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Motivation
Cognitive Radio

• Paradigm in wireless spectrum access, where secondary users 

(SUs) can access the spectrum of primary users (PUs).

• Interference from cognitive users, observed by primary system 

should be below a defined threshold.

• Efficient algorithms/systems are required that can improve the link 

quality of SUs while not violating constraints imposed by PUs.



Motivation

Cognitive MIMO can ...

• Improve link quality of cognitive users

• Mitigate/reduce interference to primary users, e.g., 
through beamforming techniques

However,...

• Requires full channel knowledge of both primary and 
secondary links

• High hardware and computational complexity 



Motivation

• Cognitive MIMO techniques are impractical for rapidly 

changing environments

• Antenna Selection

 Only subset of antenna used for transmission/reception.

 Does not require full channel state information (CSI)

 More readily deployed and retains many of the benefits of 

MIMO systems

• Per-subcarrier antenna selection can exploit frequency as 

well as spatial diversity



System Model
• Downlink multiuser MISO OFDMA-based cognitive network 

considered

• Total interference power constraint imposed by primary 

system

 K SUs, 1 PU

 N subcarriers

 M tx antennas, 1 rx antenna at each SU



Problem Formulation

• By performing a per-subcarrier antenna selection, i.e., 

every subcarrier is assigned a single transmit antenna

• Rapidly changing cognitive environments impose low-

complexity algorithm

Objective: Improve secondary links quality, 

while limiting interference



Problem Formulation

• Decision variables are integer in nature

• In general, integer programs are NP-hard problems

• Except when constraint matrix is totally unimodular, in which 

case, a linear relaxation of the problem is optimal

Linear relaxation is optimal  Low-complexity solutions



Problem Formulation

The concepts of unimodularity and total unimodularity are related 

to the determinants of the (sub-) matrices that define the 

polyhedron.

We used this theorem in our work on antenna selection.

• For total unimodularity, entries in the constraint matrix can only 

take values 0 or 1

Total unimodularity  polyhedron is integral



Problem Formulation

• Thus, interference constraint not included to avoid increasing the 

complexity 

• where     

• is the channel gain between the secondary transmitter and 

primary receiver on the nth subcarrier from the mth antenna

• is the transmit power on the nth subcarrier

• is the received interference power limit   

• Instead constraint included in the objective function
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Problem Formulation: 

Constraints
• Selection Variable

• Exclusive use of subcarrier/antenna pair to one SU

• Minimum number of subcarriers to assign to each user
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Problem Formulation

• Problem Formulated as

• where                               is a function of the channel gain matrix 

between the SU tx –SU rx,      ,channel gain matrix between SU 

tx – PU rx,    , and the decision variables, 
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Choice of Objective Functions
Two possibilities to trade-off interference to PU and sum 

channel gain of SUs

• Ratio of channel gains

• Weighted difference of channel gains

where          is the SU-SU channel gains and     is the weight 

variable
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Simulation Results

• N=128 subcarriers

• K=4 SUs

• Interference power 

constraint = 40 units

• Observations:
• Low probability of 

exceeding interference 

constraint

• Ratio of channel gains 

offers less control

ccdf of interference to PU

Resource allocation in [11] explicitly includes IPC in formulation – NP-hard



Simulation Results
Ccdf of sum channel gains of SU
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RA method of [11]

Proposed alloc. with M=3, =0

Proposed alloc. with M=3, =0.3

Proposed alloc. with M=4, =0

Proposed alloc. with M=4, =0.3

• N=128 subcarriers

• K=4 Sus

• Interference power 

constraint = 40 units



Simulation Results

Interference to PU for different    
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• N=128 subcarriers

• K=4 Sus

• Interference power 

constraint = 40 units



Summary

• Antenna selection provides a good trade-off between 

benefits of cognitive MIMO and hardware/computational 

complexity

• Proposed algorithm can be solved using linear programs, 

leading to low complexity solutions

• Weighted difference of channel gains provides more control 

through parameter 
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Simulation Results

• N=128 subcarriers

• K=4 SUs

• Interference power 

constraint = 40 units

Sum Channel gains of SUs



Simulation Results

• N=128 subcarriers

• K=4 SUs

• Interference power 

constraint = 40 units

BER Analysis for Different delta



What is Integer Optimization?
Integer optimisationLinear optimisation



Totally Unimodular Matrices

 Definition: A matrix is totally unimodular if all its square 

submatrices have determinant +/-1 or 0.

 Theorem: If C is totally unimodular and u is an integer 

vector, the integer optimisation problem is solved by linear 

relaxation

 Corollary: The constrained antenna selection problem can 

be solved by linear relaxation, which means simpler 

solutions


