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Abstract

We present a perturbation technique for the detection of symmetric homoclinic
orbits to saddle-centre equilibria in reversible systems of ordinary differential equa-
tions. We assume that the unperturbed system has primary, symmetric homoclinic
orbits, which may be either isolated or appear in a family, and use an idea similar
to that of Melnikov’s method to detect homoclinic orbits in their neighbourhood.
This technique also allows us to identify bifurcations of unperturbed or perturbed,
symmetric homoclinic orbits. Our technique is of importance in applications such
as nonlinear optics and water waves since homoclinic orbits to saddle-centre equi-
libria describe embedded solitons (ESs) in systems of partial differential equations
representing physical models, and except for special cases their existence has been
previously studied only numerically using shooting methods and continuation tech-
niques. We apply the general theory to two examples, a four-dimensional system
describing ESs in nonlinear optical media and a six-dimensional system which can
possess a one-parameter family of symmetric homoclinic orbits in the unperturbed
case. For these examples, the analysis is compared with numerical computations
and an excellent agreement between both results is found.
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1 Introduction

A new class of solitary waves (or ‘solitons’) has been found recently in a
number of examples from nonlinear optics and water wave theory (see [4] and
references therein). These waves are embedded in the continuous spectrum,
that is, their wave speed or internal frequency is in resonance with small
linear waves. Consequently, they have been called embedded solitons (ESs).

ESs are typically presented by homoclinic solutions to saddle-centre equilibria
in the associated ordinary differential equation (ODE) that describes travelling
waves in the original partial differential equation (PDE). This means that ESs
correspond to solutions of the travelling wave ODE that are bi-asymptotic
to a non-hyperbolic equilibrium, whose spectrum is the union of a pair of
imaginary eigenvalues and hyperbolic eigenvalues.

In general, the existence of such solutions would be highly degenerate. Many
important examples, however, lead to a reversible travelling wave ODE, i.e.,
an ODE that is invariant under time-reversal up to some linear involution R.
In this case, (symmetric) homoclinic orbits to saddle-centre equilibria (or ESs)
are of codimension one. Indeed, for simplicity considering the four-dimensional
case, a homoclinic orbit exists if the one-dimensional stable manifold of the
equilibrium intersects the two-dimensional fixed space of the involution R.
Such an intersection can be generated under variation of one parameter.
Choosing this parameter to be the wave speed, one can even argue that ESs
in the original PDE exist robustly and only vary their wave speed when per-
turbed. Observe that the corresponding homoclinic solution itself is invariant
under time-reversal, and therefore it is called symmetric [21].

In this paper we develop a perturbation technique for the detection of sym-
metric homoclinic orbits to saddle-centre equilibria in reversible systems of
ODEs. We find such solutions in perturbations of reversible systems possess-
ing known, primary symmetric homoclinic orbits, which may be either isolated
or appear in a family. The method derives an approximation of the perturbed
stable manifold, based on an idea similar to that of the Melnikov method, a
well-known tool for the detection of homoclinic orbits to hyperbolic equilib-
ria or periodic orbits (see e.g. [11, 23]). Using the technique, we can detect
bifurcations of the primary or other symmetric homoclinic orbits.

To the best of our knowledge, this is the first time that an analytical technique
for the detection of ESs is presented. In fact, such solutions are usually found
via numerical shooting methods, which, in particular in the four-dimensional
case, are very successful and straightforward to implement. In a number of
examples, however, an ES is known explicitly for certain parameter values, for
example because the system can be reduced to a lower-dimensional subspace.
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The technique presented here can be used to detect ESs bifurcating from
the primary orbit and can thus support the numerical (bifurcation) analysis,
which usually relies on continuation techniques, as implemented in the software
package AUTO/HomCont [6].

We discuss two examples to demonstrate the developed technique. The first
example is a four-dimensional system of ODEs and describes embedded vortex
solitons in optical media with competing quadratic and self-defocussing cubic
nonlinearities. Here we predict bifurcations of ESs from an analytically known
ES solution. The second example is a six-dimensional system of ODEs and
illustrates the power of the method, which also allows us to analyse the persis-
tence of symmetric homoclinic orbits appearing in a family. For this academic
example, which possesses a one-parameter family of symmetric homoclinic or-
bits in the unperturbed system, we compute bifurcations of the primary and
non-primary symmetric homoclinic orbits. In the two examples, the analytical
results are compared to numerical results obtained with AUTO/HomCont and
an excellent agreement between both results is found.

The outline of the paper is as follows: In Section 2 below we introduce the
problem under consideration in detail. Afterwards, in Section 3 the theory
for the detection of symmetric homoclinic orbits is presented. The general
result is applied to the four-dimensional example in Section 4 and to the
six-dimensional example in Section 5. Finally, we give a summary and draw
conclusions in Section 6.

2 The general setup

We consider systems of the form

ẋ = f(x) + εg(x; µ), x ∈ R2n+2, µ ∈ R, (2.1)

where 0 < ε ¿ 1, f : R2n+2 → R2n+2 and g : R2n+2 × R → R2n+2 are Cr

(r ≥ 2), and µ is a parameter. Assumptions (A1)–(A4) below describe the
problem we are interested in.

(A1) The system (2.1) is reversible, i.e., there exists a (linear) involution R :
R2n+2 → R2n+2 such that

f(Rx) + Rf(x) = g(Rx; µ) + Rg(x; µ) = 0 for all x, µ.

Moreover, dim Fix(R) = n + 1, where Fix(R) = {x ∈ R2n+2|Rx = x}.

A fundamental characteristic of reversible systems is that if x(t) is a solution,
then so is Rx(−t). We call a solution (and the corresponding orbit) symmetric
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if x(t) = Rx(−t). It is well-known that an orbit is symmetric if and only if it
intersects the space Fix(R) (see [21]).

When ε = 0, Eq. (2.1) becomes

ẋ = f(x), (2.2)

which we refer to as the unperturbed system. The remaining assumptions con-
cern (2.2).

(A2) The origin O is an equilibrium of saddle-centre type in (2.2). More pre-
cisely, the Jacobian matrix A := Df(0) has one pair of purely imaginary
eigenvalues ±iω and 2n hyperbolic eigenvalues

σ(A) = ±iω ∪ {−λ1,−λ2, . . . ,−λn} ∪ {λ1, λ2, . . . , λn},

where λi, ω > 0.

Note that O is a symmetric equilibrium, and therefore the eigenvalues of the
Jacobian matrix are symmetric with respect to the imaginary axis. Thus,
assumption (A2) describes a scenario, which is structurally stable in the
class of reversible systems and persists for small ε. Furthermore, by (A2) the
saddle-centre O has n-dimensional stable and unstable manifolds, W s

ε,µ(O)
and W u

ε,µ(O), and a two-dimensional centre manifold W c
ε,µ(O) for ε close to

0. The reversibility of the system implies that W u
ε,µ(O) = RW s

ε,µ(O) and
W c

ε,µ(O) = RW c
ε,µ(O).

