1997; Kuznetsov
1998).
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4 Gábor Orosz and Gábor Stépán

2. V(h) → v0 as h → ∞, where v0 is known as the desired speed, which corre-
sponds, for example, to the speed limit of the given highway. Drivers approach
this speed with the relaxation time of 1/α when the traffic is sparse.

3. V(h) ≡ 0 for h ∈ [0, 1], where the so-called jam headway is the rescaled to 1,
see (Orosz et al. 2004a). This means that drivers attempt to come to a full
stop if their headways become less than the jam headway.

One might, for example, consider the optimal velocity function to take the form

V(h) =





0 if 0 ≤ h ≤ 1 ,

v0 (h− 1)3

1 + (h− 1)3
if h > 1 ,

(2.2)

as already used in (Orosz et al. 2004a,b). This function is shown together with its
derivatives in Fig. 2. Functions with shapes similar to (2.2) were used in (Bando et
al. 1995, 1998; Davis 2003).

Note that the analytical calculations presented here are valid for any optimal
velocity function V(h): it is not necessary to restrict ourself to a concrete function
in contrast to the numerical simulations in (Bando et al. 1998; Davis 2003) and
even to the numerical continuations in (Orosz et al. 2004a,b).

3. Translational Symmetry and Hopf Bifurcations

The stationary motion of the vehicles, the so-called uniform flow equilibrium is
described by

xeq
i (t) = v∗ t + x∗i , ⇒ ẋeq

i (t) ≡ v∗ , i = 1, . . . , n , (3.1)

where
x∗i+1 − x∗i = x∗1 − x∗n + L = L/n := h∗, i = 1, . . . , n− 1 , (3.2)

and
v∗ = V(h∗) < v0 . (3.3)

Note that one of the constants x∗i can be chosen arbitrarily due to the translational
symmetry along the ring. Henceforward, we consider the average headway h∗ = L/n
as a bifurcation parameter. Increasing h∗ increases the length L of the ring, which
involves scaling all headways hi accordingly.

Let us define the perturbation of the uniform flow equilibrium by

xp
i (t) : = xi(t)− xeq

i (t) , i = 1, . . . , n . (3.4)

Using Taylor series expansion of the optimal velocity function V(h) about h = h∗(=
L/n) up to third order of xp

i , we can eliminate the zero-order terms

ẍp
i (t) = −αẋp

i (t) + α

3∑

k=1

bk(h∗)
(
xp

i+1(t− 1)− xp
i (t− 1)

)k
, i = 1, . . . , n− 1 ,

ẍp
n(t) = −αẋp

n(t) + α

3∑

k=1

bk(h∗)
(
xp

1(t− 1)− xp
n(t− 1)

)k
,

(3.5)
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Figure 2. The optimal velocity function (2.2) is shown in panel (a), and its derivatives
are displayed in panels (b)–(d).

where

b1(h∗) = V′(h∗) , b2(h∗) =
1
2
V′′(h∗) , and b3(h∗) =

1
6
V′′′(h∗) . (3.6)

At a critical/bifurcation point h∗cr the derivatives take the values b1cr = V′(h∗cr),
b2cr = 1

2V′′(h∗cr), and b3cr = 1
6V′′′(h∗cr). Now and further on, prime denotes differ-

entiation with respect to the headway.
Introducing the notation

yi := ẋp
i , yi+n := xp

i , i = 1, . . . , n , (3.7)
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6 Gábor Orosz and Gábor Stépán

equation (3.5) can be rewritten as

ẏ(t) = L̃(h∗)y(t) + R̃(h∗)y(t− 1) + F̃
(
y(t− 1); h∗

)
, (3.8)

where y : R → R2n. The matrices L̃, R̃ : R → R2n×2n and the near-zero analytic
function F̃ : R2n × R→ R2n are defined as

L̃(h∗) ≡
[−αI 0

I 0

]
, R̃(h∗) =

[
0 −αb1(h∗)A
0 0

]
,

F̃
(
y(t− 1); h∗

)
=

[
αb2(h∗)F2

(
y(t− 1)

)
+ αb3(h∗)F3

(
y(t− 1)

)
0

]
.

(3.9)

Here I ∈ Rn×n stands for the n-dimensional identity matrix, while the matrix
A ∈ Rn×n and the functions F2, F3 : R2n → Rn are defined as

A =




. . . . . .
1 −1

. . . . . .

−1
. . .




, Fk

(
y(t−1)

)
=




(
yn+2(t− 1)− yn+1(t− 1)

)k

(
yn+3(t− 1)− yn+2(t− 1)

)k

...(
yn+1(t− 1)− y2n(t− 1)

)k




, k = 2, 3 .

(3.10)
System (3.8) possesses a translational symmetry, therefore the matrices L̃(h∗), R̃(h∗)

satisfy
det

(
L̃(h∗) + R̃(h∗)

)
= 0 , (3.11)

that is, the Jacobian
(
L̃(h∗) + R̃(h∗)

)
has a zero eigenvalue

λ0(h∗) = 0 , (3.12)

for any value of parameter h∗. Furthermore, the near-zero analytic function F̃
preserves this translational symmetry, that is,

F̃
(
y(t− 1) + c; h∗

)
= F̃

(
y(t− 1); h∗

)
, (3.13)

for all c 6= 0 satisfying
(
L̃(h∗) + R̃(h∗)

)
c = 0; see details in (Orosz & Stépán 2004).

The steady state y(t) ≡ 0 of (3.8) corresponds to the uniform flow equilibrium
(3.1) of the original system (2.1). Considering the linear part of (3.8) and using the
trial solution y(t) = Ceλt with C ∈ C2n and λ ∈ C, the characteristic equation
becomes

D
(
λ, b1(h∗)

)
=

(
λ2 + αλ + αb1(h∗) e−λ

)n − (
αb1(h∗) e−λ

)n = 0 . (3.14)

According to (3.11), the relevant zero eigenvalue (3.12) is one of the infinitely many
characteristic exponents that satisfy (3.14). This exponent exists for any value of
the parameter b1, that is, for any value of the bifurcation parameter h∗.

