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Abstract.

We study in detail complex structures of homoclinic bifurcations in a three-

dimensional rate-equation model of a semiconductor laser receiving optically injected

light of amplitude K and frequency detuning ω. Specifically, we find and follow

in the (K, ω)-plane curves of n-homoclinic bifurcations, where a saddle-focus is

connected to itself at the n-th return to a neighborhood of the saddle. We reveal

an intricate interplay of codimension-two double-homoclinic and T-point bifurcations.

Furthermore, we study how the bifurcation diagram changes with an additional

parameter, the so-called linewidth enhancement factor α of the laser. In particular, we

find folds (minima) of T-point bifurcation and double-homoclinic bifurcation curves,

which are accumulated by infinitely many changes of the bifurcation diagram due to

transitions through singularities of surfaces of homoclinic bifurcations.

The injection laser emerges as a system that allows one to study codimension-

two bifurcations of n-homoclinic orbits in a concrete vector field. At the same time,

the bifurcation diagram in the (K, ω)-plane is of physical relevance. An example is

the identification of regions, and their dependence on the parameter α, of multi-pulse

excitability where the laser reacts to a single small perturbation by sending out n

pulses.
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1. Introduction

We present a detailed study of homoclinic orbits to a saddle-focus (a saddle point with

one real and a pair of complex conjugate eigenvalues) [1, 2, 3, 4] and their bifurcations

in a three-dimensional vector field model of an optically injected laser. Such a laser

receives optically injected light of a given fixed amplitude K and frequency ω; the laser

is specified by a number of material constants, so that the model is valid for solid-state,

C02 and semiconductor lasers; see section 2 for details.
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The work presented here is similar in spirit to the study of other three-dimensional

dynamical systems arising in applications that feature saddle-focus homoclinic orbits,

for example, the models of chemical reactions in Refs. [5, 6], the model for calcium

waves in cells Ref. [7], and the simplified weather model Ref. [8]. The direct motivation

was the discovery of the new physical effect of multi-pulse excitability in the injection

laser [9]: as the result of a single perturbation the laser may react by sending out an

n-pulse response. This phenomenon occurs near an n-homoclinic orbit, which closes up

only at the n-th return to a small neighborhood of the saddle-focus. It turns out that

the associated curves of n-homoclinic bifurcations in the (K, ω)-plane are arranged in

an intricate structure inside regions that are bounded by 1-homoclinic bifurcations and

which we call homoclinic teeth.

In this paper we study these intricate structures of n-homoclinic orbits and their

bifurcations in considerable detail. The rate equation model of an injection laser

is a concrete dynamical system in which such global bifurcations can be found and

studied with numerical tools, in particular, the continuation of periodic and connecting

orbits. This reveals how codimension-two homoclinic bifurcations act as organizing

centers of the bifurcation diagram. First, we find heteroclinic cycles known as T-point

bifurcations; we are dealing here with the case that both saddles involved have a pair of

complex conjugate eigenvalues. Such T-point bifurcations were found in systems from

applications [7, 10, 11, 12, 13, 14, 15, 16] and their unfolding is known to involve n-

homoclinic orbits for any n [17, 18]. Secondly, we find double-homoclinic orbits to a

saddle-focus, where there are two different homoclinic connections to a single saddle-

focus. (This should not be confused with a 2-homoclinic orbit.) This codimension-

two global bifurcation has been studied in an abstract setting in Refs. [19, 20, 21].

The bifurcations of 1-homoclinic orbits are known, but the possible unfoldings are not

yet fully understood. We present sketches of relevant bifurcation curves associated

with these global bifurcations and show with numerical bifurcation diagrams how they

manifest themselves in the optically injected laser model.

Finally, we show that curves of codimension-two global bifurcations may have folds,

in our case minima with respect to the physically relevant linewidth enhancement factor;

see section 2. We show how such a minimum is accumulated by singularity transitions

through saddles and extrema of associated codimension-one surfaces of homoclinic

bifurcations.

This paper is organized as follows. In section 2 we introduce the rate equation

model for an optically injected laser and present some background information on

the system. In section 3 we introduce the homoclinic teeth in the locking region

in the (K, ω)-plane, and show how they grow with the linewidth-enhancement factor

α. Section 4 then considers the complex structure of n-homoclinic orbits inside the

homoclinic teeth and explains how this gives rise to multi-pulse excitability. We then

discuss in section 5 codimension-two bifurcations of homoclinic and heteroclinic orbits

and show how they organize the overall dynamics. Section 6 is a phenomenological

description of codimension-three phenomena that one encounters when α is changed.
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Finally, in section 7 we draw some conclusions and point to future work.

All curves of global bifurcations and the associated homoclinic and heteroclinic

orbits were calculated with the HomCont [22, 23] part of the continuation package

AUTO [24]; the invariant manifolds and time series illustrating multi-pulse excitability

were computed with the package DsTool [25].