We finally assume the existence of homoclinic solutions of (2.2) as follows.

(A3) There exists an l-parameter family of symmetric homoclinic orbits Γ(θ) =
{xh(t; θ), t ∈ R}, θ ∈ Θ, in (2.2), where xh(t; θ) → O as t → ±∞ for each
θ ∈ Θ. Here Θ is an open subset of Rl, with 0 ≤ l < n. We further assume
that

(i) xh(t; θ) is Cr with respect to θ,
(ii) the l + 1 vectors in R2n+2 given by

∂xh

∂t
(t; θ) = f(xh(t; θ)),

∂xh

∂θ
(t; θ) (2.3)

are linearly independent for t ∈ R and θ ∈ Θ.

The case of l = 0, in which the unperturbed system possesses a single or
isolated homoclinic orbit Γ = {xh(t), t ∈ R} to the saddle-centre O, is
permitted.

(A4) Let W s
0 (O) and W u

0 (O) denote the stable and unstable manifolds of O
for ε = 0. For θ ∈ Θ, the intersection between W s

0 (O) and W u
0 (O) along
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O

Fix( )R
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Fig. 1. The unperturbed phase space: A symmetric homoclinic manifold (or a single
homoclinic orbit) M to O exists.

xh(t; θ) is of dimension l + 1, i.e.,

dim
(
Txh(0;θ)W

s
0 (O) ∩ Txh(0;θ)W

u
0 (O)

)
= l + 1.

The l+1 vectors given by (2.3) form a basis of the (l+1)-dimensional space
Txh(t;θ)W

s
0 (O) ∩ Txh(t;θ)W

u
0 (O).

Assumption (A4) is a non-degeneracy condition which requires the intersec-
tion between W s

0 (O) and W u
0 (O) along the family of homoclinic orbits to be

as low-dimensional as possible. Note that the homoclinic solutions can be pa-
rameterised such that xh(0; θ) ∈ Fix(R). It follows from (A3) and (A4) that
dim (Fix(R) ∩ W s

0 (O)) = dim (Fix(R) ∩ W u
0 (O)) = l. Let

M = {xh(t; θ) | t ∈ R, θ ∈ Θ} ∪ O

and
M0 = M ∩ Fix(R) = {xh(0; θ) | θ ∈ Θ}.

We call the (l +1)-dimensional manifold M a homoclinic manifold. See Fig. 1
for the phase space of the unperturbed system (2.2).

3 Detection of homoclinic orbits

In this section we present a technique for the detection of homoclinic orbits
when ε 6= 0. Such orbits will be found by looking for intersections of the stable

5



O

z0( )θ
xh (0; )θ

xh ( ; )θt

Σ

Fig. 2. Definition of Σ.

manifold W s
ε,µ(O) with Fix(R). Since dim W s

ε,µ(O) = n and dim Fix(R) = n+1
one parameter is needed to create such an intersection in R2n+2. That is, the ex-
istence of symmetric homoclinic orbits to saddle-centre equilibria in reversible
systems is of codimension one. In particular, we can expect such orbits to
exist along curves in the (ε, µ)-parameter space. Similarly, the existence of a
homoclinic manifold of dimension l + 1 is of codimension l + 1. Regarding
θ ∈ Θ ⊂ Rl as parameters, the same considerations show that we can expect
codimension-one bifurcations of ESs for discrete values of θ. Our method will
compute parameter values µ at which curves of homoclinic orbits intersect the
primary existence curve of homoclinic orbits, ε = 0, in the (ε, µ)-parameter
space.

We first introduce a cross section Σ to the homoclinic manifold. Note, that by
assumption (A1) there exists a splitting R2n+2 = Fix(R) ⊕ Fix(−R), and we
can choose a scalar product “·” such that

Fix(−R) = Fix(R)⊥. (3.1)

Let z0(θ) = ẋh(0; θ)/|ẋh(0; θ)| and set Z(θ) = span{z0(θ)}. Define a (2n−l+1)-
dimensional space Z̄(θ) by

R2n+2 = Z(θ) ⊕ Txh(0;θ)M0 ⊕ Z̄(θ),

where we choose the decomposition to be orthogonal. Then a (2n+1)-dimensional
cross-section Σ to ∪θ∈ΘΓ(θ) is given by

Σ = {xh(0; θ) + z | z ∈ Z̄(θ), θ ∈ Θ}.

See Fig. 2.

Lemma 3.1 ([21]) We have Σ ⊃ Fix(R).
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PROOF. First recall that xh(0; θ) ∈ Fix(R). Since

Rẋh(0; θ) = R(f(xh(0; θ))) = −f(R(xh(0; θ))) = −f(xh(0; θ)) = −ẋh(0; θ),

we see that ẋh(0; θ) ∈ Fix(−R), i.e., Z(θ) ⊂ Fix(R)⊥. From this the assertion
of the lemma follows immediately.

For ε > 0 sufficiently small, let xs
ε(t; µ, θ) and xu

ε (t; µ, θ) be, respectively, or-
bits on the stable and unstable manifolds, W s

ε,µ(O) and W u
ε,µ(O), such that

xs,u
ε (0; µ, θ) ∈ Σ in an O(ε)-neighbourhood of xh(0; θ). Using the Gronwall

lemma [5], we can obtain the following estimates for xs,u
ε (t; µ, θ) (cf. [11, 23]).

Lemma 3.2 For ε > 0 sufficiently small, we can express the orbits xs,u
ε (t; µ)

as follows:
xs

ε(t; µ, θ) = xh(t; θ) + εξs(t; µ, θ) + O(ε2)

for t ∈ [0,∞);

xu
ε (t; µ, θ) = xh(t; θ) + εξu(t; µ, θ) + O(ε2)

for t ∈ (−∞, 0]. Here ξs,u(t; µ, θ) are solutions of the variational equation (VE)

ξ̇ = Df(xh(t; θ))ξ + g(xh(t; θ); µ) (3.2)

with ξs,u(0; µ, θ) ∈ Z̄(θ).

Let Ψ(t; θ) be the fundamental matrix for the variational equation of the
unperturbed system (2.2) around the homoclinic orbit xh(t; θ) (i.e., the homo-
geneous part of (3.2)),

ξ̇ = Df(xh(t; θ))ξ, (3.3)

such that Ψ(0; θ) = I, where I denotes the identity matrix. Hence, Ψ(t; θ)ξ0

is a solution of (3.3) with ξ(0) = ξ0. Denote ξs,u
0 (µ, θ) = ξs,u(0; µ, θ) ∈ Z̄(θ).

