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ABSTRACT

This paper presents simulation results for the transmission of
unicast MAC frames over 802.11a/g. Fading channel models at
various Doppler spreads are developed to generate time-
correlated SNR waveforms. These are used in a bit accurate
MAC/PHY simulator to estimate frame loss rate, transmission
delay, jitter and throughput for a steady flow of transmit frames.
Time-correlated channels are required to correctly simulate the
bursty nature of packet loss in a wireless channel. The Doppler
spread is shown to have a strong effect on the performance of
802.11 ARQ at the MAC layer. Compared to the slow fading
case, in a fast fading channel fewer MAC layer retransmissions
are required and the end-to-end delay is significantly reduced.
Under poor channel conditions the simulated delay and frame
loss rate are seriously underestimated if time-uncorrelated
fading is assumed.

Index Terms—MAC, ARQ, QoS, WLAN IEEE 802.11

1. INTRODUCTION

IEEE 802.11 based WLANs are increasingly being used in
video surveillance and multimedia distribution networks. The
more recent 802.11a/g standard combines a COFDM physical
layer (PHY) with the legacy 802.11 medium access control
(MAC). For unicast transmissions, the MAC layer supports the
automatic retransmission of errored data frames using a stop-
and-wait ARQ mechanism. In the receiver, erroneous MAC
frames are dropped, and hence only error-free frames are
observed at the application layer. MAC frames that fail to be
acknowledged are resent up to a maximum retry count. When
the radio channel is characterized by a low signal to noise ratio
(SNR), high frame loss rate (FLR), delay and jitter is
encountered at the MAC layer. Delay and jitter occur as a
consequence of variable frame retransmission, and this degrades
applications that rely on timely packet reception [1].

The performance of the 802.11 protocol has been widely
studies in the literature [2]. However, as discussed in [3], most
studies are based on static channel models, where the PHY layer
packet error rate (PER) is independent of time. It is well known
that packet errors over a wireless medium are bursty in nature
[4]. The PER for consecutive packets is not independent, due to
the time-correlated characteristics of the mobile channel. In [5],
throughput estimation of an adaptive ARQ protocol was
presented over a time-varying channel based on multiple-state
Markov chains. This type of model is most suited to the
simulation of slow fading channels [5]. The impact of Doppler
spread on the packet loss and delay statistics for an 802.11
WLAN was investigated in [6] via experimental measurement.
In [7], the packet loss rate and delay was analysed using a Jakes
time-correlated Rayleigh fading simulator for various Doppler
frequencies. In [3] it was shown that frame delay and frame loss
are severely underestimated when the correlation of errors is not
taken into account.
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In this paper we study the cross-layer performance of the
IEEE 802.11a/g standard [8] by simulating MAC-to-MAC FLR,
frame delay and throughput for a time varying channel. This is
achieved by simulating the transmission of a time series of
queued MAC frames. The bursty nature of the packet error is
replicated by implementing an accurate time-correlated channel
model, based on the classic Jakes Power Spectral Density (PSD)
of the radio channel. This study focuses on the throughput and
frame delay resulting from poor channel conditions. The impact
of channel collisions (due to user contention) is ignored.

Section 2 provides a brief description of the MAC and
PHY layers relating to the IEEE 802.11a/g standard. Section 3
describes the fading channel model. Section 4 describes the
MAC/PHY frame simulator and section 5 analyses the results
obtained. Finally, section 6 provides a set of conclusions.

2. OVERVIEW OF IEEE 802.11a/g

Medium Access Control (MAC): The IEEE 802.11 MAC offers
multi-user support via a distributed co-ordination function
(DCF) and a Basic Access scheme based on the CSMA/CA
protocol. A detailed description of this mechanism is available
in the literature [2][3].

Once a PHY layer packet has been sent, for unicast
operation the station expects to receive an acknowledgement
(ACK). This process is described in [2], where the duration T,
of a successful transmission cycle, without any retransmissions,
is defined as:

Tmcc:DIFS+TBo +TData+SIFS+TACK (1)

Tpa represents the duration of the PHY burst and depends on
the packet length and the chosen link-speed. T3, represents the
back-oft period as described in [2]. 7ok represents the duration
required to receive an ACK for the MAC frame. If no ACK is
received within the ACKtimeout= SIFS period, the MAC frame
is scheduled for retransmission. Retransmissions continue until
an ACK is successfully received, or the maximum retry count
maxARQ is reached. MaxARQ is user defined, with typical
values in the range 0-32. This process is described in [3], where
the total duration of a successful transmission cycle is given by:

N
7= N*(DIFS + Tpoq + SIFS) + X T, + Tuex 2)

In equation (2) we assume that N retransmissions tare required
before an ACK is received and that N<=maxARQ.

