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Abstract

We report results from a series of studies coevolving players for simple Rock–Paper–Scissors games. These

results demonstrate that “Current Individual versus Ancestral Opponent” (CIAO) plots, which have been pro-

posed as a visualization technique for detecting both coevolutionary progress and coevolutionary cycling, suffer

from ambiguity with respect to an important but rarely discussed class of cyclic behavior. While regular cycling

manifests itself as a characteristic banded plot, irregular cycling produces an irregular tartan pattern which is also

consistent with random drift through strategy space. Although this tartan pattern is often reported in the literature

on coevolutionary algorithms, it has received little attention or analysis. Here we argue that irregular cycling will

tend to be more prevalent than regular cycling, and that it corresponds to a class of coevolutionary scenario that is

important both theoretically and in practice. As such, it isdesirable that we improve our ability to distinguish its

occurrence from that of random drift, and other forms of coevolutionary dynamic.



1 Introduction

The majority of adaptive systems on this planet are biological, and as a result share several characteristics. Fore-

most among these is that they are all a product of natural evolutionary processes. More specifically, since popu-

lations of adaptive systems have not tended to evolve in isolation, the selective pressures responsible for shaping

them have been significantly influenced by the presence and behavior of the other organisms in their environment:

competitors, predators, prey, offspring, mates, etc. Hence it is coevolution, rather than evolution per se, that is

responsible for adaptive behavior.

In an effort to either engineer artificial adaptive systems or better understand natural systems, adaptive be-

havior researchers have employedcoevolutionaryalgorithms as design tools and simulation models. However,

while this research remains promising, it has raised several problematic issues. Perhaps the most pressing of these

concerns our ability to understand the dynamics of coevolutionary systems (e.g., Watson & Pollack, 2001).

In particular, there are inherent difficulties associated with detecting coevolutionary progress. Often, it is

virtually impossible for an observer to know whether populations are improving over time. A short-term im-

provement in fitness, relative to contemporary competitors, does not necessarily lead to long-term improvement

in some objective sense, since it is possible for coevolutionary systems to cycle: coevolving populations may

follow a repeating sequence of adaptive transitions.

For instance, consider coevolving two populations of players for the simple parlor game Rock–Paper–Scissors

(RPS). In each bout of the game, two players simultaneously choose one of the three possible moves (Rock, Paper,

Scissors), the winner being decided according to an intransitive superiority relationship (Rock blunts Scissors,

Scissors cuts Paper, Paper covers Rock—draws are shared). Although the global optimum for either player is to

play each move with equal probability, any deviation from this strategy on the part of either population encourages

a complementary counter-deviation.

If one population is biased in favor of playing Paper, for example, the other will benefit from playing Scissors

more often than one third of the time. As the frequency with which Scissors is played increases, the first population

is under selection pressure to increase the frequency with which its members play Rock. In response, the opponent

population will tend to favor Paper. In this way, while both populations are continually favoring offspring better

able to compete against their current opponents, in the longer term, the populations are continually and repetitively

cycling through a sequence of globally sub-optimal strategies as they seek to exploit the temporary biases of

their opponents. Consequently there is no objective improvement—one cannot guarantee that an individual will

outperform its ancestors.

In standard evolutionary algorithms, because the fitness ofan individual is measured against a static function,

continual progress can be detected as an improvement in fitness over time. However, this is not true of coevolu-

tionary systems, where an individual’s fitness is measuredrelativeto its contemporary opponents. When this type

of relative fitness measure is plotted against time, individuals from different generations are being compared using

a metric which is itself varying unpredictably over time, since the opponents against which they were assessed

will not, in general, have been the same. These considerations suggest that such plots are not merely “difficult

to interpret”, but are effectively meaningless. Unfortunately, this ensures that detecting the occurrence of cycling

in either natural or artificial systems is problematic, since an external observer cannot determine, on the basis of

relative fitness measures, whether a coevolutionary systemis progressing, cycling, or drifting randomly.

In an attempt to circumvent this problem, Cliff and Miller (1995) proposed the “Current Individual versus

Ancestral Opponent” (CIAO) plot as a visualization tool fordetecting coevolutionary progress. At the conclusion

of a coevolutionary run, CIAO plots can be constructed by pitting the elite (i.e., best-scoring) individual from

every generation against the elite opponent from each ancestral generation and plotting the results as shaded cells

in a matrix. In this way individuals are directly assessed against the ancestors of their opponents. If, over many

generations, most individuals can beat their ancestral opponents, the matrix will exhibit a consistent gradation in

shading from dark cells at the origin to light cells at the leading edge. This pattern suggests that there has been



continual progress over the course of coevolution, since individuals from later generations are outperforming their

ancestors. By contrast, coevolutionary cycling manifestsitself as a diagonal “banded” pattern (see section 2).

In coevolutionary research, CIAO plots are a widely accepted problem-independent visualization technique

with few alternatives. However, in the studies reported here we explore whether they are as easy to interpret as has

previously been implied. We demonstrate that CIAO plots canbe misleading even in the simple coevolutionary

domain of Rock–Paper–Scissors. We show that coevolutionary cycling can fail to produce a characteristic banded

CIAO plot, resulting instead in a “tartan” pattern. This class of CIAO plot is commonly reported but has received

little attention. Here we establish that tartan-like CIAO plots can result from cyclic coevolution that isirregular,

or even random drift. We argue that CIAO plots are thus vulnerable to ambiguity and that, as a result, their use

should be accompanied by more problem-specific analysis.

2 The Red Queen & CIAO Plots

Appearing in Lewis Carroll’sThrough The Looking Glass, the Red Queen must continually run in order to main-

tain her position. No matter how fast she moves, the surrounding landscape always keeps up with her.

van Valen (1973) made an analogy between the Red Queen and biological coevolution after discovering a

surprising trend concerning the probability of species extinction. After analyzing huge data sets collected across

a wide range of biological taxa, van Valen (1973) noticed that, counter to intuition, “all groups for which data

exist go extinct at a rate that is constant for a given group”.Assuming that species evolve in a relatively static

environment, one would expect beneficial adaptations to accumulate over evolutionary time, enabling progressive

generations to be better equipped at defending against extinction. To explain his findings, van Valen proposed a

new evolutionary law of extinction, with the Red Queen Hypothesis as its central tenet: “biotic forces provide the

basis for self-driving . . . perpetual motion of the effective environment”. Any beneficial adaptation by a particular

species is inevitably detrimental to other species inhabiting the same effective environment. Coevolutionary forces

will, in turn, select for specific counter-adaptations in these species. In this way, adaptive advantage is continually

eroded. In Red Queen fashion, species continually struggleto maintain their relative fitness.

One might expect Red Queen dynamics to drive a run-away process of continual counter-adaptation—a co-

evolutionaryarms race. Such arms races are considered a profound force driving evolutionary adaptation in the

natural world, and have sometimes been characterized as a source of strong selection for novel adaptations capable

of accelerating evolutionary progress (Dawkins & Krebs, 1979).

In order to take advantage of arms-race dynamics, the field ofevolutionary computation has seized upon

coevolution as an attractive alternative to standard evolutionary optimization. Living up to expectation, artificial

coevolution has had success in several domains (e.g., Hillis, 1990; Juillé, 1995; Pollack, Blair, & Land, 1996; Pol-

lack & Blair, 1998). However, as an optimization technique,coevolutionary search suffers from the relative nature

of fitness assessment—coevolutionary systems can be difficult to drive in a consistent, objectively “progressive”

direction.

There are several ways in which an arms race can unfold. One side may “win” the race, discovering an

adaptation to which there is no available counter-adaptation. If coevolution is within a species, evolutionary

stasis may be reached, but during between-species coevolution the disadvantaged species may be driven extinct.

Alternatively, one population may temporarily win by “outstripping” the other to such an extent that the opponents

are no longer discriminated by selection: whilst a counter-adaptation may exist, it has yet to be discovered.