In Lemma 3.2 we have

ξs,u(t; µ, θ) = Ψ(t; θ)
[∫ t

0
Ψ−1(s; θ)g(xh(s; θ); µ)ds + ξs,u

0 (µ, θ)
]
. (3.4)

Let Ψ0(t) be the fundamental matrix of the linearised system around the origin
O for the unperturbed system (2.2),

ξ̇ = Df(0)ξ. (3.5)

Noting that limt→∞ xh(t; θ) = 0 and using a fundamental result on linear
differential equations [5], we can show that for each θ ∈ Θ there exists a
nonsingular (2n + 2) × (2n + 2) matrix B(θ) such that

lim
t→∞

Ψ0(−t)Ψ(t; θ) = B(θ), (3.6)
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Fix( )R

Σ

xh(0; )θ

Cε

Ξ (µ, )θ( )+ zε

Fig. 3. Intersection of Cε with Fix(R) in Σ.

(cf. Lemma 3.1 of [26]). From this we conclude that limt→∞ Ψ(t; θ)ξ0 = 0 if
and only if B(θ)ξ0 ∈ Es, where Es denotes the stable eigenspace of (3.5).
On the other hand, let Zs(θ) = Txh(0;θ)W

s
0 (O) denote the tangent space of

the unperturbed stable manifold of O at the point xh(0; θ). For all points
ξ0 ∈ Zs(θ) we have limt→∞ Ψ(t; θ)ξ0 = 0. Since both Zs(θ) and Es are of
dimension n, we see that

lim
t→∞

Ψ(t; θ)ξ0 = 0 ⇔ ξ0 ∈ Zs(θ).

Using (3.4) and the fact that limt→∞ ξs(t; µ, θ) = 0, we derive

∫ ∞

0
Ψ−1(t; θ)g(xh(t; θ); µ)dt + ξs

0(µ, θ) ∈ Zs(θ). (3.7)

Let
Ξ(µ, θ) =

∫ ∞

0
Ψ−1(t; θ)g(xh(t; θ); µ)dt, (3.8)

and let us denote by P s
θ the orthogonal projection with Im (P s

θ ) = Zs(θ). Then
Eq. (3.7) can be expressed as

P s
θ (Ξ(µ, θ) + ξs

0(µ, θ)) = Ξ(µ, θ) + ξs
0(µ, θ),

so that
(I − P s

θ )ξs
0(µ, θ) = (P s

θ − I)Ξ(µ, θ). (3.9)

Let Ξ̂(µ, θ) = (P s
θ − I)Ξ(µ, θ). It follows from (3.9) that there is a point

z ∈ Zs(θ) such that

ξs
0(µ, θ) = Ξ̂(µ, θ) + z ∈ Z̄(θ). (3.10)

Let

Cε =
⋃

θ∈Θ

{xh(0; θ) + ε(Ξ̂(µ, θ) + z) |µ ∈ R, z ∈ Zs(θ), Ξ̂(µ, θ) + z ∈ Z̄(θ)}.
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We have Cε ⊂ Σ and dim Cε = n, since dim (Zs(θ) ∩ Z̄(θ)) = n− l − 1. Thus,
Cε is an n-dimensional submanifold of the (2n + 1)-dimensional manifold Σ,
which includes the (n + 1)-dimensional space Fix(R) by Lemma 3.1. If Cε

intersects Fix(R) transversely in Σ when (µ, θ) = (µ0, θ0) as shown in Fig. 3,
then near µ = µ0 the stable manifold W s

ε,µ(O) does so, and consequently there
exists a symmetric homoclinic orbit near Γ(θ). Let

C̃ =
⋃

θ∈Θ

(
{Ξ̂(µ, θ) + z |µ ∈ R, z ∈ Zs(θ)} ∩ Z̄(θ)

)
. (3.11)

Noting that xh(0; θ0) ∈ Fix(R), we prove the following result.

Theorem 3.3 Suppose that the n-dimensional manifold C̃ intersects Fix(R)
transversely at (µ, θ) = (µ0, θ0). Then for ε > 0 sufficiently small, there exists
a symmetric homoclinic orbit to O in an O(ε)-neighbourhood of Γ(θ) for some
µ = µ0 + O(ε).

Remark 3.4 So far we have assumed that the unperturbed system is indepen-
dent of the parameter µ. However, it is obvious that the statement of Theo-
rem 3.3 remains valid if the unperturbed system (2.2) also depends on µ. In
that case we only have to include the dependence of Ψ(t) and xh(t) on µ in
(3.8). Then we can detect symmetric homoclinic orbits bifurcating from the
primary one with ε = 0 when the parameter µ is varied (see Sections 4 and
5). Furthermore, if the system depends on an additional parameter, say ν,
Theorem 3.3 generally detects a branch of symmetric homoclinic orbits in the
(µ, ν)-parameter plane for ε small and fixed. It may also find a branching point
at which two or more branches meet (see Section 5).

In the next two sections we study two examples and demonstrate how the
method developed above can be applied. The first example in Section 4 deals
with a four-dimensional system, which describes standing waves in a nonlin-
ear optical medium. Here we will study bifurcations of homoclinic orbits to
a saddle-centre equilibrium from a primary solution. These homoclinic solu-
tions describe ESs solutions in the underlying optical system. In Section 5
afterwards we study a six-dimensional system, which is specifically designed,
such that the unperturbed system can contain a one-parameter family of ho-
moclinic orbits to a saddle centre at the origin. For this system we will not only
demonstrate the effectiveness of our technique in higher-dimensional systems
but also discuss the persistence of symmetric homoclinic orbits in a homoclinic
manifold and detect branching points of homoclinic orbits.
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4 A four-dimensional example from nonlinear optics

As the first example, we consider a four-dimensional system of ODEs,

ẋ1 = x2, ẋ2 = x1 − (x2
1 + 8x2

3)x1 − 2εx1x3,

ẋ3 = x4, ẋ4 = −ω2x3 − α(x2
1 + 2x2

3)x3 − εx2
1,

(4.1)

where α and ω are positive constants. This example comes from a model of a
nonlinear optical medium with both quadratic and cubic nonlinearities [20],
in which light propagation is described by a system of PDEs

i
∂u

∂z
+

∂2u

∂t2
+ qu + u∗v + γ1(|u|2/4 + 2|v|2)u = 0,

2i
∂v

∂z
+

∂2v

∂t2
+ κv + u2/2 + γ2(4|v|2 + 2|u|2)v = 0.