At a bifurcation point defined by b1 = b1cr, i.e., by h∗ = h∗cr, Hopf bifurcations
may occur in the complementary part of the phase space spanned by the eigenspace
of the zero exponent (3.12). Then there exists a complex conjugate pair of pure
imaginary characteristic exponents

λ1,2(h∗cr) = ±iω , ω ∈ R+ , (3.15)
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which satisfies (3.14). To find the Hopf boundaries in the parameter space we sub-
stitute λ1 = iω into (3.14). Separation of the real and imaginary parts gives

b1cr =
ω

2 cos(ω − kπ
n ) sin(kπ

n )
,

α = −ω cot(ω − kπ
n ) .

(3.16)

The so-called wave number k can take the values k = 1, . . . , n/2 (for even n) and
k = 1, . . . (n − 1)/2 (for odd n). The wave numbers k > n/2 are not considered
since they belong to conjugated waves producing the same spatial pattern. Note
that k = 1 belongs to the stability boundary of the uniform flow equilibrium, while
the cases k > 1 result in further oscillation modes around the already unstable
equilibrium. Furthermore, for each k the resulting frequency is bounded so that
ω ∈ (0, kπ

n ); see (Orosz et al. 2004a,b).
Note also that the function b1(h∗) = V′(h∗) shown in Fig. 2(b) is non-monotonous,

and so a b1cr boundary typically leads either to two or to zero h∗cr boundaries. For
a fixed wave number k these boundaries tend to finite values of h∗ as n → ∞,
as is shown in (Orosz et al. 2004b). Using trigonometric identities, (3.16) can be
transformed to

cosω =
ω

2b1cr

(ω

α
+ cot(kπ

n )
)

,

sin ω =
ω

2b1cr

(
1− ω

α
cot(kπ

n )
)

,
(3.17)

which is a useful form used later in the Hopf calculation together with the resulting
form

4b2
1cr

ω2
sin2(kπ

n ) = 1 +
ω2

α2
. (3.18)

With the help of the identity

(
1 + i cot(kπ

n )
)n−1

(
1− i cot(kπ

n )
)n−1 =

1− i cot(kπ
n )

1 + i cot(kπ
n )

, (3.19)

we can calculate the following necessary condition for Hopf bifurcation as the pa-
rameter b1 is varied as

Re
(

dλ1(b1cr)
db1

)
= E 1

b1cr

(
ω2 + α2 + α

)
> 0 , (3.20)

where

E =
((

α
ω − ω

)2 +
(
2 + α

)2
)−1

. (3.21)

Since (3.20) is always positive this Hopf condition is always satisfied. Now, using
the chain rule and definition (3.6), condition (3.20) can be calculated further as the
average headway h∗ is varied to give

Re
(
λ′1(h

∗
cr)

)
= Re

(
dλ1(b1cr)

db1
b′1(h

∗
cr)

)
= E 2b2cr

b1cr

(
ω2 + α2 + α

) 6= 0 . (3.22)
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This condition is fulfilled if and only if b2cr 6= 0, which is usually satisfied except at
some special points. For example, the function V′′(h) shown in Fig. 2(c) becomes
zero at a single point over the interval h ∈ (1,∞). Notice that V′′(h) is zero for
h ∈ [0, 1] and for h →∞, but the critical headway hcr never takes these values for
α > 0.

4. Operator Differential Equations and Related Eigenvectors

The delay-differential equation (3.8) can be rewritten in the form of an operator-
differential equation (OpDE). For the critical bifurcation parameter h∗cr, we obtain

ẏt = Ayt + F(yt) , (4.1)

where the dot still refers to differentiation with respect to the time t and yt : R→
XR2n is defined by the shift yt(ϑ) = y(t+ϑ), ϑ ∈ [−1, 0] on the function space XR2n

of continuous functions mapping [−1, 0] → R2n. The linear and nonlinear operators
A, F : XR2n → XR2n are defined as

Aφ(ϑ) =





∂

∂ϑ
φ(ϑ) , if − 1 ≤ ϑ < 0 ,

Lφ(0) + Rφ(−1) , if ϑ = 0 ,
(4.2)

F(φ)(ϑ) =

{
0 , if − 1 ≤ ϑ < 0 ,

F (φ(−1)) , if ϑ = 0 ,
(4.3)

where the matrices L,R ∈ R2n×2n, and the nonlinear function F : R2n → R2n are
given by

L = L̃(h∗cr) , R = R̃(h∗cr) , and F
(
y(t− 1)

)
= F̃

(
y(t− 1); h∗cr

)
. (4.4)

The translational symmetry conditions (3.11) and (3.13) are inherited, that is,

det(L + R) = 0 , (4.5)

and
F(yt + c) = F(yt) ⇔ F

(
y(t− 1) + c

)
= F

(
y(t− 1)

)
, (4.6)

for all c 6= 0 satisfying (L + R)c = 0.
In order to avoid singularities in Hopf calculations we follow the methodology

and algorithm of (Orosz & Stépán 2004) and eliminate the eigendirection belonging
to the relevant zero eigenvalue λ0 = 0 (3.12). The corresponding eigenvector s0 ∈
XR2n satisfies

As0 = λ0s0 ⇒ As0 = 0 , (4.7)

which, applying the definition (4.2) of operator A, leads to a boundary value prob-
lem with the constant solution

s0(ϑ) ≡ S0 ∈ R2n , satisfying (L + R)S0 = 0 . (4.8)

One finds that

S0 = p

[
0

E

]
, (4.9)

Article submitted to Royal Society
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where each component of the vector E ∈ Rn is equal to 1. Here p ∈ R is a scalar
that can be chosen freely, in particular, we choose p = 1.

In order to project the system to s0 and to its complementary space, we also
need the adjoint operator

A∗ψ(σ) =




− ∂

∂σ
ψ(σ) , if 0 ≤ σ < 1 ,

L∗ψ(0) + R∗ψ(1) , if σ = 0 ,
(4.10)

where ∗ denotes either adjoint operator or transposed conjugate vector and matrix.
The eigenvector n0 ∈ X∗R2n of A∗ associated with the eigenvalue λ∗0 = 0 satisfies

A∗n0 = λ∗0n0 ⇒ A∗n0 = 0 . (4.11)

This gives another boundary value problem which has the constant solution

n0(ϑ) ≡ N0 ∈ R2n , satisfying (L∗ + R∗)N0 = 0 . (4.12)

Here we obtain

N0 = p̂

[
E

αE

]
. (4.13)

However, p̂ ∈ R is not free, but is determined by the normality condition

〈n0, s0〉 = 1 . (4.14)

Defining the inner product

〈ψ, φ〉 = ψ∗(0)φ(0) +
∫ 0

−1

ψ∗(ξ + 1)Rφ(ξ)dξ , (4.15)

condition (4.14) gives the scalar equation

N∗
0 (I + R)S0 = 1 , (4.16)

from which we obtain
p̂ =

1
nα

. (4.17)

Note that, as the vectors s0 and n0 are the right and left eigenvectors of the
operator A belonging to the eigenvalues λ0 = 0 and λ∗0 = 0, similarly the vectors
S0 and N0 are the right and left eigenvectors of the matrix (L + R), belonging to
the same eigenvalues.