Termed “coevolutionary disengagement” (and discussed further in section 4.2), this type of outcome has been

studied elsewhere (Watson & Pollack, 2001; Cartlidge & Bullock, 2002; Cartlidge & Bullock, to appear). Finally,

an arms race may cycle, as populations follow repeated trajectories through strategy space, discovering strategies

that enjoy only a temporary advantage over their opponents.From the perspective of coevolutionary optimization,

cyclic coevolution has gained the most attention. Since these cyclic trajectories waste computational resources,



it would be useful to detect (and ultimately prevent) their occurrence; or, at least, to realize that the optimization

problem as-stated has a possibly unanticipated set of unstable equilibria with no escape trajectory.

In general, one would like to know how coevolution is progressing. Has there been steady and continuous

improvement, or transient bursts of progress amidst long periods of stasis? Is the system cycling, and, if it is, are

the cycles regular? Frustratingly, the Red Queen renders standard approaches to answering these questions (by

plotting individual fitness as it changes over time) obsolete.

Consider a predator-prey arms race. As predatorsimproveover evolutionary time, one might expect them

to catch more prey. The prey, however, are improving too. “There is no general reason to expect the average

success of animals at out-running or out-wittingcontemporaryenemies, victims, prey or competitors, to improve

over evolutionary time” (Dawkins & Krebs, 1979, our italics). This is a direct consequence of the Red Queen.

An improvement in any one species is countered by each coevolving species, resulting in a deterioration of the

effective environment (van Valen, 1973).

However, one might expect a progressive coevolutionary arms race to result in an advantage for modern

predators and prey over theirancestraladversaries. In nature, it is difficult to perceive how a competition across

evolutionary time may arise, without the use of cloning or time-travel. Yet, in simulation it is quite feasible to

carry out such ancestral opponent competitions. Cliff and Miller developed this technique during a series of papers

in which they attempted to coevolve pursuer and evader strategies in continuous-time neural-network controllers

(Miller & Cliff, 1994a, 1994b; Cliff & Miller, 1995, 1996).

Once a coevolutionary run has terminated, ancestral opponent contests (competitions against ancestral op-

ponents) are carried out between the highest scoring individual of each generation: the “elite”. The elite of

population A (the A-elite) is pitted against the elite of population B (the B-elite) in a series of contests. For each

generationg of coevolution, the A-elite(g) competes with the B-elite of the current, and each ancestral, generation.

Hence, A-elite(5) plays B-elite(5), B-elite(4),: : :, B-elite(0). The resulting scores of each contest are normalized

and converted into gray-scale values and plotted on a 2-dimensional grid: the greater the victory in favor of the

A-elite, the heavier the shading of the relevant matrix cell(see figure 1, adapted from Cliff & Miller, 1995).

Along with the invention of CIAO plots, Cliff and Miller lefta lasting legacy—the idealized plot. Idealized

CIAO plots demonstrate the patterns that they predicted onewould find, given either perfect continual coevo-

lutionary progress, or perfect coevolutionary cycling. Example schematics are shown in figure 2. Continuous

progress appears as continuous diagonalgradationfrom dark to light across the plot. Each individual beats its

ancestral opponents—the earlier the ancestor, the greaterthe victory. In contrast, coevolutionary cycling produces

diagonalbanding. Whilst recent ancestral opponents are easily beaten, elite opponents from a few generations

earlier have the upper hand. As the contests span increasingperiods of evolutionary time, competitive advantage

repeatedly transfers between novel and ancestral populations—the system is cycling.

Since Cliff and Miller (1995) first introduced CIAO plots forpursuit and evasion, they have become widely

accepted as a standard tool for visualizing coevolutionaryprogress. As such, CIAO plots have received extensive

use in the fields of evolutionary robotics, (Floreano & Nolfi,1997a, 1997b; Nolfi & Floreano, 1998; Stanley &

Miikkulainen, 2002), the games of Go (Lubberts & Miikkulainen, 2001), 3-D Tic-Tac-Toe and Nim, (Rosin &

Belew, 1997), and in the coevolution of string generators and predictors (Ficici & Pollack, 1998).

However, the results obtained in these relatively complex domains rarely resemble the idealized plots of

Cliff and Miller. Even discounting noise, real CIAO plot visualizations are often qualitatively different from the

ideal schematics. Many CIAO plots exhibit a tartan pattern—a patchwork of unpredictable lines and rectangles

across the plot (figure 3 presents a hypothetical example). Of 22 plots found in the literature, 10 are tartan in

nature, 8 show progress (smooth gradation) and 4 show no progress (a largely homogeneous plot). There are no

examples of regular banding. In a tartan plot, blocks of uniform shade represent periods of stasis bounded by

adaptive innovations. Consider Rock–Paper–Scissors, forexample: if the elites in both populations play Rock

from generation 50 onwards, until population A’s elite adopts Paper at generation 55, and the B-elite adopts



Scissors at generation 60, then the resulting CIAO plot willdisplay a gray rectangle with sides5�10 generations,

cornered(50; 50).
Tartan CIAO plots have sometimes been interpreted as supporting evidence for cycling (Floreano & Nolfi,

1997a, 1997b; Nolfi & Floreano, 1998). The principle reason appears to be that, unlike the idealized progressive

CIAO plot, there is little correlation between gray-scale value and time. It is difficult to imagine how a jumble

of dramatic jumps between winning and losing can occur across evolutionary time in a continuously progressing

coevolutionary system. How such a pattern relates to cycling, however, appears unclear. As we shall demonstrate,

although tartan plots of this kind are consistent with coevolutionary change that is cyclic but irregular, it is dan-

gerous to infer irregular cycling from them uncritically. In the following section we demonstrate that tartan plots

are, in fact, ambiguous with respect to showing irregular cycling and/or random drift.

3 Rock–Paper–Scissors

In this section we explore coevolution (and resulting CIAO plots) in a simple domain specifically chosen to exhibit

cyclic coevolutionary trajectories. To better understandthe underlying coevolutionary dynamics, several different

visualizations are presented. However, whilst each individually offers insight into the underlying coevolutionary

dynamics, one cannot interpret them with confidence until information from the whole suite is considered. This

is particularly true if some are ambiguous.

3.1 Study 1: A Simple Encoding

In this baseline study the inherent intransitivity of the Rock–Paper–Scissors (RPS) game, in combination with

the smooth fitness landscape resulting from a simple geneticencoding, produces regular coevolutionary cycling.

The visualizations that reflect this include CIAO plots thatclosely resemble the idealized banded plot (figure 2).

For the most part this section introduces fairly straightforward results and visualizations which are intended to

contrast with the more complex results from the subsequent studies.

For the simple encoding, each genome consists of three positive integers that sum to 100. Each integer repre-

sents the probability of choosing one of the three game moves, Rock (R), Paper (P), or Scissors (S). For example,

genomef50; 0; 50g represents an individual that chooses to play Rock and Scissors with equal likelihood, but will

never play Paper. Genomef33; 33; 34g represents a near-optimal individual that plays each move randomly with

almost equal probability.

During reproduction, mutation occurs with probability 0.1per locus. A mutated gene is incremented by an in-

teger drawn at random from the uniform distribution[�30 : : : 30℄. Following mutation, the genome isnormalized

to once again sum to 100.

Two reproductively isolated (initially randomized) populations, each containing 20 RPS players, are coevolved

for 256 generations. Each generation, every individual is pitted against every member of the opponent popula-

tion. Each game consists of 10 bouts, with each individual choosing R, P, or S probabilistically on the basis of

their genes. Throughout a generation, an individual accumulates a score from its 200 competitions. Individuals

reproduce asexually, with tournaments biasing selection in favor of high-scoring individuals. The winner of each

randomly assembled 5-member tournament is chosen to reproduce.

3.1.1 Feature Detection

To assist the detection of features within the CIAO plots reported in this paper, a three stage processing of the

raw images is employed. The method chosen (described below)is generalizable and easy to implement. Further,

Marr (1982) has suggested that it may have biological implications as a model for the very first stages of visual

processing. For further details, one should refer to Marr (1982, chapter 2).