(4.2)

Here z is the propagation distance, t is the reduced time or the transverse
coordinate, u and v are the amplitudes of complex waves corresponding to
the fundamental and second harmonic fields, respectively, q is a nonlinear
shift of the fundamental harmonic’s propagation constant, ∆ is a wave-vector
mismatch between the harmonics, γ1,2 are cubic (Kerr) nonlinear coefficients,
and κ = 2(∆ + 2q). One can take γ1 = γ2 = 1 in (4.2), in which case the
cubic nonlinearity is self-focusing. Searching for stationary solutions of the
form u = U(t) exp(ikz) and v = V (t) exp(2ikz) in (4.2), where U(t), V (t) and
k are real, we obtain

Ü − (k − q)U + UV + γ1(U
2/4 + 2V 2)U = 0,

V̈ + (κ − 4k)V + U2/2 + γ2(4V
2 + 2U2)V = 0,

(4.3)

where the dot denotes differentiation with respect to t. Finally, we scale the

variables as U 7→
√

γ1/4(k − q) U , V 7→
√

γ1/4(k − q) V and t 7→
√

k − q t,

introduce new coordinates x1 = U , x2 = U̇ , x3 = V and x4 = V̇ and set

ε =
1√

γ1(k − q)
, α =

8γ2

γ1

, ω2 =
κ − 4k

k − q
(4.4)

to obtain (4.1) when q < k < κ/2 and γ1 > 0. The smallness of the parameter
ε means that γ1 À 1 or k − q À 1. Homoclinic orbits to the origin O in (4.1)
correspond to ESs in the nonlinear optical model (4.2).

The system (4.1) is reversible with respect to

R : (x1, x2, x3, x4) 7→ (x1,−x2, x3,−x4).

Furthermore, the origin O is a saddle-centre with eigenvalues ±1 and ±iω.
When ε = 0, the (x1, x2)-plane is invariant under the flow of (4.1) and the

10



restriction of (4.1) to this plane reads

ẋ1 = x2, ẋ2 = x1 − x3
1.

Hence, we easily see that there exists a pair of homoclinic orbits to the saddle-
centre O,

xh
±(t) = (±

√
2 sech t,∓

√
2 sech t tanh t, 0, 0). (4.5)

Thus, assumptions (A1)-(A4) hold with l = 0. Using the notation of Section 3
we find that z0 = (0,∓1, 0, 0), Zs = {z1 = z3 = z4 = 0}, Z̄ = {z2 = 0} and

Fix(R) = {x2 = x4 = 0}, Fix(−R) = {x1 = x3 = 0}.

Note that we equip R4 with the Euclidean scalar product, such that condition
(3.1) is fulfilled.

The VE (3.2) now becomes a system of two decoupled second order equations

ξ̇1 = ξ2, ξ̇2 = (1 − 6 sech2t)ξ1,

ξ̇3 = ξ4, ξ̇4 = −(ω2 + 2α sech2t)ξ3 − 2 sech2t.
(4.6)

The fundamental matrix for the third and fourth equations in the homoge-
neous part of (4.6),

ξ̇3 = ξ4, ξ̇4 = −(ω2 + 2α sech2t)ξ3, (4.7)

is symplectic and has a unit determinant since the linear system (4.7) is Hamil-
tonian [14]. Let Ψij(t) be the (i, j)-element of the fundamental matrix Ψ(t)
for (4.7). Taking α as the control parameter, we have

Ξ̂4(α) = −Ξ4(α) = 2
∫ ∞

0
Ψ33(t; α) sech2t dt, (4.8)

where we explicitly represent the dependence of Ψ on α. We also note that
Ψ33(t; α) is the ξ3-component of the solution to (4.7) with ξ3(0) = 1 and
ξ4(0) = 0. Since z2 = 0 for z ∈ Z̄, we see that if Ξ̂4(α) has a simple zero at
α = α0, then the condition in Theorem 3.3 is fulfilled and hence a symmet-
ric homoclinic orbit exists near xh

±(t) in (4.1) at α = α0 + O(ε) for ε 6= 0
sufficiently small.

In general, a solution of (4.7) can be expressed using the Gauss hypergeometric
function,

F (c1, c2, c3; z) =
∞∑

k=0

c1(c1 + 1) · · · (c1 + k − 1)c2(c2 + 1) · · · (c2 + k − 1)

k!c3(c3 + 1) · · · (c3 + k − 1)
zk

=1 +
c1c2

c3

z

1!
+

c1(c1 + 1)c2(c2 + 1)

c3(c3 + 1)

z2

2!
+ · · · , (4.9)
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which is a special solution of the Gauss hypergeometric equation,

z(1 − z)
d2y

dz2
+ [c3 − (c1 + c2 + 1)z]

dy

dz
− c1c2y = 0, (4.10)

see [1, 8]. Another linearly independent solution to (4.10) near z = 0 is given
by

y = z1−c3F (c1 − c3 + 1, c2 − c3 + 1, 2 − c3; z) (4.11)

if none of c3, c3 − c1 − c2 and c1 − c2 is an integer. See Section 15 of [1]
or Chapter II of [8] for necessary information on the Gauss hypergeometric
function. The (3, 3)-component of the fundamental matrix, Ψ33(t; α), can be
written as

Ψ33(t; α) =
aI + bI

(aI + bI)cR + (1 − aR)cI

(FR(t) cos ωt − FI(t) sin ωt)

+
1 − aR

(aI + bI)cR + (1 − aR)cI

(FR(t) sin ωt + FI(t) cos ωt) (4.12)

if (aI + bI)cR + (ar − 1)cI 6= 0. Here FR(t) and FI(t) are real functions such
that

FR(t) + iFI(t) = F (−ρ, ρ + 1, 1 − iω; (1 − tanh t)/2)

with

ρ =
1

2
(
√

8α + 1 − 1), (4.13)

and aR, aI , bI , cR and cI are real numbers such that

aR + iaI =
Γ(1 − iω)Γ(−iω)

Γ(1 + ρ − iω)Γ(−ρ − iω)
, bI =

sin πρ

sinh πω
,

cR + icI =
2iω

√
π Γ(1 − iω)

Γ(1/2 − ρ/2 − iω/2)Γ(1 + ρ/2 − iω/2)
.

(4.14)

Here Γ(z) denotes the Gamma function,

Γ(z) =
∫ ∞

0
tz−1e−tdt.

See Appendix A.1 for the derivation of (4.12).

If ρ = l− 1, i.e., α = l(l− 1)/2, with l ∈ N, then Eq. (4.7) is integrable in the
meaning of the differential Galois theory for linear differential equations [22], so
that the general solution of (4.7) can be expressed with elementary functions,
when t and ξ are complex variables. See, for example, Section 5 of [27] for the
proof of this fact. In Appendix A.2 we describe how to obtain an analytical
expression of Ψ33(t; l(l−1)/2) in this case. For α 6= l(l−1)/2, l ∈ N, however, it
is impossible to represent Ψ33(t; α) with elementary functions and it is difficult
to compute the integral (4.8) analytically. So we carried out the integration
numerically. Figure 4 shows the results for ω = 0.5, 1, 1.5. Here the function

12
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Fig. 4. Numerical computations of the integral (4.8). The solid, broken and dotted
curves represent the results for ω = 0.5, 1 and 1.5, respectively.