2. The optically injected laser

From the physical perspective, a semiconductor laser with optical injection is one of

the ‘oldest’ laser systems that has been studied; see the review papers Refs. [26, 27]

and Ref. [28] as general references to the extensive literature. Because the first types

of (semiconductor) lasers had a very wide linewidth (frequency distribution) and other

instabilities, the idea was to improve their characteristics by subjecting them to a small

amount of ‘clean’ light from a second laser. In this way, it is possible to get the laser to

lase at the frequency of the injected light and with a much reduced linewidth [29, 30, 31].

From the dynamical systems point of view, a class-B laser (the active-medium

polarization decays much faster than the population inversion and the electric field)

with optical injection as discussed here is one of the nicest physical systems to show a

fascinating array of nonlinear dynamics. Several kinds of complex and chaotic dynamics

were discovered; see, for example, Refs. [32, 33, 34, 35, 36, 37]. Of particular importance

is the fact that this system is very well described by a set of three autonomous ordinary

differential equations for the complex electric field E = Ex + iEy and the population

inversion n (the number of electron-hole pairs in case of a semiconductor laser) [28, 38].

These so-called single-mode rate equations can be written in dimensionless form as

Ė = K +

(

1

2
(1 + iα)n − iω

)

E (1)

ṅ = − 2Γn − (1 + 2Bn)(|E|2 − 1) .

The two main parameters are the injected field amplitude K and the detuning ω, the

frequency difference between the injected light and the frequency of the laser without

injection. While K and ω can easily be changed in an experiment, the parameters B,

Γ and α describe material properties of a given laser. Specifically, B is the rescaled

life time of photons in the laser cavity and Γ is the rescaled damping rate of the so-

called relaxation oscillations, an exchange of energy between the electric field E and

the population n of a typical frequency of around few GHz. We use the realistic values

B = 0.015 and Γ = 0.035 throughout in our study.

While B and Γ are known not to influence the dynamics of the injected laser very

much [39], the material constant α, called the linewidth enhancement factor, can be very

different for different lasers, and it is known that changing α has a very large effect [28].

The parameter α describes the coupling between the phase and the amplitude of the

electric field E, and it is in the range of α ∈ [1, 10] for typical semiconductor lasers.

On the other hand, Eq. (1) for α = 0 models injected solid-state and CO2 lasers, which

have a negligible phase-amplitude coupling. This is our motivation for studying how the
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bifurcation set in the (K, ω)-plane depends on α, that is, on the main material property

of the particular laser under consideration.

We now briefly summarize some previous work on the dynamics and bifurcations

of injection lasers. The rate equations (1) have been studied (in equivalent forms of

rescaling) by numerical simulation (see, for example, [35, 37, 39, 40]) and the derivation

of reduced equations by considering certain limits [41, 42, 43, 44]. However, their study

with tools from bifurcation theory arguably started with the work of Solari and Oppo in

Ref. [45], who derived and analyzed a reduction to a two-dimensional vector field near a

codimension-two saddle-node Hopf (SNH) point. This work was followed up in Ref. [46]

by considering the global dynamics near the SNH point in the full three-dimensional

rate equations. In a similar vein, a two-dimensional vector field approximation of the

injection laser was derived in Ref. [47], and then studied in Ref. [48] with normal form

theory near the SNH point. Predicted stable and unstable tori were then indeed found

in the full rate equations in Ref. [49], which were then derived in the dimensionless form

(1) in Ref. [28]. Quite a number of studies now exist that show the amazing complexity

of bifurcations in the full rate equations, including different types of multistability =

[37, 50, 51] and routes to chaos [52, 53], unnested islands of period-doublings [54], and

complex bifurcation structures associated with the route to locking [55, 56, 57, 58]. As

was already mentioned, the motivation for this paper was the discovery of multipulse

excitability in the injection laser in Ref. [9]; see also Ref. [59] and section 4.

Equation (1) describes a laser that lases at a single laser mode throughout. This is

ensured for so-called distributed feedback (DFB) lasers, and recent experiments with an

injected DFB laser in Refs. [60, 61, 62] showed very good agreement between experiment

and theory based on the rate equations (1) over the physically relevant region in the

entire (K, ω)-plane. However, even for Fabry-Perrot lasers (simply a lasing material

located between two mirrors), which can lase at different modes depending on the

operating conditions, the assumption of single mode operation is known to be justified

for large regions of the (K, ω)-plane [63]; see also the experiments in Ref. [64].

3. Homoclinic teeth

The phenomena we are interested in appear in what we call ‘homoclinic teeth’. What

we mean by a homoclinic tooth is sketched in figure 1. It is the region bounded by the

curve h1 of a 1-homoclinic bifurcation and the grey part of the curve Sl of local saddle-

node bifurcations. The two curves meet at two points A1 and A2 of codimension-two

non-central saddle-node homoclinic bifurcations. This codimension-two bifurcation was

identified in Ref. [59] as an organizing center for multipulse excitability (single pulse

excitability in the case of a curve of 1-homoclinic bifurcations); see Ref. [65, 66, 67] for

more details on its unfolding. Figure 1 shows sketches of phase portraits for different

locations of parameter space near the homoclinic tooth. Notice, in particular, that the

saddle-node bifurcation takes place on a periodic orbit along the parts marked Sg (where

g stands for global), but this is not the case along Sl (where l stands for local) .
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Figure 1. Sketches of phase portraits near the boundary of a homoclinic tooth in two

unfolding parameters µ1 and µ2.