1. Gaussian Blur: A 2-dimensional Gaussian filter (radiusr) is initially applied to the image; effectively

removing structures smaller than the standard deviation ofthe Gaussian distribution. As it is smooth and

omnidirectional, a Gaussian distribution is appropriate for blurring as it is unlikely to introduce structure

that was not present in the original image.

2. Laplacian of Gaussian (LoG):The Laplacian (r2) is an isotropic second-order differential operator that

can be used to detect intensity changes in a blurred image, asseen at the scale of the particular Gaussian

employed (determined by the standard deviation�). The Laplacian operator is used to locate the zero-

crossings of an image—changes from dark to light, or light todark—thus generating a contour map.

In mathematical notation, the blur of an image functionI(x; y) with a Gaussian functionG is denoted byG � I , read as “G convolved withI”. The Laplacian of this is denotedr2(G � I) = (r2G) � I , read as

“the Laplacian of Gaussian (LoG) convolved withI”.

3. Binarize: Finally, the direction of each zero-crossing is highlighted by “binarizing” the image. Areas with

negative values are colored black whilst areas with positive values are left white.

Whilst stages 1 and 2 of the feature detection process naturally combine into one operation, throughout this

paper they will be performed independently. This enables the result of blurring to be viewed before zero-crossings

are detected. Throughout,r and� values are chosen through trial and error: values are reduced to detect smaller

features, for larger features they are increased.

3.1.2 Results

Throughout this section, all data is the result of one representative coevolutionary run. Figure 4 displays four

CIAO plots. From left to right, plot 1 displays the raw data set, with subsequent CIAO plots presenting the same

data after each stage of the image processing routine described in section 3.1.1. In plot 1, regular patterns and

possible diagonal banding are discernable, potentially indicating regular coevolutionary cycling. After blurring the

image with a large Gaussian of radius 20 pixels, small features are removed and diagonal banding becomes more

pronounced (plot 2). A contour map is produced using a Laplacian of Gaussian (LoG) with standard deviation

8 pixels: diagonal banding is clear (plot 3). Plot 4 shows theresult of binarizing the contour map in order to

highlight the direction of any zero-crossings. The regularity and clarity of diagonal banding in the fully processed

plot is striking. A comparison with the idealized banded CIAO plot of figure 2 allows plot 4 to be easily classified

as demonstrating coevolutionary cycling with regular period: the feature detection routine has clearly enhanced

the interpretability of the original CIAO plot data.

However, to have confidence in the nature of cycling, furthervisualizations were constructed. For this pur-

pose, an “event plot” is used to highlight each occurrence ofspecific events during coevolution: evidence for (or

against) cycling is generated by the resulting sequence of events. Assuming events are chosen adequately, regular

cycling should manifest as a repeated sequence of events with fixed period. The event plot of figure 5 records the

occurrence of events associated with the play of the best scoring individual of each population: the A-elite and B-

elite. The plot is marked for each generation in which the A-elite playsP , or the B-elite playsR, with probabilityp > 0:66. Figure 5 clearly shows a repeated sequence. As expected, once B-elites regularly play Rock, A-elites

quickly evolve to play Paper. After approximately 40 generations, the system completes a full cycle with B-elites

once again predominantly playing Rock. The coevolutionarysystem appears to be following a cyclic trajectory

with regular period. In general, if mutation rateor selection pressure (in the form of tournament size) increases,

the cycle period decreases.

In figure 6, the elite (i.e., best-scoring) and average (the mean of all individuals) strategy of each population

are depicted for a representative period of evolutionary time. The vertical axis represents the probability of

playing each of the three possible moves. One full cycle takes place during the 45 generations depicted. At



generation 120, the elite member of population B (bottom-left) always plays Paper (genotypef0; 100; 0g). Within

5 generations, Scissors dominates the elite strategy in population A (top-left). As a counter-adaptation, population

B converges on Rock, which in turn drives the elite of population A to play Paper with 90% probability (genotypef10; 90; 0g) by generation 140. This completes a half-cycle. Scissors becomes dominant for population B elites

around generation 150, followed by Rock for population A, and finally the cycle is completed around generation

165 as the elite strategy of population B returns to Paper (genotypef3; 91; 6g). The mean population strategies

(right) lag their elite counterparts slightly, but demonstrate the same trend. Notice that each population is able to

counter-adapt to its opponents in a smooth, regular manner.

In summary, study 1 has (predictably) demonstrated that simple regular cycling can manifest itself on CIAO

plots as cyclic banding, closely resembling the idealized banded CIAO plot in figure 2. In conjunction, it has also

been demonstrated that greater insight into cyclic coevolutionary behavior can be obtained through the additional

use of alternative, perhaps problem-specific, visualizations. In the following section, the complexity of the genetic

encoding is increased to demonstrate that, whilst cycling may persist, the ease with which it is visualized is

considerably reduced.

3.2 Study 2: A Complex Encoding

In this study a more complex genetic encoding scheme is employed. Although the strategic structure of the

RPS game remains unchanged, by increasing the complexity ofthe strategies available to players, more com-

plex courses of coevolutionary adaptation are available. It is intended that this new encoding will influence the

system’s coevolutionary dynamics, ensuring that the search for counter-adaptations more closely resembles that

experienced in more realistic models of coevolutionary competition.

Here, genomes code for a deterministic finite state machine (FSM). Example genomes are presented in fig-

ure 7. The start node defines the choice of play during the firstbout of a contest. In figure 7, both individuals

initially play Scissors. From each node there are exactly three out-edges (which may be self-connecting), with

each transition representing an opponent’s move. In figure 7, since both individuals begin by playing Scissors,

each follows the state transitionS. A returns to the start node (0) and continues to play Scissors whilstB transfers

to a new node (1) with state Paper. In the second bout of the game,A’s Scissors beatsB’s Paper.A follows theP transition associated withB’s play and once again returns to stateS (node 0). In response toA’s Scissors,B
follows theS transition to a new node (2) with state Rock.B is victorious in bout three, as Rock beats Scissors.A moves to stateP (node 1) andB remains at stateR (node 2). Figure 7 details the full results of a five-bout

contest.

Each node contains a unique integer identifier, a play state,three in-edges and three out-edges, each associated

with an opponent’s play and each connecting to a legal node. Both populations are initialized with random, self-

connected, single-node FSMs. During reproduction, three mutation operators are employed (described below).

Node Mutation: With probability 0.03 per genome, a node is either added or removed. Any edges previously

connected to a removed node become self-connections. FSMs were constrained to have between one and

one hundred nodes. In practice, however, FSMs rarely grew above 10 nodes.

State Mutation: With probability 0.02 per node, a node state is mutated to oneof the other two states, chosen at

random.

Edge Mutation: With probability 0.02 per edge, edges are mutated by randomly changing either of the nodes to

which the edge connects.

Note that the deterministic FSM encoding employed in this study (and study 3) does not allow individuals to

reach the global optimum (available in study 1) of playing each move randomly with equal probability, irrespective

of opponent play: to achieve this a non-deterministic FSM encoding is necessary. However, since we are not



interested here in a direct comparison between the results of studies 1, 2, and 3, this is not problematic. What we

are interested in is the impact of regular and irregular cycling on CIAO plot data. As we will see, the deterministic

encoding is a good choice in this respect.

Two reproductively isolated (initially randomized) populations, each containing 25 RPS players, are coevolved

for 256 generations. Each generation, every individual is pitted against every member of the opponent popula-

tion. Each game consists of 10 bouts, with each individual choosing R, P, or S deterministically on the basis of

their genes. Throughout a generation, an individual accumulates a score from its 250 competitions. Individuals

reproduce asexually, with tournament selection biasing selection in favor of high-scoring individuals. The winner

of each randomly-assembled 3-member tournament is chosen to reproduce.