NIntegrate of Mathematica [24] was used for the numerical integration of
(4.8). We see that the integral (4.8) has a simple zero near

α = 3, 10, 21, 36, 55, 78, . . . . (4.15)

We conjecture that the integral (4.8) has a simple zero at α = m(2m + 1),
m ∈ N.

As stated above, Eq. (4.7) is integrable in the meaning of the differential
Galois theory when α = m(2m + 1) = 2m(2m + 1)/2. Using the approach
of Appendix A.2 to obtain an analytical expression of Ψ33(t; n(2n + 1)) and
computing the integral (4.8) by the method of residue, we could prove that
Ξ̂4(n(2n + 1)) = 0 for n ≤ 6. Thus, by Theorem 3.3, we see that the system
(4.1) has a symmetric homoclinic orbit to O, which corresponds to an ES in
(4.2), near xh

±(t) at the values of α approximately given by (4.15) for ε > 0
sufficiently small. Moreover, as stated in Remark 3.4, this additional orbit
bifurcates from the primary one, xh

±(t), at the points of (4.15) on the ε-axis.

Finally in this section, we illustrate the theoretical results by computations
using the numerical continuation package AUTO/HomCont [6]. Figure 5 shows
branches of symmetric homoclinic orbits in the (α, ε)-parameter plane for the
same values of ω as in Fig. 4, namely ω = 0.5, 1, 1.5. As predicted by the
theory additional branches bifurcate from the primary branch with ε = 0 at
α = 3, 10, 21. Other bifurcation values of α, i.e. α = 36, 55, 78 have also been
confirmed numerically, but are not included in the figure. In addition, panels
a)–c) in the figure show plots of the bifurcating solutions for ω = 1 at the
parameter value ε = 1. We find that for increased α the amplitude of the x3-
component of these solutions decreases, while at the same time the solution
develops additional oscillations around its point of symmetry. We note that
these types of ESs in a nonlinear optical model very similar to (4.2) were
observed numerically in [4, 29] earlier. Similar types of ESs have also been
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Fig. 5. Branches of symmetric homoclinic orbits of (4.1) in the (α, ε) parameter
plane for several values of ω. Specifically, the bifurcation curves for ω = 0.5 (grey),
ω = 1.0 (dashed) and ω = 1.5 (black, solid) are included in the central panel. Panels
a)–c) contain plots of the x1 and x3 component of the bifurcating solutions at ε = 1
for the case ω = 1. The primary solution is shown underneath the bifurcation
diagram.

studied in a model with quadratic nonlinearities in [3, 13].

5 A six-dimensional example

Our second application of the theory concerns a six-dimensional system of
ODEs, which is specifically designed such that the unperturbed system (2.2)
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possesses a two-dimensional homoclinic manifold. The equations read

ẋ1 = x2, ẋ2 = x1 − (x2
1 + x2

3 + 8x2
5)x1 − 2εx1(x3 + x5),

ẋ3 = x4, ẋ4 = νx3 − (x2
1 + x2

3 + 8x2
5)x3 − ε(x2

1 + 2δx3x5),

ẋ5 = x6, ẋ6 = −ω2x5 − α(x2
1 + βx2

3 + 2x2
5)x5 − ε(x2

1 + δx2
3),

(5.1)

where α, β, δ, ν and ω are positive constants. System (5.1) is reversible with re-
spect to the involution R : (x1, x2, x3, x4, x5, x6) 7→ (x1,−x2, x3,−x4, x5,−x6),
such that

Fix(R) = {x2 = x4 = x6 = 0}, Fix(−R) = {x1 = x3 = x5 = 0}.

Furthermore, the origin O is a saddle-centre with eigenvalues ±1, ±
√

ν and
±ωi. When ε = 0, the (x1, x2, x3, x4)-space is invariant under the flow of (5.1),
and the restriction to the invariant space becomes

ẋ1 = x2, ẋ2 = x1 − (x2
1 + x2

3)x1,

ẋ3 = x4, ẋ4 = νx3 − (x2
1 + x2

3)x3.
(5.2)

It was shown in [25] that there are four isolated homoclinic orbits if ν 6= 1,
and that there exists a one-parameter family of homoclinic orbits if ν = 1. We
therefore discuss the two cases ν 6≈ 1 and ν ≈ 1 separately in the following.

5.1 The case ν 6≈ 1

For ε = 0 four isolated homoclinic orbits of (5.1) are given by

xh
±(t) = (±

√
2 sech t,∓

√
2 sech t tanh t, 0, 0, 0, 0) (5.3)

and

x̃h
±(t) = (0, 0,±

√
2ν sech

√
ν t,∓

√
2ν sech

√
ν t tanh

√
ν t, 0, 0). (5.4)

Let zs = (1,−1, 0, 0, 0, 0) and z̃s = (0, 0, 1,−
√

ν, 0, 0). We find that z0 =
(0,∓1, 0, 0, 0, 0), Zs = span{z0, z

s} and Z̄ = span{zs, e3, e5, e6} for xh
±(t),

and z0 = (0, 0, 0,∓1, 0, 0), Zs = span{z0, z̃
s} and Z̄ = span{z̃s, e1, e5, e6} for

x̃h
±(t), where ej ∈ R6 denotes the unit vector of which only the j-th element is

nonzero. The VE (3.2) becomes a triple of decoupled second-order ODEs. In
particular, the fifth and sixth component of its homogeneous part is given by

ξ̇5 = ξ6, ξ̇6 = −(ω2 + 2α sech2t)ξ5 (5.5)

for xh
±(t), and

ξ̇5 = ξ6, ξ̇6 = −(ω2 + 2αβν sech2
√

ν t)ξ5 (5.6)
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for x̃h
±(t).

As in Section 4, taking α as the control parameter, we have

Ξ̂6(α) = 2
∫ ∞

0
Ψ55(t; α, ω) sech2t dt, (5.7)

for xh
±(t), and

Ξ̂6(α) =2δ
∫ ∞

0
Ψ55(

√
ν t; αβ, ω/

√
ν) sech2

√
ν t dt

=2δ
∫ ∞

0
Ψ55(t; αβ, ω/

√
ν) sech2t dt (5.8)

for x̃h
±(t), where Ψ55(t; α, ω) is the ξ5-component of the solution of (5.5) with

initial conditions (ξ5(0), ξ6(0)) = (1, 0). Note that Ψ55(
√

ν t; αβ, ω/
√

ν) is the
ξ5-component of the solution of (5.5) with (ξ5(0), ξ6(0)) = (1, 0). For both
xh
±(t) and x̃h

±(t), we can find an element z ∈ C̃ such that z2 = z4 = 0 and

z6 = Ξ̂6(α), where C̃ was defined by (3.11). Thus, if Ξ̂6 in (5.7) or (5.8) has a
simple zero at α = α0, then the condition of Theorem 3.3 holds for the value
of α.