In the part of region 3 that is close to the curves h1 and Sg the laser is 1-excitable:

a small perturbation to above the stable manifold of the saddle s will lead to a large

excursion, essentially following the 1-homoclinic orbit, before the laser relaxes back to

the attractor a. By comparison, in region 2 there is a smooth invariant circle, but the

laser is still excitable close to the curve Sg: a perturbation beyond the stable manifold of

s will lead to a large excursion around the invariant circle and back to a. In fact, phase

portraits 2 and 3 are topologically equivalent. However, away from the codimension-

two points A, they may relate to different physical phenomena. On the one hand, phase

portrait 2 represents phase locking because the smooth invariant circle is centered at

the origin of the complex E-plane. Hence, an excitable response associated with phase

portrait 2 is mainly of the form of a 2π phase slip with only slight variations in the

electric field amplitude. On the other hand, the upper branch of the unstable manifold

in phase portrait 3 evolves away from the origin of the complex E-plane so that an

excitable response leads to a short (30 ps in our case) and distinct intensity pulse. Near
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A, the difference in the excitable response for the phase portraits 2 and 3 disappears.

The curve het is not a bifurcation curve, but when crossing it there is a change of

the direction from which the relevant branch of the unstable manifold of the saddle

approaches the attractor. Consequently, the closure of the unstable manifold of the

saddle is a smooth curve in region 2, while this is not the case in region 3; see Ref. [59]

for more details.

The homoclinic tooth is shown to intersect with the dashed curve ns where the

saddle is neutral, that is, the absolute values of the real parts of the real eigenvalue

and of the pair of complex conjugate eigenvalues are equal. What the dynamics looks

like inside the tooth crucially depends on whether one is above or below ns. Along

the parts of h1 below ns, often called a simple Shil’nikov case, the = homoclinic orbit

bifurcates into an attracting periodic orbit [figure 1 = (4a)]. On the other hand, along

the parts of h1 above ns, often called a chaotic Shil’nikov case, the bifurcating periodic

orbit is no longer stable [figure 1 (4b)]. Breaking this type of homoclinic orbit leads to

the creation of n-homoclinic orbits for any n. While the curve ns is not a bifurcation

curve, each of its intersection points B1 and B2 with h1 is a codimension-two homoclinic

bifurcation, known as a Belyakov point [69, 70]. Belyakov points mark the transition

between the two cases of homoclinic orbits and, hence, give rise to an intricate structure

of n-homoclinic orbits; see already figure 4 below.

How homoclinic teeth arise in Eq. (1) is shown in figure 2 with panels of the

(K, ω)-plane near the locking region for increasing values of α as indicated. It shows

the curves S of saddle-node bifurcations and the curves H of Hopf bifurcations (both

shown in gray), the supercritical parts of which bound the locking region of the injected

laser; see Ref. [28]. Also shown is the neutral saddle curve ns. All these curves are

given by local conditions at equilibria of Eq. (1) and can be found analytically. The

curve h1 of 1-homoclinic bifurcations, on the other hand, cannot be found analytically.

It was computed with the HomCont part of the continuation package AUTO [24].

The computations do not distinguish between a generic (codimension-zero) homoclinic

connection along the parts Sg in figure 1 and the codimension-one homoclinic bifurcation

along h1. In other words, when the black curve in figure 2 coincides with S then the

saddle-node bifurcation takes place on a periodic orbit. If it leaves S we find a homoclinic

tooth.
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Figure 2. Homoclinic teeth in the locking region as a function of α.
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Figure 3. Curve of codimension-two saddle-node homoclinic bifurcations, projected

onto the (α, ω)-plane (a), and a sketch of a codimension-two saddle-node homoclinic

orbit (b).

For α = 0 (the case of a solid-state or CO2 laser) the (K, ω)-plane is symmetric and

there are no homoclinic teeth. As α is increased, homoclinic teeth start to grow along

the saddle-node bifurcation curve S that forms the lower boundary of the locking range.

(The other boundary is the Hopf bifurcation curve H.) Initially the teeth are quite small

[panel (b)] but then they grow in size and the bifurcation diagram changes qualitatively,

showing the existence of codimension-three phenomena. At α = 1.21 [panel (b)] the first

tooth starts to intersect the neutral saddle curve ns. What is more, new teeth start to

appear between already present teeth [panel (d)]. All teeth keep growing, and the tooth

closest to the saddle-node Hopf point G1 develops a rather bizarre shape [panels (e)

and (f)]. On top of this, when α increases neighboring teeth may merge, meaning that

the curve h1 detaches from the curve S. This occurs at codimension-three points when

two neighboring non-central saddle-node homoclinic bifurcation points come together

and vanish. Furthermore, one notices the appearance of codimension-two homoclinic

bifurcation points (dots along the curve h1 in panel (f)). They are created when the

section given by fixed α crosses a minimum in the respective codimension-two bifurcation

curve, which is discussed in detail in section 5.