3.2.1 Results

Throughout this section, all data is the result of one representative coevolutionary run. Figure 8 displays four

CIAO plots. From left to right, plot 1 displays the raw data set, whilst subsequent CIAO plots display the same

data after each stage of the image processing routine described in section 3.1.1. Plot 1 (far left) presents a tartan

pattern qualitatively similar to the schematic shown in figure 3: irregular blocks of uniform shading indicate

periods of competitive stasis separated by rapid transitions in competitive advantage. Plot 1 resembles CIAO

plots obtained from more complex (practical) problem domains (e.g., Floreano & Nolfi, 1997a, 1997b). The

patchwork effect suggests a lack of progress and may imply cycling. However, the image is difficult to interpret

with confidence.

After carrying out the same image-processing process employed in study 1, the plot displays some vertical

banding and one diagonal band to the right of the image, but remains difficult to interpret. Whilst the vertical

banding may be a result of bias in the original CIAO plot design—adaptive mutations will necessarily appear as

banding on the horizontal (if A-elite) or vertical (if B-elite)—the black diagonal band to the right of the plot is

potentially interesting. Perhaps the diagonal reflects a competitive advantage enjoyed by each population over its

immediate ancestral opponents, or even regular cycling that can be observed over short evolutionary time scales,

but that is lost over longer periods. Alternatively, perhaps the diagonal is an artifactual edge-effect of the CIAO

plot: a result of the dark plot meeting a white background. Ineither case, whilst the processed plot has highlighted

some potentially interesting structures, ideal banding isnot exhibited. Considering the intransitive dominance re-

lationships inherent within the RPS domain, however, one might suspect cycling to be taking place (particularly

when the genetic encoding does not allow global stability tobe reached). To investigate the underlying coevolu-

tionary dynamics, further analysis is necessary.

The simplicity of the RPS domain enables us to gain insights into its coevolutionary dynamics by direct

observation of genotypes and phenotypes as populations change over generations. At the beginning of a run,

when each player’s FSM has only one node, all strategies are simple. Each player repeatedly chooses the same

play irrespective of its opponent’s behavior. Over evolutionary time, more complex strategies arise. These multi-

node FSMs change state in response to an opponent’s play. However, as more time passes, simple strategies,

such as “always play Scissors”, again begin to dominate. This process often repeats several times throughout a

coevolutionary run.

For a coevolutionary system to be described as cycling, it must repeatedly enter the same or similar states in

the same or similar order. Regular cycling repeats with fixedperiod, irregular cycling does not. Either class may

fail to enterexactlythe same set of states during each cycle, or maintainexactlythe same ordering over these

states during each cycle. However, each is clearly distinguishable from random drift. Whilst a randomly drifting

system may return to previous states over evolutionary time, unless there is a heavy bias influencing the “random”

walk (perhaps due to some bias within the genetic encoding orgenetic operators, e.g., Bullock, 1999, 2001), the

trajectory of change is unpredictable. Any useful method for detecting coevolutionary cycling should be able to

distinguish cases of regular or irregular cycling from stochastic repetition that may arise due to random drift. As



we will show, when used in isolation, this is something CIAO plots struggle to do.

Choosing suitable visualizations for complex problems is often challenging. The space of variable length

FSMs is difficult to represent graphically. In order to re-apply some of the graphing techniques used for the

simple encoding scheme, some extra work is necessary.

FSM networks can be re-described simply using three probabilities: the likelihood of playing each of the three

possible moves. Since each FSM is a directed graph, anm-bout contest against an opponent can be described

by a path of lengthm through the graph. By traversing each of the3m possiblem-length paths through the

network—the equivalent of playing every possible game—theeffectiveprobability of a network playing each of

the three possible moves can be determined. Since these probabilities are comparable to the three probabilities

encoded in the simple genomes of study one, they can be plotted in a similar fashion. However, whilst the effective

probabilities of FSMs are comparable to the probabilities of study 1, they are not equivalent: deterministic FSMs

do not behave probabilistically but are sensitive to opponent play.

Figure 9 shows an event plot for study 2. The plot is marked foreach generation in which the A-elite plays P,

or the B-elite plays R, with effective probabilityp > 0:66. The system repeatedly moves through the same states

in a similar sequence. “B-elite plays Rock” is always followed by “A-elite plays Paper”. However, on 2 out of 8

occasions, the system enters “A-elite plays Paper” withoutpassing through “B-elite plays Rock”. The repeating

event plot sequence provides some evidence for irregular cycling: if cycling is occurring, it is not as regular as

that exhibited in figure 5.

Cycling can be directly observed by plotting the effective probabilities of each population’s elite and mean

strategies during a particular (representative) coevolutionary period (see figure 10). Whilst it is not perfectly

predictable, sequential cycling can be observed between generations 22-57. The B-elites (bottom-left) and B-

means (bottom-right) complete one cycle with the expected sequence SPRS. In response, the A-elites (top-left)

and A-means (top-right) also complete one cycle, but with the less predictable sequence RSRP. However, the

“unexpected” shift from S to R (rather than directly to P) at generation 49 can be explained by considering

the system as a whole at generation 48. With every individualin population A playing S (top-right) and every

individual in population B playing R (bottom-right), the system is disengaged in generation 48: every member of

population B is beating every member of population A. At thispoint, a novel mutation ofeitherPaperor Rock is

beneficial to population A: whilst Paper gives victory, Rockallows a draw. Thus, the move from Scissors to Rock

is a direct result of disengagement and is not entirely “unexpected” (for a further discussion of disengagement,

refer to section 4.2).

Comparing the graphs of elite strategies with those of the population mean strategies in figure 10 shows that

each population exhibits several variable-length periodsof strategic stasis. Typically, during these periods, the

majority of population A (top) are being beaten by the majority of population B (bottom). Unlike in figure 6,

population A appears unable to easily discover counter-adaptations to the successful adaptations of population

B. This is a result of the deterministic FSM encoding and the limitations of the associated mutation operators.

A desired mutation may be difficult to achieve. The initial 57generations of study 2 are shown in the expanded

CIAO plot of figure 11. The rapid changes in strategy depictedin figure 10 clearly reflect the internal structure

of the CIAO plot. The patchwork nature appears because the FSM mutation operators tend to produce either no

change in player strategy, or very rapid changes in behavior.

The different nature of the coevolutionary dynamics generated in study 2 most likely result from the rugged-

ness and/or neutrality introduced into the fitness landscape by the more complex genetic encoding scheme and

associated genetic operators. Single mutations, such as “remove node”, can result in large changes in player be-

havior. By contrast, it can often be difficult to make a small change to a player’s behavior (e.g., increasing the

tendency to follow Rock with Paper) without altering several parts of the FSM, which requires several separate

mutation events. The simple genetic encoding scheme and associated mutation operator of study 1 ensured that

single mutations tended to have modest phenotypic impact, yet most phenotypes were only a few mutations apart.



In general, for any population in study 2 some parts of strategy space will be less attainable than others to a

larger degree than was the case in study 1. The resulting CIAOplot is difficult to interpret. However, alternative

visualizations have shown that cycling is occurring, but that it is irregular.

3.3 Study 3: Random Drift

Do banded and tartan CIAO plots directly imply regular and irregular cycling, respectively? Can other coevolu-

tionary trajectories lead to banded or tartan CIAO plots? Inparticular, what kind of CIAO plot is generated by

the kind of walk through strategy space produced by random drift? As previously discussed, random drift can

generate trajectories that revisit earlier states despitebeing non-cyclic. Can this kind of repetition be distinguished

from regular behavior using CIAO plots?

Random drift is simulated for the same complex encoding scheme and mutation operators employed in study 2

(256 generations with 25 individuals in each population). Evolutionary selection pressures are removed, allowing

each individual an equal chance of reproduction irrespective of ability. Individuals reproduce asexually and at

random, irrespective of score. Figure 12 displays four CIAOplots resulting from typical random drift. From left

to right, plot 1 displays the raw data set, whilst subsequentCIAO plots display the same data after each stage of

the image processing routine described in section 3.1.1. Plot 1 (far left) presents a patchwork pattern of a tartan

nature, but less regular than that shown in figure 8. The irregular blocks of shading suggest a lack of progress,

but may imply cycling of some sort. The plot is difficult to interpret with confidence. After image processing,

the binarized plot (far right) displays no diagonal banding. The most prominent features are the horizontal bands

across the center of the image. It is likely that these bands are an artifact of the underlying grid structure of the

raw plot, similar to the horizontal banding seen in the binarized plot of study 2 (figure 8). The most significant

difference between the binarized plots of study 2 and 3 is thediagonal band to the right of figure 8 that is missing in

figure 12. The binarized plot of random drift shows no sign of cycling (diagonal banding) even in the short term.