With the help of the eigenvectors s0 and n0, the new state variables z0 : R→ R
and y−t : R→ XR2n are defined as

{
z0 = 〈n0, yt〉 ,
y−t = yt − z0s0 .

(4.18)

Using the derivation given in (Orosz & Stépán 2004) we split the OpDE (4.1) into

ż0 = N∗
0F(y−t )(0) ,

ẏ−t = Ay−t + F(y−t )−N∗
0F(y−t )(0)S0 .

(4.19)

Article submitted to Royal Society



10 Gábor Orosz and Gábor Stépán

Its second part is already fully decoupled, and can be redefined as

ẏ−t = Ay−t + F−(y−t ) , (4.20)

where the new nonlinear operator F− : XR2n → XR2n assumes the form

F−(φ)(ϑ) =

{
−N∗

0F(φ)(0)S0 , if − 1 ≤ ϑ < 0 ,

F(φ)(0)−N∗
0F(φ)(0)S0 , if ϑ = 0 .

(4.21)

Considering F(φ)(0) = F (φ(−1)) given by (4.3), and using the expressions (3.9,3.10,4.4),
and the eigenvectors (4.9,4.13), we obtain

N∗
0F(y−t )(0)S0 = N∗

0 F
(
y(t− 1)

)
S0

=
1
n

∑

k=2,3

(
bkcr

n∑

i=1

(
yn+i+1(t− 1)− yn+i(t− 1)

)k
)[

0
E

]
,

(4.22)

where the definition y2n+1 := yn+1 is applied. Note that the system reduction
related to the translational symmetry changes the nonlinear operator of the system
while the linear operator remains the same. This change has an essential role in the
center-manifold reduction presented below.

Let us consider a Hopf bifurcation at a critical point h∗cr. First, we determine
the real and imaginary parts s1, s2 ∈ XR2n of the eigenvector of the linear operator
A, which belongs to the critical eigenvalue λ1 = iω (3.15), that is,

As1(ϑ) = −ωs2(ϑ) , As2(ϑ) = ωs1(ϑ) . (4.23)

After the substitution of definition (4.2) of A, the solution of the resulting boundary
value problem can be written as

[
s1(ϑ)
s2(ϑ)

]
=

[
S1

S2

]
cos(ωϑ) +

[−S2

S1

]
sin(ωϑ) , (4.24)

with constant vectors S1, S2 ∈ R2n satisfying the homogeneous equation
[

L + R cos ω ωI + R sin ω

−(ωI + R sin ω) L + Rcos ω

] [
S1

S2

]
=

[
0
0

]
. (4.25)

Using formula (3.17) for the Hopf boundary, the above 4n-dimensional equation
leads to

S2,i = ωS1,n+i

S2,n+i = − 1
ω

S1,i



 for i = 1, . . . , n , (4.26)

and to the 2n-dimensional equation
[− 1

ω cot(kπ
n )A B

B 1
ω cot(kπ

n )A

]
S1 = 0 , (4.27)

where A ∈ Rn×n is defined by (3.10) and B ∈ Rn×n is given by

B =




. . . . . .
1 1

. . . . . .

1
. . .




. (4.28)
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Solving (4.27) one may obtain

S1 = u

[
C
1
ω S

]
+ v

[
S

− 1
ω C

]
, S2 = u

[
S

− 1
ω C

]
− v

[
C
1
ω S

]
, (4.29)

where the scalar parameters u and v can be chosen arbitrarily and the vectors
C , S ∈ Rn are

C =




cos( 2kπ
n 1)

cos( 2kπ
n 2)
...

cos( 2kπ
n n)


 , S =




sin( 2kπ
n 1)

sin( 2kπ
n 2)
...

sin( 2kπ
n n)


 , (4.30)

with the wave number k used in (3.16,3.17). The cyclic permutation of the com-
ponents in C and S results in further vectors S1, S2 that still satisfy (4.25). This
result corresponds to the Zn symmetry of the system, that is, all the cars have the
same dynamic characteristics. Choosing u = 1 and v = 0 yields

S1 =
[

C
1
ω S

]
, S2 =

[
S

− 1
ω C

]
. (4.31)

The real and imaginary parts n1, n2 ∈ X∗R2n of the eigenvector of the adjoint
operator A∗ associated with λ∗1 = −iω are determined by

A∗n1(σ) = ωn2(σ) , A∗n2(σ) = −ωn1(σ) . (4.32)

The use of definition (4.10) of A∗ leads to another boundary value problem having
the solution [

n1(σ)
n2(σ)

]
=

[
N1

N2

]
cos(ωσ) +

[−N2

N1

]
sin(ωσ) , (4.33)

where the constant vectors N1, N2 ∈ R2n satisfy
[
L∗ + R∗ cosω −(ωI + R∗ sinω)
ωI + R∗ sinω L∗ + R∗ cos ω

] [
N1

N2

]
=

[
0
0

]
. (4.34)

The application of (3.17) simplifies this 4n-dimensional equation to

N1,n+i = αN1,i + ωN2,i

N2,n+i = −ωN1,i + αN2,i

}
for i = 1, . . . , n , (4.35)

and to the 2n-dimensional equation
[− cot(kπ

n )A B

B cot(kπ
n )A

]
N∪ = 0 , (4.36)

where N∪ ∈ R2n is defined as

N∪,i = N1,i

N∪,n+i = N2,i

}
for i = 1, . . . , n . (4.37)
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12 Gábor Orosz and Gábor Stépán

The solution of (4.36) can be written as

N∪ = û

[
C

S

]
+ v̂

[
S

−C

]
, (4.38)

which results in

N1 = û

[
C

αC + ωS

]
+ v̂

[
S

αS − ωC

]
, N2 = û

[
S

αS − ωC

]
− v̂

[
C

αC + ωS

]
. (4.39)

The scalar parameters û, v̂ are determined by the orthonormality conditions

〈n1, s1〉 = 1 , 〈n1, s2〉 = 0 , (4.40)

which, using the inner product definition (4.15), results in the two scalar equations

1
2

[
S∗1

(
2I + R∗

(
cos ω + sin ω

ω

))
+ S∗2R∗ sin ω −S∗1R∗ sin ω + S∗2R∗

(
cosω − sin ω

ω

)
−S∗1R∗ sin ω + S∗2

(
2I + R∗

(
cosω + sin ω

ω

)) −S∗1R∗
(
cosω − sin ω

ω

)− S∗2R∗ sin ω

]
×

×
[
N1

N2

]
=

[
1
0

]
.