To study how new teeth are born and neighboring teeth merge we continued with

HomCont the curve of codimension-two non-central saddle-node homoclinic bifurcations

in (K, ω, α)-space [67, 68]. The projection of this curve onto the (α, ω)-plane is shown

in figure 3(a), while figure 3(b) shows a sketch of a non-central saddle-node homoclinic

orbit. The left-hand fold points of the curve in figure 3(a) are points where teeth are

born, while right-hand fold points are points where two neighboring teeth merge. This
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Figure 4. Sketches of the two types of Belyakov points, as described in Ref. [69].

figure clearly shows that there are no teeth for α < 0.5. New teeth are then born

one-by-one as α is increased. Secondary teeth appear from about α = 2 on. Merging

teeth can be observed from about α = 2.2 onward when the first two teeth (nearest G1)

merge. Successively teeth for larger negative detuning ω also merge. In fact for α > 7.5

there appears to be one giant tooth, if one still wants to call it that. It is already clear

that the situation becomes increasingly complicated with α.

4. Complex structure of n-homoclinic bifurcations

Complex structures of global homoclinic and heteroclinic bifurcations arise inside the

homoclinic teeth as a result of interactions of the curves of 1-homoclinic orbits. The

fact that the curve ns intersects the first homoclinic tooth, for example, for α = 2.0

in figure 2 (c), giving rise to two Belyakov points, already allows us to conclude from

general theory [69, 70] that there must be further curves of n-homoclinic orbits. In

figure 4 we plot two possible (partial) bifurcation diagrams near a Belyakov point B as

described in Ref [69]. In panel (a) the point B is accumulated on one side by curves of

n-homoclinic orbits, while in panel (b) certain curves of n-homoclinic orbits pass close

to the point B. In either case, the Belyakov point B gives rise to n-homoclinic orbit for

any n. We remark that the exact combinatorics of these n-homoclinic orbits is still not

fully understood [70].
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The question is how these n-homoclinic orbits are organized inside the homoclinic

teeth. At the same time, this gives an impression of a Belyakov bifurcation in a concrete

system. Furthermore, one may ask where the associated n-homoclinic bifurcation curves

go and to which other codimension-two points they connect. In short: what is the

bifurcation diagram, as far as one can assemble it? These questions cannot be addressed

by analytical studies in a neighborhood = near codimension-two points but they require

using continuation techniques. From a bifurcation theory point of view, this is the

next step towards the understanding of the organizing properties of global bifurcations.

Physically, we reveal structures that stretch over large regions in the parameter plane

and become experimentally accessible, that is, potentially relevant for real applications

of optically injected lasers.

Figure 5 (a1) shows curves hn of n-homoclinic orbits for n ≤ 4 inside the first

tooth for α = 2.0, while figure 5 (a2) is an enlargement near the saddle-node bifurcation

curve S. Many of these curves extend from the region above ns to below ns and in

crossing ns have further Belyakov points on them. The picture that emerges is that of a

complicated arrangement of nested n-homoclinic bifurcation curves. Most interestingly,

several curves extend to very near the curve S, and some even attach to S at points of

non-central saddle-node n-homoclinic orbits.

We now focus on what happens to the infinite number of hn-tongues when the

Belyakov points are gone, that is, the homoclinic tooth is entirely below ns. One

straightforward scenario would be that all the hn curves disappear when B1 and B2

merge. However, this is not the case here. Figure 5 (b1)–(b2) shows the first tooth

for α = 1.21, just as it touches the curve ns. This is a codimension-three phenomenon

in (K, ω, α)-space where two Belyakov points coincide and then disappear when α is

decreased, as is shown in figure 5 (c1)–(c2). (The curve B of Belyakov points in (K, ω, α)-

space has a minimum.) Even though the tooth is well below the curve ns for α = 1.0,

there are still curves of n-homoclinic orbits inside it. In particular, we find that the

curves h2 and h3 are attached to S.

Our numerical investigation suggests that there are only finitely many curves of

n-homoclinic orbits for α < 1.21. To illustrate how subsequent curves hn appear with

increasing α we marked one of them with a star. For α = 1.0 [figure 5 (c2)] h2

∗
is the

last homoclinic curve that just emerged from the saddle-node bifurcation curve S. As

α is increased above α = 1.0, the curve h2

∗
develops two = extra noncentral-homoclinic

points on S, forms a sort of bridge, and provides space for the next homoclinic curve to

emerge [figure 5 (b2)]. This process seems to repeat, such that for α > 1.21 there exist

infinitely many curves hn.

The regions bounded by h2 and h3 near S appear to be large enough to be

experimentally accessible [51]. In such a region the laser exhibits multi-pulse excitability.

We remark that our study shows that this phenomenon can be found even for

surprisingly low values of α; compare Ref. [9, 59]. An example is shown in figure 6

for α = 1.0. The phase portrait in figure 6 (a1) is as that of region 3 in figure 1 — the

laser is 1-pulse excitable. A small perturbation above the excitability threshold, given
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Figure 6. Examples of multi-pulse excitability. The left column shows the phase

portrait and the right column the reaction of the laser to a small perturbation above

the excitability threshold. Throughout α = 1.0 and from (a) to (b) (K,ω) takes the

values (0.71,−0.95), (0.745.− 1) and (0.735,−0.993).

by the stable manifold of the saddle point, results in the laser sending out a single pulse;

see figure 6 (a2). In the region bounded by h2, on the other hand, the phase portrait is

close to a 2-homoclinic orbit and the laser produces two pulses in reaction to a single

perturbation; see figure 6 (b1)–(b2). Finally, three pulses result in the region bounded

by the curve h3, as is illustrated in figure 6 (c1)–(c2). Indeed, it is possible to find

n-pulse excitability for any n, but the regions for n > 4 become impractically small.