However, whilst the processed plots highlight this feature, they still remain difficult to interpret. Can irregular

cycling and random drift be correctly classified on this basis alone?

Figure 13 shows an event plot for the random drift of study 3. Once again, the plot is marked for each

generation in which the A-elite plays P, or the B-elite playsR, with effective probabilityp > 0:66. Unlike

the event plot of study 2 (figure 9), random drift shows no obvious sequence repetition. Events occur without

regularity. The event plot strongly suggests that the system is not cycling.

Figure 14 displays the effective probabilities of each population’s elite strategies during a particular (repre-

sentative) period. The state transitions of each population’s elites appears random, suggesting that neither cycles.

Further, there is no obvious correlation between the two populations: knowing the state of one population does

not improve our ability to predict the state of the opponent population. Thus, both populations varyindependently

and at random: it isnot the case that one population changes randomly, with the other adapting to it in a regular

way.

Random drift allows populations to return to previously evolved strategies, but not systematically—the system

is notcycling. Despite this, random drift produces a CIAO plot with a tartan nature, not dissimilar to that produced

by the irregular cycling of study 2. While we have not quantitatively measured the differences between the CIAO

plots generated in studies 1, 2, and 3, the very fact that we might have to rely upon some such measure applied

to CIAO plots in order to discover what they have to tell us about coevolutionary dynamics is disappointing.

To anybody using CIAO plots as their only method of coevolutionary visualization, the results reported here

are unfortunate. Not only can coevolutionary cycling result in tartan, rather than banded, plots, but these tartan

patterns can also occur in the absence of any cycling at all. If used alone, CIAO plots are potentially ambiguous.



4 The Nature of Cycling

By highlighting the prevalence of cycling in natural systems, this section demonstrates that cycling, in general, is

a ubiquitous phenomenon of great importance to the study of adaptive behavior: cycling isnot confined to “toy”

artificial coevolutionary systems, such as those studied above. More specifically, this section considers the likely

prevalence ofirregular (as opposed toregular) cycling. Using the previous RPS studies as evidence, particular

attention is given to coevolutionary systems.

4.1 Cycling in Nature

Ever since coevolution emerged as an independent discipline in the 1970s, cyclic coevolutionary trajectories have

been anticipated (see Maynard Smith, 1982; Futuyma & Slatkin, 1983). Dawkins and Krebs (1979) suggest

that (in asymmetric systems) cycling may be common bothbetweenandwithin species. They illustrate this by

highlighting the genetic model of parent-offspring conflict postulated by Parker and Macnair (1979) and Parker

(1979). A dominant “conflictor” gene causes offspring to demand more investment than the parental optimum.

This is countered by the spread of a “suppressor” gene in parents which causes them to invest equally in offspring,

irrespective of demand. Assuming that the conflictor behavior has a cost, then the direction of selection on children

is reversed once suppressor genes are frequent amongst parents: non-conflictor genes spread and the cycle starts

again.

Dawkins and Krebs (1979) also present an example in the context of predator-prey coevolution. Each indi-

vidual pays a cost of size: predators pay the cost of growing big enough to swallow prey and prey pay the cost

of growing big enough to prevent being swallowed. Hence, there ensues a coevolutionary race as each species’

body size grows until their upper limit is reached; the size at which cost outweighs reward. Given the “life-dinner

principle”,1 prey are likely to invest more in getting bigger (and thus have a higher limit) than predators, which

are equally likely to divert scarce resources towards otheradaptations (sexual attractiveness, for example). The

side that can afford to pay the highest cost will do so; at which point selection will favor a rapid reduction in the

cost paid by the other side. Any return to the start state may result (after some possibly unpredictable period of

time) in a repeated bout of escalation. Maynard Smith (1996)describes such cycles as “sawtooth” oscillations and

suggests that they can occur in general when a variable, suchas size, can vary continuously with no ESS: hence,

size may increase gradually until a threshold is reached, when the population can be invaded by much smaller

individuals.

Sawtooth oscillations have been observed inAnolis lizard populations of the Caribbean islands (Roughgarden,

1983). The insects on whichAnolis lizards feed have food value proportionate to their size (the bigger the

better, as long as they can be swallowed), and abundance inversely proportional to size (smaller insects are more

common). A relationship between lizard size and insect sizeexists such that larger lizards on average take larger

prey. On all islands inhabited by only one species, lizards have an equilibrium “solitary size” of approximately

50mm length in females and 60mm length in males. Where two species exist, however, one population is generally

much larger than the solitary size whilst the other isalwayssmaller. Where two species compete, it is assumed that

the larger species exerts a stronger pressure on the smallerspecies thanvice versa: large lizards take more food

away; disputes over territory favor large lizards. To fit this data, Roughgarden (1983) proposed the “coevolution-

invasion turnover hypothesis”, suggesting that through a series of invasions and extinctions, the lizard populations

cycle in body length (see figure 15, adapted from Roughgarden, 1983). On islands containing only one species,

lizard lengths approximate the optimum solitary size; because of the asymmetry in competition, only a larger

species can invade (figure 15.A). After invasion, the species coevolve as competitors. The resident’s body size

reduces to avoid competition from the invader; an example ofcharacter displacement. The invader’s body size

1The life-dinner principle states that coevolving species may be subject to asymmetric evolutionary pressures. For instance, consider foxes
and rabbits: “The rabbit runs faster than the fox, because the rabbit is running for his life while the fox is only running for his dinner” (Dawkins
& Krebs, 1979, after Aesop).



also reduces to take advantage of the greater resources leftby the retreating residents (figure 15.B). Finally, the

resident species is driven to extinction by competitive exclusion. The invaders approach the optimum solitary size

and the system has completed one full cycle (figure 15.C).

Since the example of theAnolis lizards requires species replacement (an intraspecific cycle of the same nature

would require invasion by an implausibly large mutant), Maynard Smith (1996) suggests that the first example

of a population cycle arising from intraspecific interactions is that reported relatively recently in side-blotched

lizards (Sinervo & Lively, 1996). Side-blotched lizards exhibit three alternative male mating strategies, each

associated with a distinctive phenotypic trait: blue-throated males mate-guard females and are territorial; yellow-

throated “sneaker” males are non-territorial and roam about freely, looking to copulate with the females of others;

and aggressive orange-throated males are polygynous and maintain large territories. Whilst blue-throated lizards

avoid cuckoldry by yellow-throated sneakers, they are easily overpowered by orange-throated males, which cosire

offspring with their females. Yellow-throated males are able to sire offspring via secretive copulations with the

females of orange-throated males and often share paternityof offspring within a female’s clutch (Zamudio &

Sinervo, 2000). Sinervo and Lively (1996) showed that the frequencies of the three male morphs were found to

oscillate over a six year period.

The fitnesses of each morph relative to other morphs were non-transitive in that each morph could

invade another morph when rare, but was itself invadable by another morph when common. Con-

cordance between frequency-dependent selection and the among-year changes in morph fitnesses

suggest that male interactions drive a dynamic ‘rock-paper-scissors’ game (Sinervo & Lively, 1996).

Using quantitative measures of the reproductive success ofmales adopting each strategy, Zamudio and Sinervo

(2000) confirmed that the morphs were indeed playing RPS. Therelative fitness of each strategy during dyadic

interactions confirmed this.