(4.41)

Substituting (3.17,4.31,4.39) into (4.41) and using the second order trigonometric
identities (A 4–A 6), we obtain

n

2

[
2 + α α

ω − ω

−(
α
ω − ω

)
2 + α

] [
û

v̂

]
=

[
1
0

]
, (4.42)

with the solution [
û

v̂

]
= E 2

n

[
2 + α
α
ω − ω

]
, (4.43)

where E is defined by (3.21). The substitution of (4.43) into (4.39) leads to

N1 = E 2
n

[
(2 + α)C +

(
α
ω − ω

)
S

(α2 + α + ω2)C +
(

α2

ω + 2 ω
)
S

]
,

N2 = E 2
n

[
(2 + α)S − (

α
ω − ω

)
C

(α2 + α + ω2)S − (
α2

ω + 2 ω
)
C

]
.

(4.44)

As s1 + is2 and n1 + in2 are the right and left eigenvectors of the operator
A belonging to the eigenvalues λ1 = iω and λ∗1 = −iω, the vectors S1 + iS2 and
N1+iN2 are similarly the right and left eigenvectors of the matrix (L+R) belonging
to the same eigenvalues.

5. Center-manifold Reduction

With the help of the eigenvectors s1, s2 and n1, n2, we introduce the new state
variables 




z1 = 〈n1, y
−
t 〉 ,

z2 = 〈n2, y
−
t 〉 ,

w = y−t − z1s1 − z2s2 ,

(5.1)
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where z1, z2 : R → R and w : R → XR2n . Using the derivation presented in (Orosz
& Stépán 2004) we can reduce OpDE (4.20) to the form




ż1

ż2

ẇ


 =




0 ω O
−ω 0 O
0 0 A







z1

z2

w




+




(N∗
1 − q1N

∗
0 )F(z1s1 + z2s2 + w)(0)

(N∗
2 − q2N

∗
0 )F(z1s1 + z2s2 + w)(0)

−∑
j=1,2(N

∗
j − qjN

∗
0 )F(z1s1 + z2s2 + w)(0)sj + F−(z1s1 + z2s2 + w)


 .

(5.2)

The scalar parameters q1, q2 are induced by the translational symmetry and their
expressions are determined in (Orosz & Stépán 2004) as

q1 =
(
N∗

1 (I + sin ω
ω R)−N∗

2
1−cos ω

ω R
)
S0 ,

q2 =
(
N∗

1
1−cos ω

ω R + N∗
2 (I + sin ω

ω R)
)
S0 .

(5.3)

Since in our case RS0 = N∗
1 S0 = N∗

2 S0 = 0, we obtain

q1 = q2 = 0 . (5.4)

The power series form of (5.2) is also given in (Orosz & Stépán 2004) as




ż1

ż2

ẇ


 =




0 ω O
−ω 0 O
0 0 A







z1

z2

w


 +




∑j+k=2,3
j,k≥0 f

(1)
jk zj

1z
k
2∑j+k=2,3

j,k≥0 f
(2)
jk zj

1z
k
2

1
2

∑j+k=2
j,k≥0

(
F

(3c)
jk cos(ωϑ) + F

(3s)
jk sin(ωϑ)

)
zj
1z

k
2




+




F
(1)∗
10 Rw(−1)z1 + F

(1)∗
01 Rw(−1)z2

F
(2)∗
10 Rw(−1)z1 + F

(2)∗
01 Rw(−1)z2

1
2

{∑j+k=2
j,k≥0 F

(3−)
jk zj

1z
k
2 , if − 1 ≤ ϑ < 0 ,∑j+k=2

j,k≥0

(
F

(3)
jk + F

(3−)
jk

)
zj
1z

k
2 , if ϑ = 0


 ,

(5.5)

where the subscripts of the constant coefficients f
(1,2)
jk ∈ R and the vector ones

F
(1,2,3)
jk ∈ R2n refer to the corresponding jth and kth orders of z1 and z2, respec-

tively. The terms with the coefficients F
(3s)
jk , F

(3c)
jk come from the linear combina-

tions of s1(ϑ) and s2(ϑ). The translational symmetry only enters through the terms
with coefficients F

(3−)
jk , so that the terms with coefficients F

(3)
jk and F

(3−)
jk refer to

the structure of the modified nonlinear operator F− (4.21). Using the third and
fourth order trigonometric identities (A 7–A 15), we can calculate these coefficients
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14 Gábor Orosz and Gábor Stépán