From the analysis of Section 4, we easily see that Ξ̂6 in (5.7) or (5.8) has a
simple zero at

α or αβ = 3, 10, 21, 36, 55, 78, . . . . (5.9)

Applying Theorem 3.3, we see that for α = 3, 10, 21, . . . a new branch of
homoclinic orbits bifurcates from xh

±(t). Similarly, a new branch of homoclinic
orbits bifurcates from x̃h

±(t) if αβ = 3, 10, 21, . . .. These results are illustrated
in Figs. 6 and 7, where as before we used AUTO/HomCont for the numerical
computations.

5.2 The case ν ≈ 1

Let ν = 1 + εν̄ in (5.1), where ν̄ = O(1) is some constant. A one-parameter
family of homoclinic orbits for ε = 0 is given by

xh(t; θ) =(
√

2 cos θ sech t,−
√

2 cos θ sech t tanh t,
√

2 sin θ sech t,−
√

2 sin θ sech t tanh t, 0, 0), (5.10)

with the parameter θ ∈ [−π, π). Observe that the homoclinic orbits with
θ = 0 and θ = −π, respectively, correspond to xh

+(t) and xh
−(t) in the case

of ν 6≈ 1, while the homoclinic orbits with θ = ±π/2 correspond to x̃h
±(t).

Let zs(θ) = (− sin θ, 0,− cos θ, 0, 0, 0). Then Txh(0;θ)M0 = span{zs(θ)}. We
also have z0(θ) = (0,− cos θ, 0,− sin θ, 0, 0), Zs(θ) = span{z0(θ), z

s(θ)} and
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Fig. 6. Numerically computed branches of symmetric homoclinic orbits bifurcating
from xh

+(t) in (5.1) for ν = β = 2 and ω = 1. Panels a)–c) contain plots of the x1,
x3 and x5 components of the primary solution (black, solid) and of the bifurcating
solutions (in the same line style as the bifurcation curves in the main panel) at
ε = 1.

Z̄(θ) = span{z̄s(θ), z̄0(θ), e5, e6}, where

z̄s(θ) = (cos θ, 0,− sin θ, 0, 0, 0), z̄0(θ) = (0, sin θ, 0,− cos θ, 0, 0).

The VE (3.2) is given by

ξ̇1 = ξ2, ξ̇2 =(1 − 2(2 + cos 2θ) sech2t)ξ1 − (2 sin 2θ sech2t)ξ3

− 2 sin 2θ sech2t,

ξ̇3 = ξ4, ξ̇4 = − (2 sin 2θ sech2t)ξ1 + (1 − 2(2 − cos 2θ) sech2t)ξ3

+
√

2 ν̄ sin θ sech t − 2 cos2 θ sech2t,

ξ̇5 = ξ6, ξ̇6 = − (ω2 + 2α(cos2 θ + β sin2 θ) sech2t)ξ5

− 2(cos2 θ + δ sin2 θ)sech2t.

(5.11)

By the change of coordinates




ξ̄j

ξ̄j+2


 =




cos θ sin θ

− sin θ cos θ







ξj

ξj+2


 , j = 1, 2, (5.12)
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Fig. 7. Numerically computed branches of symmetric homoclinic orbits bifurcating
from x̃h

+(t) in (5.1) for ν = β = 2 and ω = 1. Panels a) and b) contain plots of the
x3, and x5 components of the bifurcating solutions (in the same line style as the
bifurcation curves in the main panel) at ε = 1. Note that the x1 component is not
shown, since it is zero for all solutions.

the first four equations of (5.11) are transformed to

˙̄ξ1 = ξ̄2,
˙̄ξ2 =(1 − 6 sech2t)ξ̄1 −

3

2
(sin θ + sin 3θ) sech2t

+
√

2 ν̄ sin2 θ sech t,

˙̄ξ3 = ξ̄4,
˙̄ξ4 =(1 − 2 sech2t)ξ̄3 −

1

2
(cos θ + 3 cos 3θ) sech2t

+
√

2 ν̄ sin θ cos θ sech t.

(5.13)

Taking α as the control parameter we find in the new coordinates

Ξ̂4(θ) =
1

2
(cos θ + 3 cos 3θ)

∫ ∞

0
Ψ33(t) sech2t dt

−
√

2 ν̄ sin θ cos θ
∫ ∞

0
Ψ33(t) sech t dt,

Ξ̂6(α, θ) =2(cos2 θ + δ sin2 θ)
∫ ∞

0
Ψ55(t; α, θ) sech2t dt,

(5.14)

where Ψ33(t) (resp. Ψ55(t; α)) is the ξ̄3-component (resp. ξ̄5-component) of the
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solution to the homogeneous part of (5.13) (resp. (5.11)) with (ξ̄3(0), ξ̄4(0)) =
(1, 0) (resp. (ξ5(0), ξ6(0)) = (1, 0)). Moreover, in the new coordinates, z0(θ) 7→
−e2 and zs(θ) 7→ (− sin 2θ, 0,− cos 2θ, 0, 0, 0), while the expression of Fix(R)
is unchanged. Hence, we find an element z ∈ C̃ such that z2 = 0, z4 = Ξ̂4(θ)
and z6 = Ξ̂6(α, θ) in the new coordinates. Thus, if (Ξ̂4(θ), Ξ̂6(α, θ)) has a
simple zero at (α, θ) = (α0, θ0), then the condition of Theorem 3.3 is fulfills
for these parameter values. Consequently, we find a family of homoclinic orbits
bifurcating off the primary branch at α = α0.

We have
Ψ33(t) = sech t

and compute

Ξ̂4(θ) =
π

8
(cos θ + 3 cos 3θ) −

√
2 ν̄ sin θ cos θ.

Hence, Ξ̂4(θ) has a simple zero at

θ = ±π

2
(5.15)

and
θ = −θ±, θ = ∓π + θ±, (5.16)

where

θ± = arcsin

(√
2 ν̄ ±

√
3π2 + 2 ν̄2

3π

)
∈ [−π/2, π/2].

On the other hand, from the analysis of Section 4 we easily see that for the
values of θ in (5.15) or (5.16) Ξ̂6(α, θ) has a simple zero at

αβ or α(cos2 θ± + β sin2 θ±) = 3, 10, 21, 36, 55, 78, . . . . (5.17)

Applying Theorem 3.3, we see that for ε > 0 sufficiently small, the system
(5.1) has a symmetric homoclinic orbit to O near xh(t; θ) at the values of
α and θ approximately given by (5.15)-(5.17) for each value of ν̄. This orbit
bifurcates from the primary one, xh(t; θ) with θ given by (5.15) or (5.16), at
the points of (5.17) on the ε-axis. Moreover, the three branches θ = −π/2,
−θ+ and −π + θ+ (resp. θ = π/2, −θ− and π + θ−) meet near

(ν̄, θ) =

(
π√
2
,−π

2

) (
resp.