Intransitive RPS dynamics have also been observed in populations of the bacteriaEscherichia coli(Kerr,

Riley, Feldman, & Bohannan, 2002). Colicinogenic bacteria(C) possess a ‘col’ plasmid, a toxin that kills colicin-

sensitive (S) bacteria. A third strain (R) is resistant to the colicinogenic bacteria. In some cases, the growth rate

of R cells will exceed that of C cells, but be less than the growth rate of S cells.

In such cases, S can displace R (because S has a growth-rate advantage), R can displace C (because R

has a growth-rate advantage) and C can displace S (because C kills S). That is, the C-S-R community

satisfies a rock-paper-scissors relationship (Kerr et al.,2002).

Confirming the predictions of their simulation model, empirical observations ofE. coli (constrained to local

interactions in a petri dish) demonstrated the cyclical coexistence of all three strains, with R outperforming C, C

outperforming S and (a suggestion of) S chasing R across the plate.

Using the public goods game (applicable to theoretical biology), cycling has also been demonstrated in exper-

imental economics; both in theory (Hauert, De Monte, Hofbauer, & Sigmund, 2002) and in practice (Semmann,

Krambeck, & Millinski, 2003).

Semmann et al. (2003) demonstrate that voluntary participation in the game can lead to cooperation amongst

sizable groups; despite anonymity, random assortment and non-repetition of interactions. Three strategies exist

within a population: defectors (D) and cooperators (C), both willing to engage in the public goods game and

speculate on the success of a joint enterprise; and low-riskloners (L) who choose to reject participation and settle

for a small, but guaranteed, return. From time to time, groups of individuals are offered the choice to compete in

a public goods game; loners will always refuse.

In every group, defectors outperform cooperators, but if all cooperate, they are better off than if all defect.

Whilst it is better to be a loner than in a group of defectors, it is better still to be in a group of cooperators. Hence,

in a well-mixed population, strategies display a RPS cycle.If most play C, then it is better to play D, but if most

play D, then it is better to play L. However, if most play L, then small groups can form, increasing the chance of



mutual cooperation. Thus, C dominates if group size is small, D dominates if group size is large, and the option

to be a loner preserves a balance between the two options: thesystem cycles (Hauert et al., 2002). An empirical

study involving 280 students playing a 57-round strategy game confirmed these results (Semmann et al., 2003).

4.2 Irregular Cycling

The three RPS studies of section 3 demonstrated that although one particular kind of coevolutionary cycling is

easily detected using CIAO plots, a second class of cyclic behavior is much harder to detect without resorting

to alternative visualizations. Whilst CIAO plotscan give valuable insights into coevolutionary dynamics, they

should preferably be used amongst a suite of techniques in order to enhance their interpretability.

In general, these results contribute to a growing realization that our understanding of coevolutionary dynamics

in artificial systems is far from complete. More specifically, their significance hinges, to some extent, on how

important irregular coevolutionary cycling turns out to be. Here we argue that there are good reasons to suppose

that this class of dynamic will be more frequently encountered than regular cycling, and that for many kinds of

interesting system, when these irregular dynamics are exhibited, they will often be of both theoretical and practical

significance.

First, as evidenced by the different results of studies 1 and2, as search problems become increasingly com-

plex, their search spaces are increasingly structured by the genetic encodings and genetic operators employed, in

addition to the strategic advantages of different phenotypes. This ensures that some (perhaps most) adaptations

will only be discovered after a period of evolutionary exploration. The stochastic nature of this exploration cou-

pled with the rugged and/or neutral structure of the search space ensures that the time that this takes is variable.

Under such conditions, if a coevolving system finds itself cycling, and hence repeatedly rediscovering the same

or similar adaptations in the same or similar order, there isno guarantee that the period of coevolutionary cycling

will be constant—indeed it is likely not to be. For these reasons, regular cycling should be regarded as a rarely

attainable special case of the more general class of irregular cycling. Perhaps unsurprisingly, of the 22 CIAO

plots found in the literature, none display regular cycling(Cliff & Miller, 1995; Floreano & Nolfi, 1997a, 1997b;

Rosin & Belew, 1997; Ficici & Pollack, 1998; Nolfi & Floreano,1998; Lubberts & Miikkulainen, 2001; Stanley

& Miikkulainen, 2002).

Second, many coevolutionary phenomena currently of interest to adaptive behavior researchers are character-

ized by irregular cycling. Neutrality and disengagement are each discussed below.

Search-space neutrality occurs when many genotypes share the same fitness, perhaps as a result of redundancy

in the genetic encoding. A neutral set contains all the genotypes that achieve a particular fitness score, while a

neutral network comprises evolutionarily adjacent members of a neutral set. It has been argued that the presence

of neutral networks may have profound consequences for the dynamics of evolutionary search. For instance,

the neutrality exhibited by natural RNA search spaces has been demonstrated to be of a potentially useful kind,

allowing more efficient search (Huynen, Stadler, & Fontana,1996). More generally, neutrality of the right kind

is thought to reduce the chance of premature convergence (Harvey & Thompson, 1996; Barnett, 1998). However,

since evolving populations tend to drift at random across neutral networks (but see Bullock, 2002, for analysis of

the biases that this drift is subject to) it is difficult to predict how long a population will spend on each one. If a

coevolutionary system cycles through a repeated sequence of neutral networks each population will spend some

time drifting across each neutral network, before transitioning to the next. As such, although a particular sequence

of phenotypes may be generated over evolutionary time, thisrepetition is unlikely to exhibit a constant period.

Coevolutionary disengagement occurs in a competitive coevolutionary system when one populationoutper-

formsthe other to the extent that different individuals are not discriminated from their contemporaries in fitness

terms, i.e., floor or ceiling effects (Watson & Pollack, 2001; Cartlidge & Bullock, 2002; Cartlidge & Bullock, to

appear). For instance, in the coevolution of pursuit and evasion, disengagement could occur if evaders discover a

simple hiding strategy that defeats all contemporary opponent pursuers—each hiding evader would score 100%,



while all opponent pursuers would score 0%, despite variation in their strategies. When disengagement occurs,

selective pressure disappears, leaving populations free to drift until such time as populations happen to re-engage.

Re-engagement takes place when mutant strategies arise that achieve distinctive fitness scores (e.g., a pursuer

able to discover hidden evaders, or an evader unable to hide successfully). The time taken for such mutants to

arise via neutral drift, and hence the duration of disengagement, is variable for the reasons described above. As

a result, a cycling coevolutionary system suffering from disengagement is also likely to cycle with non-fixed pe-

riod. In short, irregular cycling is likely to be evolutionarily typical because useful evolutionary innovations and

counter-innovations are not typically discovered at a constant rate.

The data collected during study 2 exhibits these variable periods of coevolutionary disengagement and neutral

drift (in coevolutionary systems the two concepts are closely related). At generation 23, for example, figure 10

shows the elite strategy in population one plays Rock, whilst the elite strategy of population two plays Paper. In

contrast with the immediate and smooth coevolutionary responses reported for study 1, it is not until generation

37 that the elite strategy of population one discovers the Scissors counter-adaptation. The intervening period is

one in which the populations have disengaged, and are drifting across neutral networks of equivalent strategies.

Disengagement can be directly observed in figure 16, where mean fitness (left) and fitness variance (right) in

both populations is plotted over time. During generations 28-26 and 44-49, fitness diversity is very low and

occasionally falls to zero (right): here population B is easily outperforming population A (left).

In the following section, CIAO plots are used (for the first time, as far as the authors are aware) to analyze

simulation data from a biological model: a replication of the Rock–Paper–ScissorsE. coli experiments of Kerr

et al. (2002, refer to section 4.1). It is demonstrated that CIAO plots, whilst specifically developed for evolutionary

computation, may benefit evolutionary biology (and the modeling of adaptive behavior more generally).