for wave numbers k 6= n/2, k 6= n/3, and k 6= n/4 in the form

f
(1)
jk = f

(2)
jk = 0 , for j + k = 2 ,

f
(1)
30 = f

(1)
12 = f

(2)
21 = f

(2)
03 = E 3αb3cr

4(b1cr)3
α
ω

(
1 + ω2

α2

)(
ω + ω

α + ω3

α2

)
,

f
(1)
21 = f

(1)
03 = −f

(2)
30 = −f

(2)
12 = E 3αb3cr

4(b1cr)3
α
ω

(
1 + ω2

α2

)(
1 + 2ω2

α2

)
,

F
(1)
10 = E 2b2cr

n(b1cr)2

[(
3 + α− ω2

α

)
C̃ +

(
α
ω − 2ω − 2ω

α

)
S̃ +

(
1 + α + ω2

α

)
E

0

]
,

F
(1)
01 = E 2b2cr

n(b1cr)2

[−(
α
ω − 2ω − 2ω

α

)
C̃ +

(
3 + α− ω2

α

)
S̃ +

(
α
ω + 2ω

α

)
E

0

]
,

F
(2)
10 = E 2b2cr

n(b1cr)2

[−(
α
ω − 2ω − 2ω

α

)
C̃ +

(
3 + α− ω2

α

)
S̃ − (

α
ω + 2ω

α

)
E

0

]
,

F
(2)
01 = E 2b2cr

n(b1cr)2

[
−(

3 + α− ω2

α

)
C̃ − (

α
ω − 2ω − 2ω

α

)
S̃ +

(
1 + α + ω2

α

)
E

0

]
,

F
(3c)
jk = F

(3s)
jk = 0 ,

F
(3−)
20 = F

(3−)
02 = − b2cr

(b1cr)2

(
1 + ω2

α2

) [
0

E

]
,

F
(3−)
11 = 0 ,

F
(3)
20 = b2cr

(b1cr)2

[(
1− ω2

α2

)
C̃ − 2ω

α S̃ +
(
1 + ω2

α2

)
E

0

]
,

F
(3)
11 = 2b2cr

(b1cr)2

[
2ω

α C̃ +
(
1− ω2

α2

)
S̃

0

]
,

F
(3)
20 = b2cr

(b1cr)2

[
−(

1− ω2

α2

)
C̃ + 2ω

α S̃ +
(
1 + ω2

α2

)
E

0

]
,

(5.6)

where we use the vectors C̃ , S̃ ∈ Rn defined by

C̃ =




cos( 4kπ
n 1)

cos( 4kπ
n 2)
...

cos( 4kπ
n n)


 , S̃ =




sin( 4kπ
n 1)

sin( 4kπ
n 2)
...

sin( 4kπ
n n)


 . (5.7)

Note that the cases k = n/2, k = n/3, and k = n/4 result in different formulae
for the above coefficients, but the final Poincaré-Lyapunov constant will have the
same formula as in the case of general wave number k. The detailed calculation of
these ‘resonant’ cases is not presented here.

Now let us approximate the center-manifold locally as a truncated power series
of w depending on the coordinates z1 and z2 as

w(ϑ) =
1
2

(
h20(ϑ)z2

1 + 2h11(ϑ)z1z2 + h02(ϑ)z2
2

)
. (5.8)

There are no linear terms since the plane spanned by the eigenvectors s1 and s2

is tangent to the center-manifold at the origin. Third and higher order terms are
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dropped. The unknown coefficients h20, h11 and h02 ∈ XR2n can be determined by
calculating the derivative of w and substituting that into the third equation of
(5.5). The solution of the resulting linear boundary value problem given in details
in (Orosz & Stépán 2004) is




h20(ϑ)
h11(ϑ)
h02(ϑ)


 =




H1

H2

−H1


 cos(2ωϑ) +



−H2

H1

H2


 sin(2ωϑ) +




H0

0
H0




− 1
4ω




0
F

(3−)
20 − F

(3−)
02

2F
(3−)
11


− 1

2




F
(3−)
20 + F

(3−)
02

0
F

(3−)
20 + F

(3−)
02


 ϑ , (5.9)

where the vectors H0, H1, and H2 ∈ R2n satisfy



L + R 0 0
0 L + R cos(2ω) 2ωI + R sin(2ω)
0 −(

2ωI + R sin(2ω)
)

L + Rcos(2ω)







H0

H1

H2




= −1
2




F
(3)
20 + F

(3)
02 + F

(3−)
20 + F

(3−)
02

F
(3)
20 − F

(3)
02

F
(3)
11


 .

(5.10)

Here we also used that F
(3c)
jk = F

(3s)
jk = 0 and

R
(
F

(3−)
20 +F

(3−)
02

)
= 0 , (L+R)F (3−)

11 = 0 , (L+R)
(
F

(3−)
20 −F

(3−)
02

)
= 0 , (5.11)

in accordance with (5.6).
One can find that the 2n-dimensional equation for H0 is decoupled from the

4n-dimensional equation for H1,H2 in (5.10). Since (L + R) is singular due to the
translational symmetry (4.5), the nonhomogeneous equation for H0 in (5.10) may
seem not to be solvable. However, its right-hand side belongs to the image space
of the coefficient matrix (L + R) due to the translational symmetry induced terms
F

(3−)
jk . We obtain the solution

H0 = b2cr
(b1cr)2

(
1 + ω2

α2

) [
E

κE

]
, (5.12)

with the undetermined parameter κ.
At the same time, the nonhomogeneous equation for H1,H2 in (5.10) is not

effected by the vectors F
(3−)
jk . Using (3.17) this 4n-dimensional equation leads to

H1,i = −2ωH2,n+i

H2,i = 2ωH1,n+i

}
for i = 1, . . . , n , (5.13)

and to the 2n-dimensional equation
[

µ sin2(kπ
n ) I− cos( 2kπ

n )A η sin2(kπ
n ) I− sin( 2kπ

n )A
−(

η sin2(kπ
n ) I− sin(2kπ

n )A
)

µ sin2(kπ
n ) I− cos( 2kπ

n )A

]
H∪ = − 4b2cr

ω2b1cr
sin2(kπ

n )
[
C̃

S̃

]
,

(5.14)
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where the vector H∪ ∈ R2n is defined as

H∪,i = H1,n+i

H∪,n+i = H2,n+i

}
for i = 1, . . . , n , (5.15)

and

µ =
− 16b1cr

α
ω2

α2(
1 + ω2

α2

)2 , η =
8b1cr

ω

(
1 + 3ω2

α2

)
(
1 + ω2

α2

)2 . (5.16)

The solution of (5.14) is given by

H∪ =
− 4b2cr

ω2b1cr(
η − 4 cot(kπ

n )
)2 + µ2

(
µ

[
C̃

S̃

]
+

(
η − 4 cot(kπ

n )
) [−S̃

C̃

])
, (5.17)

which provides

H1 =
4b2cr

ω2b1cr(
η − 4 cot(kπ

n )
)2 + µ2

((
η − 4 cot(kπ

n )
) [

2ωC̃

S̃

]
+ µ

[
2ωS̃

−C̃

])
,

H2 =
4b2cr

ω2b1cr(
η − 4 cot(kπ

n )
)2 + µ2

((
η − 4 cot(kπ

n )
) [

2ωS̃

−C̃

]
− µ

[
2ωC̃

S̃

])
.