Physical Layer (PHY): This paper assumes the use of the IEEE
802.11a/g PHY layers, which operate in the 5.1GHz and
2.4GHz bands respectively. 802.11a/g makes use of COFDM
and provides 8 unique link-speeds via different combinations of
modulation and coding [8]. MAC data frames are mapped to
PDU packets for transmission over the PHY layer. The PHY
layer simulator described in [9] supports correlated time-
varying channel gains for each tap in the channel impulse
response, as described in [3]. Hence, the instantaneous SNR
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varies with time (depending on the Doppler spread). Results are
presented here as a function of mean SNR, averaged over the
entire data transmission sequence, which may last for several
hundred seconds. This PHY layer model is used to evaluate the
outcome of each PDU packet transmission. A packet error is
said to occur at the PHY layer if an error is encountered during
the MAC layer frame check sum (FCS) process.

3. CHANNEL MODEL

In this paper a time-varying channel model is used to replicate
the time correlated nature of the instantaneous SNR observed at
the target station, as in [3]. Since the instantaneous channel
power varies slowly with time (compared to the packet
duration), the resulting packet errors at the PHY layer tend to be
bursty. This implies that the probability of receiving a packet in
error at the PHY layer is strongly correlated in time. Thus, it is
inappropriate to model this mechanism independently on a per
packet basis. The channel model replicates multipath fading as a
function of terminal velocity, carrier frequency and Doppler
spread. The fading model is based on a tapped delay line (TDL)
with each tap experiencing Rayleigh or Ricean fading. The
severity of the Ricean fading on each tap is controlled via a set
of K-factors. The spaced-time autocorrelation of the fading
envelope is controlled via the definition of a PSD for each delay
line. The autocorrelation is imposed onto a set of i.i.d. Rayleigh
samples using a Doppler filter [10]. For the results given here, a
single Rayleigh fading tap is used with a classical Jakes PSD.
Maximum Doppler frequencies of 4Hz, 24 Hz and 80Hz are
considered. The instantaneous signal power is simulated at the
receiver for a given time period. Given knowledge of the noise
floor and the average received power over the entire time
period, the level of signal attenuation required to model any
given average SNR level is computed.

4. DESCRIPTION OF SIMULATOR

The simulator used here is described in detail in [3]. It is
capable of predicting the MAC layer FLR and the time pattern
of these losses as a function of average SNR, K-factor, PSD,
link-speed and maxARQ. An end-to-end block diagram of the
simulator is shown in fig. 1. The simulator generates evenly
time-spaced data packets of equal (and user definable) length
assuming a Constant Bit Rate (CBR) video source. These data
packets arrive at the 802.11 MAC transmitter and are
encapsulated one by one into MAC frames. The MAC frames
are then passed through a buffer and ultimately encapsulated
into PDUs for transmission over the wireless medium. Each
transmit packet is either received successfully, in which case an
ACK is sent, or unsuccessfully. The information signal »(%), for
received packet %, is computed using equation (3) as the
convolution of the signal sent s(k) with the channel impulse
response at the time of transmission, /,(#;,), where » denotes the
retransmission number. For the &” packet and »” retransmission,
the channel sample time #;, is computed:

r(k) = s(k) * he(ty,) &)

The simulator computes the transmission delay of each
frame ¢ (7,;) using equation (2), together with the queuing time
spent in the MAC frame bufter prior to transmission. The FLR
is computed at the transmit MAC as the ratio of lost frames (i.e.
unacknowledged after retransmission up to maxARQ) to the
total number of unique transmit frames (i.e. retransmit frames
do not increment this counter).

If the channel coherence time is low (i.e. a fast changing
channel), the probability of error may improve significantly
after several retransmissions. For a slowly changing channel the

probability of error is unlikely to improve significantly over the
short retransmission period.