5 Study 4: A Simulation of E. coli

Rock–Paper–Scissors cycling has been demonstrated inE. coli populations (Kerr et al., 2002). However, practical

problems forced experiments on real bacteria to end after short time periods. To collect more “data” (and gain

a better understanding of the coevolutionary dynamics) Kerr et al. (2002) ran a simulation. This was shown to

behave realistically and suggested that RPS dynamics characterized the system. However, it is our belief that more

effective visualization techniques could have afforded greater insight into the underlying dynamics. To test this,

the simulation of Kerr et al. (2002) is replicated in this section. The resulting data is then investigated using the

visualizations discussed in this paper (CIAO plots, event plots and probability graphs). The reason for this is two

fold: firstly, the lessons learned in previous studies can beapplied to a biological system; secondly, this is a proof

by example that techniques designed for evolutionary computing can have relevance in evolutionary biology.

5.1 Replication

Three strains ofE. coli exist on a (toroidal) lattice grid of1002 cells. At the start of each run, each cell is initialized

at random (equal probability) to one of four states: occupied by C, S, R, or “empty”. Cells are asynchronously

updated. A focal cell,, is randomly chosen and updated probabilistically based upon local interactions (the

relative states of the 8 nearest neighboring cells). If is empty a bacteria of straini 2 fC; S;Rg is chosen to

occupy the cell. The probability of choosingi is given byfi, the fraction of the local neighborhood occupied by

each strain. If is occupied, the bacteria is killed with probability�i. Throughout the simulation,�C and�R
are fixed. However,�S varies withfC (the fraction of neighboringC cells) such that�S = �S;0 + �fC , where�S;0 is the probability of death for S cells with no neighboring C cells, and� is the toxicity of C cells.

To set up a Rock–Paper–Scissors intransitivity, it is necessary for�S;0 < �R < �C < �S;0 + � , which

ensures S displaces R, R displaces C, and C (if sufficiently dense) displaces S. Following Kerr et al. (2002), the



following parameter values were chosen:�C = 13 ; �S;0 = 14 ; �R = 1032 ; and� = 34 .

An “epoch” is defined as the mean turnover time across all cells. In the1002 lattice used here, an epoch occurs

every104 updates. We consider each epoch to be 1 timestep. TheE. coli simulation was run for 5000 timesteps.

5.2 Results

Adopting the visualization scheme employed by Kerr et al. (2002), figure 17 shows four instantaneous “snapshots”

taken of the simulation at timesteps (from left to right) 1000, 1200, 1400, and 1600. The state of each cell in the

lattice is denoted by its color. Whilst empty cells are white, those occupied by C, R, or S strains are colored light

gray, dark gray, and black, respectively. It is possible to observe areas of black replaced by light gray, light gray

by dark gray, and dark gray by black. The bacteria are following the relationship S>R>C>S (analogous to RPS).

Between timesteps 1000-1600, one full cycle takes place: the system returns to a similar state.

These results qualitatively map those of Kerr et al. (2002) who showed the same succession sequence both

in simulation and in real bacteria populations. Whilst the continued coexistence of all three strains and the

S>R>C>S relationship are adequately demonstrated, the visualizations are not wholly satisfying. One cannot

determine the nature of cycling from a series of snapshots.

To further visualize theE. coli data, the local density of each strain was recorded for one5 � 5 portion of

the lattice. Since the three strains coexist without large fluctuations in global density, plotting CIAO plots for the

entire lattice is uninformative. Due to the Rock–Paper–Scissors intransitivity ofE. coli strains, each local density

can be considered equivalent to the probability of playing aparticular move in RPS. For example, equal densities

of each strainfCol = 33 13 , Resistant= 33 13 , Sensitive= 33 13g is equivalent to the optimum RPS strategy of

playing each move with equal probability, whilst a neighborhood containing only Resistant bacteriaf0; 100; 0g
is equivalent to the strategy “always play Paper”. Figure 18shows four CIAO plots of theE. coli simulation.

The CIAO plot data is calculated by comparing the local density at each timestep against the local density at each

previous timestep. To reduce the size of the CIAO plot, data is sampled every 50 timesteps (hence the plot is 100

pixels wide and deep). Each density comparison is evaluatedas the expected result in a Rock–Paper–Scissors

contest: results in favor of the later timestep (y axis) are dark. For example, if local densityD1 = f100; 0; 0g
is compared with thelater local densityD2 = f50; 50; 0g, the expected result will be 0.75 in favor ofD2; thus

giving pixel (D1; D2) a gray value 75% of maximum darkness.

From left to right, the CIAO plots display the raw data, Gaussian blur, zero-crossings, and fully processed

image. The raw data plot (far left) exhibits both diagonal banding and tartan structures. The binarized image (far

right) is much easier to interpret. The clear diagonal banding suggests that the system is exhibiting fairly regular

cycling in this region of the lattice. The vertical “fault” line down the center of the plot is an artifact of sampling:

without sampling this feature does not exist. However, unsampled CIAO plots are too large to appear here.

The event plot of figure 19 highlights the points (sampled at a50-timestep resolution) at which the local

density of strain R, or strain C, exceeds 66%. The sequence “Resistance follows Col toxic” occurs regularly

enough to again suggest fairly regular cycling in this region of the lattice.

Finally, figure 20 displays the local density of each strain over the first 1000 timesteps (plotted at a 50-timestep

resolution). Regular cycling is clear.

In summary, a suite of visualization techniques, including(for the first time) CIAO plots, have enabled us to

explore the nature of the cycling suggested in the initial system snapshots of a biological model. In particular, we

have been able to confirm the regularity of cycling and determine the period of this cycling. The image processing

techniques introduced in section 3.1.1 have been very useful in achieving this.

Given the discussion in section 4.2 of reasons why we would not expect regular cycling to be exhibited par-

ticularly often by coevolutionary systems, why is it that our model ofE. coli coevolution generates such regular,

periodic behavior? There are two candidate explanations. First, theE. coli simulation employs a very simple

representation of the space of possible strategies. Even the simple RPS system analyzed in study 1 employed



a discrete three-dimensional space of1003 possible strategies, whereas theE. coli system implements what is

basically a simple set containing three strategies. There is no equivalent of the genotype space employed in our

previous studies.

However, even if theE. coli model involved a more complex treatment of genotype space, coevolutionary cy-

cles could remain regular, since the three bacterial morphsare typically always present in the evolving population.

While the strategy being played in each cell of the 100�100 world varies over time, the global frequency of each

strategy remains non-zero and roughly constant.

The update rules for the model ensure that if, for instance, all S individuals were to die, this strategy could

never re-enter the population—only strategies that are already present may reproduce and spread to unoccupied

cells since the model includes no analogue of mutation. Since, for the particular parameter values reported here,

all three possible strategies are ever present, the system never spends time searching genotype space for adapta-

tions and counter-adaptations; they are already present somewhere in the population. The cycling evident in the

population time-series data reflects the time taken for a strategy to “migrate” across the grid, exploiting inferior

competitors. At the relatively high population densities employed in the model, this leads to regular, periodic

waves of succession.

The game-theoretic Evolutionarily Stable Strategy modelsof evolutionary dynamics typically employed in

theoretical biology (Maynard Smith, 1982) also have no explicit representation of genotype space or mutation. In

effect, such models assume that every possible strategy is always present at some non-zero (but perhaps infinites-

imal) frequency within the population. All that varies in such models are the rates of reproduction enjoyed by

these strategies. This ensures that the factors here identified as responsible for the irregular period of coevolution-

ary cycling (disengagement, neutrality, etc.) are not typically considered. The very different nature of the finite

(co)evolving populations simulated in the adaptive behavior literature offers an important opportunity to explore

these factors.

6 Conclusions

Cycling occurs in many adaptive systems. Mutational stochasticity, neutrality, disengagement, and rugged fitness

landscapes each contribute to the irregularity of these cycles. As a result, irregular cycling may characterize the

adaptive behavior of many unstable coevolutionary systemsand may contribute to the failure of coevolutionary

optimization. Detecting and characterizing this type of dynamic is difficult within modeling paradigms that priv-

ilege stable states (e.g., evolutionary game theory). As a result, coevolutionary adaptive behavior simulation and

visualization are good candidates for improving our understanding of these types of irregular cycling.