It is important to note a key ingredient for multipulse excitability to occur, namely

the fact that the respective curve hn extends all the way below ns. For the parameters

above ns the hn-tongues are so narrow that they become hard to distinguish, even
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numerically. Furthermore, there exist an infinite number of unstable periodic orbits in

the phase space for parameters outside the tongues. As a result, the excitable response is

often irregular and unpredictable as the trajectory bounces between the unstable orbits

before it decides to return to the stable equilibrium. On the other hand, below ns the

tongues are easily distinguishable and the phase portraits are simpler as there are no

unstable periodic orbits. Consequently, the system can be prepared to be well within hn

(certainly for n ≤ 3) where the excitable response is predictable and consist of a certain

number of pulses.

5. Codimension-two homoclinic bifurcations

We now study in considerable detail the structure and bifurcations of the curve h1 that

forms the boundary of the homoclinic teeth. In particular, we show that codimension-

two double-homoclinic and T-point bifurcations play a prominent role in organizing the

dynamics.

Figure 7 shows an enlargement near the first homoclinic tooth (or what is left of it)

for α = 4.5; compare with figure 2. Notice the two points D1 and D2 where additional

homoclinic bifurcation curves emerge. The phase portraits at D1 and D2 show that

we are dealing with a codimension-two double-homoclinic orbit [18, 21]: both branches

of the unstable manifold spiral back to the saddle point. This means that there are

simultaneously two individual homoclinic orbits associated with the same saddle point.

The two phase portraits at D1 and D2 are topologically equivalent and both lie

on the primary branch of the curve h1. This can be seen in the further enlargement of

the (K, ω)-plane in figure 8, where panels (a)-(e) show the 1-homoclinic orbit in phase

space at the indicated parameter points along h1. As D2 is approached the unstable

manifold forming a homoclinic orbit comes closer and closer (from below) to the saddle

and then leaves a neighborhood of the saddle roughly along the other branch of the

unstable manifold. Finally, at D2 there are two simultaneous homoclinic orbits, one for

each branch of the unstable manifold. Effectively, the original 1-homoclinic orbit along

the curves h1 has split into two homoclinic orbits. Notice that the curve h1 accumulates

back on itself at D2, as is also sketched in the inset of figure 8.

This scenario agrees with what is known in the literature about the double-

homoclinic bifurcation [18, 21]. Again, not all details of this codimension-two global

bifurcation are known, but key features are as sketched in figure 9 (for the case of a

saddle focus as we encounter it here). The double-homoclinic orbits D exists at the

intersection point of two curves h1

a and h̃1 of two different homoclinic orbits to the same

saddle that contain each a different branch of the unstable manifold of the saddle. As

sketched, there is a third curve h1

b of homoclinic orbits that accumulates on the curve

h1

a. The accumulation is as shown when the saddle quantity is larger than one [18, 21],

which is the case we encounter, because all double-homoclinic orbits occur above the

curve ns.

Note that the analysis in the literature is in terms of a small tubular neighborhood



Bifurcations of n-homoclinic orbits in optically injected lasers 14

0.1 0.2 0.3 0.4 0.5 0.6 0.7

-1

-0.5

0

0.5

1

-101

-1 0 1

-1

0

1

-101

-1 0 1

-1
0

1

-1 0 1

-1

0

1

-1
0

1

-1 0 1

Ex

Ey

n

ExEy

n
D1 D2

α = 4.5

ω

K

G1

h1

S

S

H

ns

D1

D2
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and the phase portraits at the codimension-two double-homoclinic bifurcation points
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around the double-homoclinic orbits as sketched in panel D. In this neighborhood the

curves h1

a and h1

b are unrelated. However, as can be seen in figure 8, they may be

one and the same curve accumulating back on itself. In fact, we find this to be the

typical situation in system (1). We finally stress that the points Di that we encounter

in this work are of codimension-two because the two simultaneous homoclinic orbits

are not related by symmetry. Unlike in the case of codimension-one symmetric double-
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Figure 9. Sketch of phase portraits and the bifurcation diagram (in two unfolding

parameters µ1 and µ2) of a double-homoclinic point D, as described in Refs. [18, 21].

homoclinic orbit, it is possible to perturb parameters such that one of the homoclinic

connections is broken but the other is not.

In figure 7 and figure 8 we found the double-homoclinic points D1 and D2 as the

end points of the curve h1 as it accumulates on itself. However, we know from figure 9

that there must be a curve h̃1 of a second homoclinic orbit crossing at Di. In order to

find this new homoclinic orbit we split off the new homoclinic orbit from the data of

the approximate double-homoclinic orbit at Di (given as the end point of the curve h1).