(
− π√

2
,
π

2

))
.

In the (ν̄, α)-parameter plane, the branching points exist at ν̄ = ±π/
√

2 and

αβ = 3, 10, 21, 36, 55, 78, . . . .

These results are summarised in Fig. 8. In the two top panels in this figure the
bifurcation diagrams for symmetric homoclinic orbits in the (ν̄, θ) parameter
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Fig. 8. Bifurcation diagrams and plots of solutions for (5.1) for ε = 0.1, β = 2 and
ω = 1. The bifurcation diagrams contain both the theoretical predictions (dashed)
and numerical computations (solid). In parts a) and b) plots of the x1, x3 and x5

components of the bifurcating solutions at the indicated points a), b) with ν̄ = 1
in the (ν̄, θ) diagram are shown. The panels contain plots of the three solutions
bifurcating at α = 1.5 (black, solid), α = 5 (black, dashed) and α = 10.5 (grey,
solid). The x1- and x3-components of these solutions are very similar.

plane and in the (ν̄, α) parameter plane are shown for β = 2 and ω = 1.
Both the theoretical predictions (dashed) and the numerical computations
(solid curves) are shown in the diagrams. Again, the continuation software
AUTO/HomCont has been used to derive the numerical results. Here θ has been
determined as

θ = arctan

(
xh

ε,3(0)

xh
ε,1(0)

)

for the numerically computed, symmetric homoclinic orbit xh
ε (t), where t = 0

is the time at which xh
ε (t) intersects Fix(R).

The scenario depicted in Fig. 8 reveals a symmetry-breaking bifurcation of
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homoclinic orbits. Indeed, observe that (5.1) is Z2-symmetric with respect to

S : (x1, x2, x3, x4, x5, x6) 7→ (−x1,−x2, x3, x4, x5, x6),

such that in particular the space Fix(S) = {x1 = x2 = 0} is invariant under
the flow of the system. The homoclinic solutions x̃h

±, which correspond to the
solutions with θ = ±π/2 in (5.10), are contained in Fix(S) and undergo a
symmetry-breaking bifurcation (at different values of ν̄), thereby giving rise
to new branches of homoclinic solutions. This symmetry-breaking bifurcation
is illustrated in the left top panel of Fig. 8.

In the panels below the bifurcation diagrams we give an impression of the
bifurcating solutions by plotting their x1, x3 and x5 components. Note that
we restrict to showing one bifurcating solution from each of the new branches
in the (ν̄, θ) bifurcation diagram, since the solution on the other arc of this
branch is the symmetric counterpart.

6 Conclusions

In this paper we have developed a perturbation technique for detecting the
existence of symmetric homoclinic orbits to saddle-centres in reversible sys-
tems of ODEs. For this we have extended the well-known Melnikov method
to derive an approximation to the corresponding stable and unstable man-
ifolds. We have applied the method to the analysis of homoclinic orbits to
saddle-centres in two examples. Besides the mere existence results we have
demonstrated how the method can be used to obtain information about bifur-
cations of homoclinic orbits in specific systems. Numerical studies have shown
good agreement with the theoretical predictions.

Our technique is of importance in applications since homoclinic orbits to
saddle-centre equilibria often appear as embedded solitons (ESs) in systems
of PDEs, as stated in the Introduction. One of the fascinating features of ESs
is their semi-stability, which has been established explicitly in a number of ex-
amples [28, 29]. These solutions are linearly stable, but are subject to a weak
nonlinear one-sided instability [4,29]. This means that if one makes an energy
increasing perturbation then via the shedding of radiation, the initial condition
relaxes algebraically back to the solitary wave. In contrast, an energy decreas-
ing perturbation would cause the solitary wave to decay algebraically away. It
is a challenging problem to decide whether the homoclinic orbits detected by
our method give rise to semi-stable ESs in corresponding PDEs. In particular,
when the primary ESs with ε = 0 are stable or semi-stable it is very inter-
esting to determine the semi-stability of ESs bifurcating from them. These
problems, however, cannot be solved within the finite-dimensional framework
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of dynamical systems theory employed here.

Let us finally comment on some dynamical consequences of the investigations
in this paper. A number of studies has dealt with the existence of multi-pulse
homoclinic orbits near a primary homoclinic orbit to a saddle-centre equilib-
rium. For reversible (analytic) Hamiltonian systems having a homoclinic orbit
to a saddle centre it has been shown in [10, 15] that infinitely many multi-
pulse homoclinic orbits in any neighbourhood of the original system exist,
if the so-called Birkhoff signature condition and an additional transversality
condition are satisfied. Specifically, the transversality condition requires that
the linearised dynamics along the homoclinic orbit is not purely rotational
in conjugate canonical coordinates. The existence of such coordinates near
saddle-centres is guaranteed by the results in [18, 19]. If both conditions are
fulfilled then in a generic unfolding there exists an infinite sequence of param-
eter values, accumulating from both sides at the critical value for the primary
homoclinic orbit, at which the unfolded system possesses a two-pulse homo-
clinic orbit to O. In contrast, studies in [2] suggest that in purely reversible
systems this accumulation occurs only on one side of the primary homoclinic
solution, independent of the Birkhoff signature.

In the context of our studies it would be interesting to analyse the accumula-
tion of multi-pulse homoclinic orbits near one of the branching points of the
primary homoclinic orbits. For this note that the above mentioned transver-
sality condition also implies that a horseshoe is created and chaotic dynamics
occurs in the unperturbed system [9,12,15,26]. Moreover, if the unperturbed
system has an invariant plane on which a homoclinic orbit exists, then the
normal variational equation (NVE), which consists of components normal to
the invariant plane of the VE, for the homoclinic orbit, is not integrable in the
meaning of the differential Galois theory [16,17]. In particular, in the example
(4.1) from Section 4, the NVE is given by (4.7) and both conditions are equiv-
alent [27]. Thus, for the Hamiltonian case, if the system (4.1) exhibits chaotic
dynamics and has an infinity of multi-pulse homoclinic orbits in any neigh-
bourhood of ε = 0, then the homoclinic orbits (4.5) cannot be continued for
ε > 0. Taking into account recent general results for reversible systems [2, 7],
we expect the same consequence for non-Hamiltonian reversible systems.
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A Solutions of equation (4.7)

In this appendix we give necessary information on solutions of (4.7) or equiv-
alently the second-order differential equation,

η̈ + (ω2 + 2α sech2t)η = 0. (A.1)

A.1 The general non-integrable case

We first use the transformations

z =
1

2
(1 − tanh t), ζ = (4z(1 − z))−iω/2η (A.2)

to transform (A.1) into

z(1 − z)
d2ζ

dz2
+ (1 + iω)(1 − 2z)

dζ

dz
− (iω − ρ)(iω + ρ + 1)ζ = 0, (A.3)

which is the Gauss hypergeometric equation (4.10) with c1 = iω − ρ, c2 =
iω + ρ + 1 and c3 = 1 + iω, where ρ is given by (4.13). A special solution to
(A.3) is given by

ζ(t) =
(

z

2

)−iω

F (−ρ, ρ + 1, 1 − iω; z)

(see Eq. (4.11)), which yields a complex solution of (A.1)

η̂(t) = eiωtF (−ρ, ρ + 1, 1 − iω; (1 − tanh t)/2) (A.4)

by the inverse of (A.2). When t is real, the general solution of (A.1) is given
by

η(t) = C1(FR(t) cos ωt− FI(t) sin ωt) + C2(FR(t) sin ωt + FI(t) cos ωt), (A.5)

where C1 and C2 are arbitrary constants, since the real and imaginary parts
of (A.4) also represent two independent solutions of (A.1).