We have demonstrated that CIAO plots, a widely accepted toolfor visualizing coevolutionary progress, are

difficult to interpret with respect to irregular coevolutionary cycling. Further, we claim that there are reasons to

believe that irregular coevolutionary cycling is a common and significant category of coevolutionary dynamics.

Hence, CIAO plots should preferably be used in conjunction with other visualizations: problem-specific analysis

methods can usefully complement CIAO plots and can aid in their interpretation.

Finally, we have applied CIAO plots to biological simulation data, affording valuable insights into the under-

lying coevolutionary dynamics that agree with empirical observations. This exemplifies the potential cross-over

between techniques designed for evolutionary computationand adaptive behavior more generally.
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Figure 1: Schematic of a “Current Individual versus Ancestral Opponents” (CIAO) plot. At each square(x; y)
the result of competition between the A-elite from generation y and the B-elite from generationx is plotted as
a gray-scale value, with increasingly heavy shading representing an increasing margin of victory in favor of A.
The leading diagonal (far-right) plots A-elite(g) against B-elite(g) for all generations,0 � g < N . The diagonal
immediately to the left plots each generation’s A-elite against thepreviousgeneration’s B-elite. Horizontal rows
plot the results of A-elite(y) againstall ancestral B-elites(0 : : : y) (adapted from Cliff & Miller, 1995).
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Figure 2: Idealized CIAO plots showing smooth progress (left) and cycling with regular period (right). With each
horizontal row depicting the performance of one A-elite against each ancestral B-elite, smooth progress produces
a gradation in intensity from dark to light: A-elites beat ancestral opponents, the more ancestral the greater the
victory (i.e., the further left, the darker the cell). In contrast, regular cycling manifests as diagonal banding. Whilst
the latest A-elites beat recent ancestral B-elites (diagonals to the right are dark), they perform less-well against
more ancestral B-elites (middle diagonals are light), but outperform even earlier ancestors (diagonals further left
are dark), etc.
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Figure 3: Schematic of a “tartan” CIAO plot. Periods of competitive stasis (blocks of uniform shade) are separated
by sharp transitions in competitive advantage (block boundaries). Such an irregular pattern is referred to as
“tartan” throughout this paper.



N

P
op

 A
 G

en
er

at
io

ns

0 NPop B Generations

0

N

P
op

 A
 G

en
er

at
io

ns

0 NPop B Generations

0

N

P
op

 A
 G

en
er

at
io

ns

0 NPop B Generations

0

N

P
op

 A
 G

en
er

at
io

ns

0 NPop B Generations

0

Figure 4: Study 1 results. CIAO plots depicting one representative run overN = 256 generations. From left to
right: (1) Diagonal banding in the raw data plot suggests regular cycling; (2) A large Gaussian (r = 20) removes
fine detail; (3) LoG (� = 8) produces a contour map; (4) The image is binarized. The fully processed plot displays
clear diagonal banding.
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Figure 5: Study 1 results. Event plot for a single representative run, labeling the generations in which the A-elite
plays Paper or the B-elite plays Rock with probability 0.66 or greater. The repeated “Paper follows Rock” event
sequence suggests regular cycling.
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Figure 6: Study 1 results. Graphs plotting the probability values of playing each RPS move. Top-left: the A-elites.
Top-right: the mean probabilities for all individuals in population A. Bottom-left: the B-elites. Bottom-right: the
mean probabilities for all individuals in population B. Thesystem completes one full cycle between generations120 and165.
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Figure 8: Study 2 results. CIAO plots depicting one representative run overN = 256 generations. From left to
right: (1) The raw data plot exhibits a tartan pattern that isdifficult to interpret; (2) A large Gaussian (r = 20)
removes fine detail; (3) LoG (� = 8) produces a contour map; (4) The image is binarized. Whilst the fully
processed plot does not exhibit diagonal banding, some vertical banding is clear. However, one cannot predict
regular cycling from this image.
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Figure 9: Study 2 results. Event plot for a single representative run, labeling the generations in which the A-elite
plays Paper or the B-elite plays Rock with effective probability 0.66 or greater. The strong correlation between
events suggests (perhaps irregular) cycling.
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Figure 10: Study 2 results. Graphs plotting the effective probabilities associated with playing each move. Top-
left: the A-elites. Top-right: the mean probabilities for all individuals in population A. Bottom-left: the B-elites.
Bottom-right: the mean probabilities for all individuals in population B. The populations evolve in response to
each other, resulting in an irregular cycle.



S P R S

S

P
R

R

17

37

49
53

23 37 40 56

B−elite Generations

A
−

el
ite

 G
en

er
at

io
ns

Figure 11: Enlarged CIAO plot depicting the coevolutionaryperiod graphed in figure 10. The rapid strategy
transitions depicted in figure 10 clearly reflect the boundaries in the CIAO plot pattern.
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Figure 12: Study 3 results. CIAO plots depicting one representative run overN = 256 generations. From left to
right: (1) The tartan pattern of the raw data plot is difficultto interpret; (2) A large Gaussian (r = 20) removes
fine detail; (3) LoG (� = 8) produces a contour map; (4) The image is binarized. Whilst there is no diagonal
banding, some horizontal banding is clear. However, one canneither predict nor rule out cycling on the basis of
the fully processed plot.
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Figure 13: Study 3 results. Event plot labeling the generations of one representative run in which the A-elite plays
Paper or the B-elite plays Rock with effective probability 0.66 or greater. Given the lack of correlation between
events, the likelihood of cycling appears small.



0

20

40

60

80

100

25 30 35 40 45 50 55

p
ro

b
ab

il
it

y

generation

Paper Scissors Rock

0

20

40

60

80

100

25 30 35 40 45 50 55

p
ro

b
ab

il
it

y

generation

Paper Scissors Rock

Figure 14: Study 3 results. Graphs plotting the effective probability values of playing each move during random
drift. Left: the A-elites. Right: the B-elites. The populations do not appear to evolve in response to each other.
Cycling is not observed.
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to invade. Both populations evolve towards smaller body size. (C) The resident population becomes extinct,
leaving the invaders to evolve to the solitary size. The cycle is complete (adapted from Roughgarden, 1983).
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Figure 16: Study 2 results. Graph showing the mean fitness (left) and fitness variation (right) within populations
A and B. Periods of zero variance signify disengagement. In both populations, there is very little fitness variation
during generations 28-36 and 44-49. During these periods, population B is easily outperforming population A. As
expected, disengagement coincides with stasis (homogeneous shading) on the enlarged CIAO plot of figure 11.
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Figure 17: Study 4 results. Adopting the visualization scheme employed by Kerr et al. (2002), we plot the
locations of each bacterial strain during one representative run of theE. coli simulation (toroidal grid size1002).
Sensitive (S) bacteria are colored black, Resistant (R) aredark gray and Col toxic (C) are light gray. Empty cells
are white. From left to right: (1) At timestep 1000 the three strains coexist across the grid; (2) By timestep 1200,
C (light gray) have moved into areas occupied by S (black), S have moved to areas originally occupied by R (dark
gray), and R have replaced C; (3) S continue to replace R, R replace C and C replace S; (4) By timestep 1600,
the three strains have returned to roughly the same locations they occupied at timestep 1000. One full cycle is
complete.
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Figure 18: Study 4 results. CIAO plots depicting one representative run of theE. coli simulation overN = 5000
timesteps (sampled at a resolution of 50 generations). Fromleft to right: (1) Some diagonal banding is observable
in the raw data plot; (2) A large Gaussian (r = 5) removes fine detail; (3) LoG (� = 2) produces a contour map;
(4) The image is binarized. The fully processed plot exhibits clear diagonal banding.
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Figure 19: Study 4 results. Event plot labeling the points (sampled at a 50-timestep resolution) at which the
local density of Resistant (R) bacteria or Col toxic (C) bacteria exceeds 66% during one representative run. The
repeated “R follows C” event sequence suggests regular cycling.
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Figure 20: Study 4 results. Graph plotting the local densityof each of the three bacterial strains during the first
1000 timesteps (at a 50-timestep resolution). Cycling can be observed with regular sequence CRSCRS.
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