We then follow this second codimension-one homoclinic orbit in the (K, ω)-plane.

The result is shown in figure 10. The point D2 is indeed the intersection point of

two curves of codimension-one homoclinic orbits. The new curve h̃1 also contains D1

and has two end points. One end point is the point D3 of a double-homoclinic orbit,

which lies on the curve h̃1 itself. The other end point is a point denoted by T1 that is

reached in a spiraling fashion, as is also sketched in the inset.

At the point T1 we encounter a bifurcation that is generally referred to as a T-point

bifurcation. This type of codimension-two heteroclinic cycle was studied in a general
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Figure 10. The (K, ω)-plane for α = 4.5 near the points D1, D2, D3, and T1 with

phase portraits as T1 is approached.
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Figure 11. Sketches of the phase portraits along the homoclinc bifurcation curve

approaching a T-point in the plane of two unfolding parameters µ1 and µ2.

system, that is, one without any symmetry, in Ref. [17, 18] in a tubular neighborhood

around the heteroclinic orbits at the T -point. Note that the T-point bifurcation is

often associated with vector fields that have the Z2-symmetry of a rotation by π around

an invariant axis. In this case, the heteroclinic cycle involves two saddle-foci, which

are each others images under the symmetry, and the origin (more generally, a point

in the invariant subspace of the symmetry), which is also a saddle-focus. This Z2-

symmetric T-point bifurcation was initially found and studied in the Lorenz system

[11], but also occurs in other systems with rotational symmetry, such as an optically

pumped three-level laser [12], an electronic oscillator [13], and a semiconductor laser

with phase-conjugate feedback [14]. It was recently also discovered in systems with the

Z2-symmetry of point-reflection [15, 16].

What we find is a general T-point bifurcation (that is, in a system without

symmetry) for the case that both saddles involved are saddle foci. The approach to

the point T is illustrated in figure 10 (a)-(e) with images of the 1-homoclinic orbit in

phase space at the indicated parameter points along the curve h̃1.

The situation (a part of the bifurcation diagram near a T-point) is sketched in

figure 11. As the point T is approached along h1, the homoclinic orbit approaches a

second saddle focus, passing closer and closer by the saddle. At the point T1 there

are two heteroclinic connections: a codimension-two heteroclinic connection (black)

where the one-dimensional unstable manifold of the first saddle coincides with the one-



Bifurcations of n-homoclinic orbits in optically injected lasers 19

dimensional stable manifold of the second saddle, and a generic (codimension-zero)

heteroclinic connection (gray), given as the intersection curve of the two-dimensional

stable manifold of the first saddle and the two-dimensional stable manifold of the second

saddle.

According to general theory [17, 18] there must exist a second spiraling curve of

homoclinic connection to the other (lower) saddle, leading to another curve in parameter

space that spirals into T1. Furthermore, it is known that there are many more curves of

n-homoclinic bifurcations, which pass close to the saddles an arbitrary number of times.

We did not attempt to find all these bifurcation curves, but instead concentrated on the

structure of 1-homoclinic bifurcation curves. Nevertheless, the injection laser appears

to be a good model in which to study global bifurcations near T-point bifurcations in

more detail.

The bifurcation diagram in figure 10 is still quite incomplete. The curve h̃1 of

homoclinic orbits also accumulates on itself at D3. So, as we did near the double-

homoclinic point D1, we find and follow the second codimension-one homoclinic that

must exist near D3. This gives the continuation of the curve h1 shown in figure 12,

which ends at the point D1. Furthermore, we followed from near T1 the codimension-one

homoclinic orbit of the (upper) saddle point to lower values of α (see already figure 13),

where we discovered a second T-point bifurcation T2. We then followed this T-point

back to α = 4.5. As can be seen in figure 12, the point T2 is the end point of two

spirals. In fact both spirals turn out to belong to one and the same closed curve h̃2 of

codimension-one two-homoclinic orbits as is illustrated by the sketch in the inset.

The bifurcation diagram in figure 12 is quite intricate: it involves several

double-homoclinic and T-point bifurcations. Unraveling it required detailed numerical

continuation with HomCont, guided by theoretical knowledge of which homoclinic orbits

are possible near the different codimension-two points. We finally remark, that figure 12

shows a ‘skeleton’ consisting of curves of 1-homoclinic bifurcations. Indeed the existence

of the T-points suggests that there are n-homoclinic orbits for arbitrary n.

6. Folds of codimension-two homoclinic bifurcation curves

We know from figure 2 that the complicated structure of codimension-two bifurcations in

figure 12 is not present for smaller values of α. The question arises of how it disappears.

It turns out that an important ingredient in this change of the bifurcation diagram

are minima (more generally, folds) with respect to α of certain curves of codimension-

two homoclinic bifurcations in the three-dimensional (K, ω, α)-space. This phenomenon

is of codimension three, where one codimension is due to the fold, which is the

basic singularity of a curve in the three-dimensional parameter space. The other two

codimensions are due to the special object in phase space, in this case a codimension-

two homoclinic bifurcation. One might speak of a codimension-two-plus-one event to

distinguish it from codimension-three bifurcations, where all codimensions are due to a

codimension-three object in phase space.
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Figure 12. The (K, ω)-plane for α = 4.5 near the points T1 and T2.