Obviously,

η̂(t) → eiωt as t → ∞ (A.6)
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since F (−ρ, ρ + 1, 1 − iω; 0) = 1. In addition, since by Formula 15.3.6 of [1]

F (−ρ, ρ + 1, 1 − iω; z)

=
Γ(1 − iω)Γ(−iω)

Γ(1 + ρ − iω)Γ(−ρ − iω)
F (−ρ, ρ + 1, 1 + iω; 1 − z)

+
Γ(1 − iω)Γ(iω)

Γ(−ρ)Γ(ρ + 1)
(1 − z)−iωF (1 − iω + ρ,−iω − ρ, 1 − iω; 1 − z)

and by Formulas 6.1.15, 6.1.28 and 6.1.29 of [1]

Γ(1 − iω)Γ(iω)

Γ(−ρ)Γ(ρ + 1)
= i

sin πρ

sinh πω
,

we have

η̂(t) → (aR + iaI)e
iωt + ibIe

−iωt as t → −∞, (A.7)

where aR, aI and bI are given in (4.14). Moreover, by Formula 15.1.26 of [1]

η̂(0) =
2iω

√
π Γ(1 − iω)

Γ(1/2 − ρ/2 − iω/2)Γ(1 + ρ/2 − iω/2)
= cR + icI . (A.8)

We determine C1 and C2 for (A.5) to satisfy (η(0), η̇(0)) = (1, 0). From (A.6)
and (A.7) we see that

η(t) → C1 cos ωt + C2 sin ωt as t → ∞

and

η(t) → C1[aR cos ωt + (−aI + bI) sin ωt] + C2[(aI + bI) cos ωt + aR sin ωt]

as t → −∞. Since η(t) also has to be symmetric, i.e., η(t) = η(−t), we have

C1 = C1aR + C2(aI + bI), C2 = −C1(−aI + bI) − C2aR, (A.9)

which has multiple nonzero roots as a system of equations for C1 and C2 since
a2

R + a2
I − b2

I = 1 (see Eq. (5.7) of [26]). Moreover, since η(0) = 1,

C1cR + C2cI = 1 (A.10)

by (A.8). We solve (A.9) and (A.10) for C1 and C2 to obtain

C1 =
aI + bI

(aI + bI)cR + (1 − aR)cI

, C2 =
1 − aR

(aI + bI)cR + (1 − aR)cI

unless the denominator is zero. Thus, we see that Eq. (4.12) gives the (3, 3)-
component of the fundamental matrix, Ψ33(t; α), if (aI +bI)cR+(1−aR)cI 6= 0.

24



A.2 The integrable case

Now we restrict ourself to the integrable case of α = l(l− 1)/2, i.e., ρ = l− 1,
with l ∈ N. In this case the hypergeometric series (4.9) with c1 = −ρ, c2 = ρ+1
and c3 = 1 − iω terminates at k = ρ = l − 1. Moreover, bI = 0,

aR + iaI =





1 if l = 1;

(1 − l − iω) · · · (−1 − iω)

(l − 1 − iω) · · · (1 − iω)
if l ≥ 2,

(A.11)

and

cR + icI =





1 if l = 1;

(1 − m − iω/2) · · · (−iω/2)

(m − 1/2 − iω/2) · · · (1/2 − iω/2)
if l = 2m;

(−m + 1/2 − iω/2) · · · (−1/2 − iω/2)

(m − iω/2) · · · (1 − iω/2)
if l = 2m + 1,

(A.12)

where m ∈ N, since Γ(z + 1) = zΓ(z) and

2iω
√

π Γ(1 − iω)

Γ(1/2 − iω/2)Γ(1 − iω/2)
= 1

by Formula 6.1.18 of [1]. Using (4.9), (4.12), (A.11) and (A.12), we can com-
pute Ψ33(t; α). This is demonstrated explicitly for the cases l = 1, 2, 3 below.

A.2.1 Case of l = 1

From (4.9), (A.11) and (A.12) we obtain F (0, 1, 1 − iω; (1 − tanh t)/2) = 1,
aR = cR = 1 and aI = cI = 0. Obviously, (aI + bI)cR + (1 − aR)cI = 0 and
hence Eq. (4.12) is not valid. However, in this case, we can also solve (A.9)
and (A.10) directly to obtain C1 = 1 and C2 = 0, so that

Ψ33(t; 0) = cos ωt.

A.2.2 Case of l = 2

From (4.9), (A.11) and (A.12),

F (−1, 2, 1 − iω; (1 − tanh t)/2)

= 1 − 2

1 − iω
(1 − tanh t) =

1

1 + ω2
[(ω2 + tanh t) + iω(−1 + tanh t)]
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and

aR = −1 − ω2

1 + ω2
, aI = − 2ω

1 + ω2
, cR =

ω2

1 + ω2
, cI = − ω

1 + ω2
.

Hence, C1 = 1 and C2 = −1/ω, so that

Ψ33(t; 1) = cos ωt − 1

ω
sin ωt tanh t.

A.2.3 Case of l = 3

From (4.9), (A.11) and (A.12),

F (−2, 3, 1 − iω; (1 − tanh t)/2)

= 1 − 6

1 − iω
(1 − tanh t) +

6

(1 − iω)(2 − iω)
(1 − tanh t)2

=
1

4 + 5ω2 + ω4
{[−(2 + ω2 − ω4) + 9ω2 tanh t + 3(2 − ω2) tanh2 t]

+ 3iω[−(1 + ω2) − (2 − ω2) tanh t + 3 tanh2 t)]}

and

aR =
4 − 13ω2 + ω4

(1 + ω2)(4 + ω2)
, aI =

6ω(2 − ω2)

(1 + ω2)(4 + ω2)
,

cR = −2 − ω2

4 + ω2
, cI = − 3ω2

4 + ω2
.

Hence,

C1 = −2 − ω2

1 + ω2
, C2 = − 3ω2

1 + ω2
,

so that

Ψ33(t; 3) = cos ωt − 3

1 + ω2
(ω sin ωt tanh t + cos ωt tanh2 t).
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