Transmitter Receiver
higher layers higher layers

O remes
Tx Buffer "Q‘i\
MAC MAC
frames q:l‘ A T A
c c rames
v K:HANNEL

Fig. 1 Time series MAC/PHY simulator block diagram

If the channel coherence time is low (i.e. a fast changing
channel), the probability of error may improve significantly
after several retransmissions. For a slowly changing channel the
probability of error is unlikely to improve significantly over the
short retransmission period.

In this analysis, we assume an infinite transmit buffer. In
order to quantitatively assess the impact of time-correlated
channel modelling on the 802.11a/g performance, we simulate
two cases of packet transmission and retransmission: a) time-
correlated, as described above and b) time uncorrelated. In the
latter case the packet errors are independent of time.

5. RESULTS AND ANALYSIS

For the following results, MAC frames are generated at a
constant rate of 1 Mbps. The mean SNR was varied over the
range 2-25dB. The maxARQ limit was also adjusted [0, 4 and
16]. Each of the 8 PHY layer link-speeds was modelled. A time-
varying channel response was generated for a period of 250
seconds. The maximum Doppler frequency was varied from
4Hz, 24Hz and 80Hz (corresponding to mobile speeds of
0.5m/s, 3m/s and 10m/s at 2.4GHz). The frame length was
fixed. Results are presented for simulations using link-speed 3
and frame lengths of 800 bytes. 1500 frames were transmit over
a duration of approximately 10 seconds.

Fig. 2a shows the FLR at the MAC layer versus average
SNR, with and without ARQ, for time-correlated transmissions
based on the three Doppler frequencies quoted earlier. It can be
seen that the FLR improves with increasing ARQ. For a given
maxARQ, the improvement in FLR is better for higher Doppler
frequencies. When no ARQ is applied the channel performance
is similar across all Doppler values. However, for maxARQ =4
and 16, the 80Hz channel clearly generates the lowest FLR.
This occurs since ARQs are more effective at reducing the FLR
when the channel decorrelates more rapidly with time. This
result agrees with [7]. By comparison, when packet
transmissions are uncorrelated in time, fig. 2b shows there is no
difference in FLR with Doppler.

In fig. 3 the log of the Probability Distribution Function
(PDF) for the total frame delay is shown for time-correlated
transmissions for all three Doppler frequencies. It can be seen
that the total MAC-to-MAC delay increases significantly as the
maximum Doppler shift decreases, and this agrees well with
results reported in [6][7]. A peak delay of around 12ms was
observed for a maximum 80Hz Doppler shift, while delays
reached 85ms for a maximum 4Hz Doppler shift. This increase
in the perceived delay occurs since the number of required
ARQs is lower in channels with higher Doppler spreads. This
arises since the probability of significant channel improvement
is much higher for a given number of ARQ in a fast changing
channel. From the delay statistics reported in [3] for
uncorrelated fading channel we conclude that the total delay
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reported here for correlated channels is much higher (for the
same set of parameters). We also note that for uncorrelated
channels there is no performance difference as a function of
Doppler frequency.
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Fig. 2 a-b MAC FLR vs. SNR, all Doppler freq. - maxAR0=0,4,16
for a) correlated and b) uncorrelated transmissions

Figs 4a and 4b show the transmission delay of packets
received correctly (given in equation (2) i.e. not including
queuing delay), averaged over a time window of 33ms, plotted
over the duration of 1500 packets for a time-correlated channel
with mean SNR=10dB and for maximum Doppler shifts of
24Hz and 80Hz respectively. The variance of delay is greater
when maxARQ is high and the channel decorrelates slowly, e.g.
for the lower Doppler shift. This results in a jitter problem and
requires a jitter bufter prior to the video decoder. For a Doppler
shift of 80Hz the variance is small. Transmission delays are set
to -10ms if no correct packets were received during that time
window. At 1Mbps around five 800-byte frames arrive at the
MAC transmitter during the 33ms time window.

The time pattern of FLR at the receiving MAC layer is
shown in fig. 5. Instantaneous FLR is computed for every time
window as the ratio of lost frames to the total number of frames
transmitted in the particular time window. The FLR fluctuates
greatly in time when maxARQ=0, according to the
instantaneous channel SNR. For maxARQ=16 we see that
packets are rarely lost (although jitter and throughput become a
problem). FLR is set to -0.2 for time windows where no
received frames were observed at the MAC layer. It is clear that
there are periods when the channel is so bad that a single frame
transmission is repeated up to maxARQ and still fails to be
delivered. This delays all the following frames in the transmit
MAC queue. This is particularly obvious for maxARQ=16.
Comparing fig. 5 with the transmission delay results of fig. 4a
(obtained for the same simulation parameters) we can see that
transmission delay builds up around the same periods as high
FLR.