We already encountered this phenomenon in the creation and disappearance of

points of codimension-two saddle-node homoclinic bifurcation (see the folds with respect

to α in figure 3) and in the creation, with increasing α, of Belyakov points in the

tangency between the curves ns and h1 (see figure 5). In this section we consider two
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Figure 13. The (K, ω)-plane for α = 4.0 near the points T1 and T2 and the respective

phase portraits at T1 and T2.

other examples, namely a fold of a curve of T-point bifurcations and a fold of a curve

of double-homoclinic bifurcations. As we will see now, in both these examples the fold

of the codimension-two curve is accumulated by singularities of associated surfaces of

codimension-one global bifurcations.

We first consider the case of T-point bifurcations. Figure 14 shows what happens

to the points T1 and T2 as α is decreased. After the disappearance of the point D3,

the points T1 and T2 move closer and closer to each other. There are a number of

codimension-three events where the spiral around T1 touches that around T2. Each

such event leads to a new closed curve surrounding both T1 and T2 and the curve of

homoclinic orbits connecting T1 and T2, as in figure 14 (c). This process continues

until the points T1 and T2 finally coincide, leaving behind a number of closed concentric

curves of homoclinic orbits, as in figure 14 (d). These closed curves then disappear one

by one as α is decreased further. (We remark that this phenomenon has been found

independently in Ref. [15] in the Z2-symmetric Chua’s circuit with a cubic nonlinearity.)

Finding this transition numerically was quite a challenge because the curves involved

are no longer connected. We succeeded by starting from suitable points and continuing

the respective homoclinic orbit in α.

The individual changes in the structure of the curve h̃1 are due to a classical
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Figure 14. Dependence on α of the (K, ω)-plane near the points T1 and T1.

singularity, namely the passage trough an α-degenerate point. At such a point, the

tangent space to the h̃1 surface in (K, ω, α)-space does not have an α-component (the

derivative with respect to α is zero). There are two cases depending on the index of the

α-degenerate point, namely the transition trough a saddle and the transition through

an extremum. Both are sketched in figure 15. Note that these singularities are also

called the simple bifurcation and the isola bifurcation; see, for example, [72] for details.

This explanation in terms of singularity theory is a consequence of the geometry of

bifurcation surfaces and curves in (K, ω, α)-space. In fact, the whole sequence of events

of T1 and T2 coming together and disappearing can be nicely explained with the sketch

in figure 16 of how the surface h̃1 of homoclinic bifurcations spirals around the curve

T of T-point bifurcations. The curve of T-point bifurcations is a smooth curve with

a minimum with respect to α, and it is surrounded by a surface of codimension-one

homoclinic bifurcations that spirals towards this curve. The panels in figure 14 are
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Figure 15. The two codimension-one singularities as a two-dimensional cross section

(here parametrized by µ1 and µ2) moves through a two-dimensional surface in R
3 are

the transition through a saddle point (a) and through an extremum (b).

two-dimensional cross sections for fixed α through this surface. If α is large enough, the

curve T is intersected in two points T1 and T2 and the spiraling near these two points

must be clockwise and counter-clockwise, respectively. The intersection of the surface

with the section is a single curve for sufficiently large α. However, nearer the minimum

of the curve T the surface has α-degenerate points where its tangent space does not have

an α-component. Passing through each such point constitutes a basic codimension-one

singularity of the surface of homoclinic bifurcations as sketched in figure 15. More

precisely, above the minimum of the curve T there are infinitely many passages through

saddles, which accumulate on the minumum of the curve T . Globally, this creates the

closed concentric curves by connecting the respective homoclinic curves in a different

way. Below the minimum of T , on the other hand, each concentric circle disappears by

contracting to a single point, which is the passage through an extremum (with respect

to a parameter, in this case α) in a two-dimensional surface h̃1. We finally remark that

it would be quite a challenge to produce a numerical picture of the surface sketched in

figure 16.

Our second example is the merging and disappearance of the points D1 and D2 as

α is decreased from α = 4.5 to α = 4.0. Figure 17 shows four numerical bifurcation

diagrams in this transition. As the points D1 and D2 are moving closer together we again

encounter a passages through saddle points [see figure 15(a)]. This happens between

panels (a) and (b) of figure 17 and it leads to a change in how the curves h1 in the cross
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Figure 16. In the (K, ω, α)-space the curve of T -point bifurcation is surrounded by

a surface of homoclinic bifurcation h̃1 that spirals onto the T -curve; compare with

figure 14.

section in the (K, ω)-plane connect. After this event, a single curve h1 connects the two

pionts D1 and D2 (figure 17(b)). In a further passage through a saddle point the curve

h1 pinches off to create an isola, which is the situation shown in figure 17(c). In fact, the

isola is very close to the new connection between D1 and D2. Numerical continuation

suggests that more and more isolas are formed as D1 and D2 come closer together.

These isolas then disappear in passages through minima as sketched in figure 15(b).