(5.18)

Now, using these in (5.8,5.9) we can calculate Rw(−1) which appears in the first
two equations of (5.5). In this way we obtain the flow restricted onto the two-
dimensional center-manifold described by the ODEs

[
ż1

ż2

]
=

[
0 ω

−ω 0

] [
z1

z2

]
+

[∑j+k=2,3
j,k≥0 f

(1)
jk zj

1z
k
2∑j+k=2,3

j,k≥0 f
(2)
jk zj

1z
k
2

]
+

[∑j+k=3
j,k≥0 g

(1)
jk zj

1z
k
2∑j+k=3

j,k≥0 g
(2)
jk zj

1z
k
2

]
, (5.19)

where the coefficients f
(1,2)
jk have already been determined by (5.6) in (5.5), while

the coefficients

g
(1)
30 = g

(1)
12 = g

(2)
21 = g

(2)
03

=
E 2α(b2cr)

2

(b1cr)4
cot(kπ

n )
(
η − 4 cot(kπ

n )
)2 + µ2

α
ω

(
1 + ω2

α2

) ((
η − 4 cot(kπ

n )
)(

ω + ω
α + ω3

α2

)
+ µ

(
1 + 2ω2

α2

))
,

g
(1)
21 = g

(1)
03 = −g

(2)
30 = −g

(2)
12

=
E 2α(b2cr)

2

(b1cr)4
cot(kπ

n )
(
η − 4 cot(kπ

n )
)2 + µ2

α
ω

(
1 + ω2

α2

) ((
η − 4 cot(kπ

n )
)(

1 + 2ω2

α2

)− µ
(
ω + ω

α + ω3

α2

))
,

(5.20)

originate in the terms involving Rw(−1). To determine (5.20) the trigonometric
identities (A 4–A 15) has been used.

We note that the coefficients f
(1,2)
jk (j + k = 2) of the second-order terms are

not changed by the center-manifold reduction. The so-called Poincaré-Lyapunov
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Figure 3. Quantities defined by (5.22,5.23) as a function of the frequency ω, for represen-
tative values of parameter α. In panel (a) the numerator N (ω, α) is depicted, while panel
(b) shows the ratio N (ω, α)/D(ω, α).

constant in the Poincaré normal form of (5.19) can be determined by the Bautin
formula (Stépán 1989)

∆ =
1
8

(
1
ω

(
(f (1)

20 + f
(1)
02 )(−f

(1)
11 + f

(2)
20 − f

(2)
02 ) + (f (2)

20 + f
(2)
02 )(f (1)

20 − f
(1)
02 + f

(2)
11 )

)

+
(
3f

(1)
30 + f

(1)
12 + f

(2)
21 + 3f

(2)
03

)
+

(
3g

(1)
30 + g

(1)
12 + g

(2)
21 + 3g

(2)
03

))

= E α
4(b1cr)3

α
ω

(
1 + ω2

α2

)(
ω + ω

α + ω3

α2

)×

× 1
2

(
6b3cr +

(2b2cr)2

b1cr

4 cot(kπ
n )

(
η − 4 cot(kπ

n )
)2 + µ2

(
η − 4 cot(kπ

n ) + µ
1 + 2ω2

α2

ω + ω
α + ω3

α2

))
.

(5.21)

The bifurcation is supercritical for negative and subcritical for positive values of ∆.
We found that ∆ > 0 is always true when k

n ¿ 1 which is the case for real traffic
situations (many vehicles n with a few waves k). This can be proven as is detailed
below.

The first part of the expression (5.21) of ∆ in front of the parenthesis is always
positive since E , b1cr, α, ω > 0. Within the parenthesis in (5.21), the first term is
positive since (3.16) implies b1cr = V′(h∗cr) < 1/2, which yields critical headway
values h∗cr such that 6b3cr = V′′′(h∗cr) > 0 (see Fig. 2(b,d)). The second term in the
parenthesis in (5.21) contains the ratio of two complicated expressions, which, by
using (3.16,5.16), can be rearranged in the form

4 cot(kπ
n )

(
η − 4 cot(kπ

n ) + µ
1 + 2ω2

α2

ω + ω
α + ω3

α2

)

=
(
4 cot(kπ

n )
)2

( (
1 + ω2

α2

)(
ω + ω

α + 3ω3

α2

)− 4ω5

α5(
cos ω − ω

α sin ω
)(

1 + ω2

α2

)(
ω + ω

α + ω3

α2

) − 1
)

:=
(
4 cot(kπ

n )
)2N (ω, α) ,

(5.22)
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and
(
η − 4 cot(kπ

n )
)2 + µ2

=
(
4 cot(kπ

n )
)2

((
1 + ω2

α2

)(
1 + 4ω2

α2

)− 2
(
cosω − ω

α sin ω
)(

1 + 3ω2

α2

)
(
cosω − ω

α sin ω
)2(1 + ω2

α2

) + 1
)

:=
(
4 cot(kπ

n )
)2D(ω, α) > 0 .

(5.23)

Since (5.23) is always positive, the sign of (5.22) is crucial for deciding the overall
sign of ∆. According to (3.16) ω ∈ (0, kπ

n ), that is, the realistic case k
n ¿ 1 implies

the oscillation frequency ω ¿ 1.
Fig. 3(a) shows the numerator N (ω, α) for some particular values of α demon-

strating that N (ω, α) > 0 for ω ¿ 1. Note that if α → 0 then N (ω, α) may become
negative (see Fig. 3(a) for α = 0.5), but this is a physically unrealistic case where
drivers intend to reach their desired speed v0 extremely slowly.

Moreover, the ratio of (5.22) and (5.23), N (ω, α)/D(ω, α), is not only positive
for ω ¿ 1 but also N (ω, α)/D(ω, α) → ∞ when ω → 0 (i.e., when n → ∞) as
shown in Fig. 3(b). This feature provides robustness for subcriticality. Note that
subcriticality also occurs for optimal velocity functions different from (2.2), e.g., for
those that are considered in (Orosz et al. 2004a).

Using definition (3.6), formulas (3.18,3.22), and expressions (5.21–5.23), the
amplitude A of the unstable oscillations is obtained in the form

A =

√
−Re

(
λ′1(h∗cr)

)

∆
(h∗ − h∗cr) =

ω

sin(kπ
n )

√√√√√√
−2

V′′(h∗cr) (h∗ − h∗cr)

V′′′(h∗cr) +

(
V′′(h∗cr)

)2

V′(h∗cr)
N (ω, α)
D(ω, α)

.