Using the total MAC-to-MAC delay, we compute the
percentage of frames that are delayed by more than 100ms,
since this is a typical upper limit for real-time video
transmission [1]. Excessively delayed frames beyond this value
are ignored at the video decoder and are thus treated similarly to
lost frames. We can compute the effective FLR for the real-time
video decoder as the ratio of the sum of lost frames at the MAC
layer and excessively delayed frames to the total number of
unique transmit frames. Figs 6a and b show the percentage of

effective dropped frames versus mean SNR in a time correlated
channel, computed for all three Doppler frequencies and for
maxARQ= 4 and 16. We observe that for the same maxARQ, the
effective dropped frame rate decreases with increasing Doppler.
The lowest percentages were obtained for the 80Hz channel,
particularly for high maxARQ values, as explained in [3]. At
low average SNR values we also observed that the percentage
of effective dropped packets can increase with increasing
maxARQ. This leads to the conclusion that there is a trade-off
between excessively delayed frames and frame loss as the
number of ARQs increases and the mean SNR is low.

To study the relationship between throughput and
transmission delay we compute the number of bytes transmitted
correctly over the total transmission time (not including queuing
time) for each time window. We call this ratio the “transmission
efticiency”, which is a measure similar to throughput.
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Fig. 3 Log(PDF) of total frame delay when maxARQ=16, for
Doppler shifts 4, 24, 80Hz, mean SNR=15dB
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Fig. 8 Mean throughput vs. SNR, maxARQ=0,4,16, Doppler 24Hz

Figs 7a and b show the transmission efficiency averaged in
time versus mean channel SNR, for maxARQ=0, 4, 16 for the
24Hz and 80Hz channels. We observe that transmission
efficiency increases for higher maxARQ only when SNR is high
and for the 80Hz channel. When the channel is poor, however,
efficiency is higher by about 40% if no ARQs are applied, for
both Doppler shifts. This occurs since the transmission time per
packet is low without ARQ. Therefore, the FLR improvement
with ARQ comes at the cost of throughput (and also jitter).

Fig. 8 shows the mean throughput, averaged in time,
versus the mean channel SNR, for maxARQ=0, 4, 16, for a
24Hz channel. Instantaneous throughput is calculated as the
ratio of correctly received bytes divided by the calculation
window period (33ms in this case). The mean throughput is
computed over the transmission of 1500 packets for a correlated
channel.
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Fig. 9 Log(PDF) of error burst length for time correlated
transmissions. MaxARQ=4, mean SNR=5dB

Fig. 9 shows the log(PDF) of the error burst length for
maxARQ=4 and a mean SNR of 5dB. The error burst length is

defined as the number of consecutive frames dropped at the
receiver. The error burst length decreases significantly with
increasing channel Doppler shift. A similar trend is seen for
different maxARQ values. These results agree well with those
previously reported in [7].

6. CONCLUSIONS

The reduction in FLR that normally accompanies an increase in
maxARQ is often associated with an unacceptable increase in
delay and jitter for video applications. In order to accurately
model frame loss rate, error bursts, delay and throughput in an
802.11a/g system it is vital to use a spaced-time correlated
channel model, which includes the impact of Doppler spread on
the ARQ mechanism in the MAC layer. Furthermore, the error
burst length depends on the Doppler spread and these will have
a significant impact on the performance of error resilient video
schemes. For a slow fading time-correlated channel it is shown
that the total delay is significantly higher than that estimated
from a simple uncorrelated fading channel. When ARQ is used,
the percentage of packets delayed beyond 100ms increases for
low Doppler spreads and the improvement in FLR occurs at the
cost of throughput. A trade-off between delay and FLR can be
achieved by adjusting the maxAR(Q parameter. For a given
video application, it is possible to determine the best maxARQ
value for any given Doppler frequency and mean channel SNR.
Future work will explore the impact of error bursts, frame loss
rate and delay on the 802.11a/g performance of error resilient
video codecs for a range of Doppler spreads.
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