Furthermore, α passes through the minimum of the D curve in the (K, ω, α)-space. As

a result, the curves h̃1 and h1 in figure 17(d) no longer intersect and the points D1 and

D2 have disappeared.

To clarify the situation, we sketch the transition leading to the disappearance of

D1 and D2 in figure 18. It can again be understood by the geometry of bifurcation

surfaces in (K, ω, α)-space, which in this case are organized around a minimum (with

respect to α) of the curve D of double-homoclinic bifurcations. Figure 18(a)–(c) and (f)

are topologically as the numerical bifurcation diagrams in figure 17(a)-(d), respectively.

We remark that it becomes more and more difficult to resolve numerically the different,

small and disjoint intersection curves of the surface h1 in (K, ω, α)-space. The sketches

in figure 18(d) and (e) are based on our numerical investigations, and indicate how the

transition appears to take place. However, the exact details, in particular, the order
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in which isolas are created and shrink to points and disappear is yet unknown. Our

continuation study suggests the basic ingredients of this transition and can reveal some

of the first steps in the specific transition at hand. This scenario agrees with what is

known about the (local) codimension-two bifurcation diagrams near a double-homoclinic

bifurcation as sketched in figure 9, but a complete study of this codimension-two-plus-

one phenomenon remains a challenge beyond the scope of this paper.

The fact that we encounter minima in curves T and D confirms the experience

from simulations and experiments that the dynamics and the bifurcation diagram of

the injected laser become more complicated as the linewidth enhancement factor α is

increased [28]. Indeed, when α is increased past these minima extra organizing centers,

T-points or double homoclinic bifurcation points, are born. These events are associated

with infinitely many transitions = through saddles and extrema in surfaces of global

bifurcations. Furthermore, general theory shows that the emerging T-points or double
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Figure 18. Sketch of how D1 and D2 come together and disappear when the section

(paramaterized my µ1 and µ2) passes through a fold of the associated curve D of

double-homoclinic orbits (compare with figure 17).

homoclinic bifurcation points are organizing centers that give rise to n-homoclinic orbits

for any n.

As a final example of the increase in the complexity with α we show in figure 19 the
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Figure 19. The (K, ω)-plane for α = 6.0 near the point G1 (compare with figure 2)

and the phase portraits at the codimension-two points D6 and D7.

bifurcation diagram in the (K, ω)-plane for α = 6.0 near the point G1. Notice that we

only show the different parts of the curve h1 of one-homoclinic orbits, which form what

is left from the left most homoclinic tooth near G1; compare with figure 2(f). Near the

points D1 and D2, that were already found for α = 4.5, we find two new points D4 and

D5; compare with figure 7. The different bifurcation curves are very close together, and

the inset shows a topological sketch of the bifurcation diagram. Notice further that two

extra double-homoclinic bifurcation points D6 and D7 have just been created. This is

another example of the passage through a minimum of a curve D of double-homoclinic

orbits; compare with figure 8.

Figure 19 shows that in the injected laser we are dealing with a type of cascade
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phenomenon: complicated bifurcation scenarios found for one tooth also occur for all

the other teeth when α is increased.

7. Conclusions

We presented a detailed study of the bifurcations of n-homoclinic orbits in the rate

equations describing a semiconductor laser with optical injection. The corresponding

curves of n-homoclinic bifurcations are organized in what we call homoclinic teeth —

experimentally accessible regions inside the locking region of the laser. The analysis of

the bifurcation diagram from a global viewpoint provided new insight into the nature

of global bifurcations and allowed to identify a cascade phenomenon where complicated

bifurcation scenarios repeat for subsequent homoclinic teeth.

The injection laser rate equations emerged as a concrete vector field in which

complicated global bifurcations can be found and studied. Specifically, we found in this

three-dimensional vector field (without any additional symmetries) T-point bifurcations

and double-homoclinic orbits. By making extensive use of continuation techniques

for homoclinic and heteroclinic orbits, it is possible to study these codimension-two

global bifurcations themselves, and also to find out how they organize the corresponding

bifurcation diagrams.

When changing a third parameter, we found a new phenomenon, namely

complicated transitions in two-parameter bifurcation diagrams that are due to folds (in

this case, minima) in codimension-two curves of global bifurcations. These ‘codimension-

two-plus-one events’ come with accumulations of singularity transitions through saddles

and extrema, which can be explained by the geometry of surfaces of global bifurcations

in a three-dimensional parameters space.

Our results raise a number of questions of bifurcation theory. Especially the detailed

study of the unfoldings of the ‘codimension-two-plus-one events’ remains a challenging

task.

From the physical point of view, we presented here how the regions in which one

may find multi-pulse excitability depend on the linewidth-enhancement factor α. Our

results confirm that the larger the linewidth enhancement fact α, the more complex

are the dynamics and bifurcations of an injected laser. Furthermore, we showed that

multi-pulse excitability can be found in lasers with α = 1.0 and even slightly below.

In light of the good agreement between theory and experiment of the injection laser

[60, 61, 62], this information may prove to be useful to experimentalists. Nevertheless,

an experimental verification of multi-pulse excitability is quite difficult and remains an

open challenge.
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