(5.24)
Thus, the first Fourier term of the oscillation restricted onto the center-manifold is

[
z1(t)
z2(t)

]
= A

[
cos(ωt)
− sin(ωt)

]
. (5.25)

Since close to the critical bifurcation parameter h∗cr we have yt(ϑ) ≈ z1(t)s1(ϑ) +
z2(t)s2(ϑ), equation (5.25) yields

y(t) = yt(0) ≈ z1(t)s1(0) + z2(t)s2(0)

= A
(
s1(0) cos(ωt)− s2(0) sin(ωt)

)

= A
(
S1 cos(ωt)− S2 sin(ωt)

)
,

(5.26)

where the vectors S1, S2 are given in (4.31).
Note that zero reaction time delay results in N (ω, α)/D(ω, α) ≡ −1 as shown

in (Gasser et al. 2004). In that case subcriticality appears only for extremely high
values of the desired speed v0 when the term 6b3cr becomes greater than (2b2cr)2/b1cr

at the critical points (of the non-delayed model). Consequently, the presence of the
drivers’ reaction-time delay has an essential role in the robustness of the subcritical
nature of the Hopf bifurcation. This subcriticalty explains how traffic waves can be
formed when the uniform flow equilibrium is stable, as is detailed in the subsequent
section.
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6. Physical Interpretation of Results

The unstable periodic motion given in (5.26) corresponds to a spatial wave forma-
tion in the traffic flow, which is actually unstable. Substituting (4.31) into (5.26)
and using definition (3.7), one can determine the velocity perturbation of the ith
car as

ẋp
i (t) = A cos

(
2πk
n i + ωt

)
. (6.1)

The interpretation of this perturbation mode is a wave travelling opposite to the
car flow with spatial wave number k (i.e., with spatial wavelength L/k = h∗n/k).
The related wave speed is

cp
wave = − n

2kπ h∗ω < 0 , (6.2)

where the elimination of the frequency ω with the help of (3.18) leads to

cp
wave = −h∗b1cr

(
1−O(

kπ
n

)2
)

. (6.3)

Since the uniform flow equilibrium (3.1) travels with speed v∗ = V(h∗), the speed
of the arising wave is

cwave = v∗ + cp
wave = V(h∗)− h∗V′(h∗cr)

(
1−O(

kπ
n

)2
)

. (6.4)

By considering the optimal velocity function (2.2), we obtain cwave < 0, that is,
the resulting wave propagates in the opposite direction to the flow of vehicles. Note
that the non-delayed model introduced in (Bando et al. 1995) exhibits the same
wave speed apart from some differences in the coefficient of the correction term
O(

kπ
n

)2. If one neglects this correction term, the wave speed becomes independent
of n and k, which corresponds to the results obtained from continuum models; see
e.g., (Whitman 1999).

In order to check the reliability of the Poincaré-Lyapunov constant (5.21) and
the amplitude estimation (5.24), we compare these analytical results with those ob-
tained by numerical continuation techniques with the package dde-biftool (En-
gelborghs et al. 2001). In Fig. 4 we demonstrate the subcriticality for n = 9 cars
and k = 1 wave. The horizontal axis corresponds to the uniform flow equilibrium,
that is, stable for small and large values of h∗ (shown by green solid line) but un-
stable for intermediate values of h∗ (shown by red dashed line) in accordance with
formula (3.16) and Fig. 2(b). The Hopf bifurcations, where the equilibrium loses its
stability, are marked by blue stars. The branches of the arising unstable periodic
motions given by (5.24) are shown as red dashed curves.

According to numerical simulations and traffic experiments, a stable oscillating
state is expected ‘outside’ the unstable oscillating state. This includes travelling
with the desired speed v0, decelerating, stopping, and accelerating. In Fig. 4 the
horizontal green line at A = v0/2 represents these stable stop-and-go oscillations.
The corresponding stop-and-go wave propagates against the traffic flow. Vehicles
leave the traffic jam at the front and enter it at the back (see Fig. 1). The above
analytic construction reveals wide regions of bistability on both sides of the unstable
equilibrium. In such domains, depending on the initial condition, the system either
tends to the uniform flow equilibrium or to the stop-and-go wave.
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0 1 2 3 4
0  

0.1

0.2

0.3

0.4

0.5

h
∗

A P1

P ′

1

P2

P ′

2

P3

Figure 4. The amplitude A of velocity oscillations as a function of the average headway
parameter h∗ for n = 9 cars, k = 1 wave, and parameters α = 1.0, v0 = 1.0. The horizontal
axis (A ≡ 0) represents the uniform flow equilibrium. The analytical results are coloured:
green solid and red dashed curves represent stable and unstable branches, respectively, and
blue stars stand for Hopf bifurcations. Grey curves correspond to numerical continuation
results: solid and dashed curves refer to stable and unstable states, and grey crosses
represent fold bifurcations. The points marked by Pi, P

′
i refer to the oscillation profiles

presented in Fig. 5.

In Fig. 4, we also displayed the results of numerical continuation carried out
with the package dde-biftool (Engelborghs et al. 2001). Grey solid curves repre-
sent stable oscillations while grey dashed curves represent unstable ones. The fold
bifurcation points, where the branches of stable and unstable oscillations meet, are
marked by grey crosses. The comparison of the results shows that the analytical
approximation of the unstable oscillations is quantitatively reliable in the vicinity
of the Hopf bifurcation points. The analytical amplitude v0/2 of the stop-and-go
oscillations is slightly larger than the numerically computed ones. The analytically
suggested bistable region is larger than the computed one, since the third degree
approximation is not able to predict fold bifurcations of periodic solutions (the grey
crosses in Fig. 4). In order to find these fold bifurcation points it is necessary to use
numerical continuation techniques as presented in (Orosz et al. 2004b). Neverthe-
less, qualitatively the same structure is obtained by the two different techniques.

As was already mentioned in Section 3, the wave numbers k > 1 are related
to Hopf bifurcations in the parameter region where the uniform flow equilibrium
is already unstable. This also means that the corresponding oscillations for k >
1 are unstable independently of the criticality of these Hopf bifurcations. Still,
we found that these Hopf bifurcations are all robustly subcritical for any wave
number k (except for large k

n ' 1/2). Consequently, the only stable oscillating
state is the stop-and-go motion for k = 1. On the other hand, several unstable
solutions may coexist as is explained in (Orosz et al. 2004b). Note that analytical
and numerical results agree better as the wave number k is increased because the
oscillating solution becomes more harmonic.

To represent the features of vehicles’ motions, the velocity oscillation profiles
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Figure 5. Velocity profiles of the first car for the points marked in Fig. 4. Colored curves
are calculated analytically while grey curves are computed by numerical continuation. In
panel (a) the stable stop-and-go oscillations are shown for point P1 in green and for point
P ′1 in grey, while in panel (b) the unstable oscillations are displayed for point P2 in red
and for point P ′2 in grey. In panel (c) the stable uniform flow solution is depicted for point
P3 in green.

of the first vehicle are shown in Fig. 5 for the points Pi, P
′
i marked in Fig. 4, for

headway h∗ = 2.9. Again, the colored curves correspond to the analytical results,
while the grey curves are obtained by numerical continuation. In Fig. 5, the time
window of each panel is chosen to be the period of the first Fourier approximation
given by (3.18) (red curve in panel (b)). The dashed vertical lines in panels (a,b)
indicate oscillation periods computed numerically with dde-biftool.

Panel (a) of Fig. 5 shows the stop-and-go oscillations. The analytical construc-
tion (green curve) is obtained by assuming that the stopping and flowing states are
connected with states of constant acceleration/deceleration, which is qualitatively
a good approximation of the numerical result (grey curve). Panel (b) compares the
unstable periodic motions computed analytically (red curve) from the Hopf calcu-
lation with those from numerical continuation (grey curve). These exist around the
stable uniform flow equilibrium shown in panel (c).

For a perturbation ‘smaller’ than the unstable oscillation, the system approaches
the uniform flow equilibrium. If a larger perturbation is applied then the system
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develops stop-and-go oscillations and a spatial stop-and-go travelling wave appears
as demonstrated in Fig. 1. Since the period of the stable and unstable oscillations
are close to each other, the stable stop-and-go wave travels approximately with the
speed of the unstable travelling wave (see (6.4) for k = 1).

7. Conclusion

A non-linear car-following model has been investigated with special attention paid
to the reaction-time delay of drivers. By considering the average headway as a bi-
furcation parameter, Hopf bifurcations were identified. In order to investigate the
resulting periodic motions, the singularities related to the essential translational
symmetry had to be eliminated. Then the Hopf bifurcations were found to be ro-
bustly subcritical leading to bistability between the uniform flow equilibrium and a
stop-and-go wave. The appearing oscillations manifest themselves as spatial waves
propagating backward along the circular road.

In the non-delayed model of (Bando et al. 1995) subcriticality and bistablity
occur only for extremely high values of the desired speed v0, as it is demonstrated in
(Gasser et al. 2004). We proved that subcriticality and bistablity are robust features
of the system due to the drivers’ reaction-time delay, even for moderate values of
the desired speed. This delay, which is smaller than the macroscopic time-scales of
traffic flow, plays an essential role in this complex system because it changes the
qualitative nonlinear dynamics of traffic.

Due to the subcriticality, stop-and-go traffic jams can develop for large enough
perturbations even when the desired uniform flow is linearly stable. These pertur-
bations can be caused, for example, by a slower vehicle (such us a lorry) joining the
inner lane flow for a short time interval via changing lanes. It is essential to limit
these unwanted events, for example, by introducing temporary regulations provided
by overhead gantries. Still, if a backward travelling wave shows up without stop-
pings, it either dies out by itself or gets worse ending up as a persistent stop-and-go
travelling wave. In order to dissolve this undesired situation, an appropriate con-
trol can be applied using temporary speed limits given by gantries that can lead
the traffic back ‘inside’ the unstable travelling wave and then to reach the desired
uniform flow. For example, the MIDAS system (Lunt & Wilson 2003) installed on
the M25 motorway around London is able to provide the necessary instructions for
drivers.
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Appendix A. Appendix - Trigonometrical Identities

Considering the wave numbers k = 1, . . . , n/2 (even n) or k = 1, . . . , (n−1)/2 (odd
n)

n∑

i=1

exp(i% 2kπ
n i) =

{
0 , if k 6= n/% ,

n , if k = n/% ,
(A 1)

where i2 = −1 and ρ = 1, . . . , 4. Therefore, the following identities can be proven.
In first order

n∑

i=1

cos( 2kπ
n i) = 0 , (A 2)

n∑

i=1

sin( 2kπ
n i) = 0 . (A 3)

In second order
n∑

i=1

cos2( 2kπ
n i) =

{
n/2 , if k 6= n/2 ,

n , if k = n/2 ,
(A 4)

n∑

i=1

sin2( 2kπ
n i) =

{
n/2 , if k 6= n/2 ,

0 , if k = n/2 ,
(A 5)

n∑

i=1

cos( 2kπ
n i) sin( 2kπ

n i) = 0 . (A 6)

In third order
n∑

i=1

cos3( 2kπ
n i) =

{
0 , if k 6= n/3 ,

n/4 , if k = n/3 ,
(A 7)

n∑

i=1

sin3( 2kπ
n i) = 0 , (A 8)

n∑

i=1

cos2( 2kπ
n i) sin( 2kπ

n i) = 0 , (A 9)

n∑

i=1

cos( 2kπ
n i) sin2( 2kπ

n i) =

{
0 , if k 6= n/3 ,

−n/4 , if k = n/3 .
(A 10)

In fourth order

n∑

i=1

cos4( 2kπ
n i) =





3n/8 , if k 6= n/2 and k 6= n/4 ,

n , if k = n/2 ,

n/2 , if k = n/4 ,

(A 11)

n∑

i=1

sin4( 2kπ
n i) =





3n/8 , if k 6= n/2 and k 6= n/4 ,

0 , if k = n/2 ,

n/2 , if k = n/4 ,

(A 12)
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n∑

i=1

cos3( 2kπ
n i) sin( 2kπ

n i) = 0 , (A 13)

n∑

i=1

cos( 2kπ
n i) sin3( 2kπ

n i) = 0 , (A 14)

n∑

i=1

cos2(2kπ
n i) sin2( 2kπ

n i) =





n/8 , if k 6= n/2 and k 6= n/4 ,

0 , if k = n/2 ,

0 , if k = n/4 .

(A 15)
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