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ABSTRACT
Economic theory suggests sellers can increase revenue thr-
ough dynamic pricing; selling identical goods or services
at different prices. However, such discrimination requires
knowledge of the maximum price that each consumer is will-
ing to pay; information that is often unavailable. Fortu-
nately, electronic markets offer a solution; generating vast
quantities of transaction data that, if used intelligently, en-
able consumer behaviour to be modelled and predicted.

Using eBay as an exemplar market, we introduce a model for
dynamic pricing that uses a statistical method for deriving
the structure of demand from temporal bidding data. This
work is a tentative first step of a wider research program
to discover a practical methodology for automatically gen-
erating dynamic pricing models for the provision of cloud
computing services; a pertinent problem with widespread
commercial and theoretical interest.
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1. INTRODUCTION
An understanding of supply and demand (S&D) is funda-
mental to microeconomics, finance and marketing. Yet, the
theoretical and statistical tools necessary for a detailed em-

pirical analysis of S&D in real markets has historically re-
mained elusive [6, 8]. More recently, however, techniques
have been developed to estimate S&D in financial markets
[7]; and in electronic auction markets such as eBay [9, 10].
These models are able to recover S&D curves by analysing
high-frequency trading data,1 thus allowing an analysis of
the marketplace in sufficient detail to be of use to traders.

Previous studies by other authors have outlined the princi-
ples by which S&D could be analysed in a retail electronic

∗Contact author.
1That is, data sampled at a frequency higher than one day.
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auction marketplace [12]. In this paper we apply these prin-
ciples to eBay, demonstrating how S&D can be estimated
from actual empirical trading data; and exemplifying how
structural S&D estimates can be used to determine optimal
sales strategy: how many additional units to sell; and at
what price.

Although this paper concentrates on eBay, the statistical
estimation model we employ is general enough to be used
in any online auction venue. In future, the authors aim
to extend and apply the model to the dynamic pricing of
cloud computing—the online utility provision of hardware
and software services. Cloud computing is a burgeoning
market that is set to flourish in the near future; presenting
a paradigm shift in information technology that may have
a profound positive disruption on society [5]. Yet, there is
currently little theory on advanced pricing models for cloud
computing. The authors aim to address this deficiency.

The outline of this paper is as follows. Section 2 describes
online auctions and the demand estimation problem for sell-
ers. Section 3 introduces the demand estimation model; and
is followed by an exemplar application on real empirical eBay
data in Section 4. Section 5 discusses future work extensions;
in particular dynamic pricing for cloud computing services.
Finally, Section 6 provides a brief summary and conclusion.

2. ELECTRONIC AUCTION VENUES
Over the past 15 years there has been a phenomenal rise in
the volume of trade executed in online auctions. Founded
in 1995, eBay alone now has a global presence in 37 mar-
kets and a customer base of 233 million.2 Online auctions
offer rich pickings for individuals and corporations wanting
to exploit the potential liquidity of the global marketplace.

2.1 Power Selling in Online Auctions
While customer to customer (C-to-C) trade still accounts
for a large proportion of online auction volume, increasingly
there has been a rise in the number of businesses selling
to individual customers (business to customer, or B-to-C,
trade). Corporations with business models incorporating the
sale of large quantities of stock in online auctions are known
as power sellers. Rather than offload individual items or one-
off shipments, power sellers regularly ship large volumes in
online auctions as part of their core sales strategy.

2http://pages.ebay.co.uk/aboutebay.html (24-Nov-2010)
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Figure 1: eBay simulation. Auction rules—only suc-
cessively higher bids accepted—lead to censoring,
with observed demand lower than true demand.

Sellers have a strong incentive to understand the behaviour
of their potential customers. Estimating the parameters—
eBay market, volume, time, listing format, price—that will
maximise revenue requires knowledge of the dynamics of
consumer demand. For example, a seller that anticipates a
large surge in demand in a particular marketplace will have
a better understanding of how and when to increase supply
in that market and the price they should expect to achieve.
Although all sellers benefit from a better understanding of
demand, it is power sellers—those that supply the greatest
quantity per unit time—that have the most to gain (or lose).

2.2 The Demand Estimation Problem
In online auction venues, power sellers not only have ac-
cess to more traditional methods of estimating demand—
personal experience, market research, trial and error—they
also have access to the bid history of each auction; the time-
stamped succession of highest bids. This valuable resource
enables observation of how often and at what price bids are
posted during the auction period. By observing the highest
bid registered by each user one can begin to estimate the
maximum (limit) price of each individual. Once the limit
price of each bidder is known, it is an easy step to calculate
the demand function—the volume demanded at each price.

Unfortunately, a problem exists: to estimate demand it is
necessary to know the limit price of all potential buyers.
However, since an auction’s bid history records the succes-
sion of highest bids, it is not a full record of all potential
bidders—individuals that arrive at an auction once the auc-
tion price has already exceeded their own limit price are not
recorded. Such potential bidders are forced to leave an auc-
tion without registering a bid and thus do not appear in
the bid history of an auction—their bids are censored. This
leads to an under-estimation of demand (see Fig. 1).

The problem is: how to recover censored bids from observed
bid history for more accurate estimation of market demand?
To tackle this problem, the following section introduces a
model to recover censored bids.

3. MODELLING DEMAND
We introduce a statistical model for recovering censored de-
mand in electronic auctions: that is, demand that may not
be directly observed from the set of auction transaction data.
Using [12] as a foundation, the model relies on time-stamped
auction data. We use the arrival times of market partic-
ipants to estimate arrival rates—demand—across different
price levels. While the model is general enough to be ap-
plied to any electronic auction, we use eBay—a prominent
online market with high liquidity—as our exemplar.

3.1 Model Assumptions
To make it easier to work with observed bid history data, we
first segment price into discrete intervals. Then, across all
auctions we measure the time until first bid arrival in each
price segment. We should expect that occasionally there
will be long time-intervals before a first bid is registered,
but that more often these intervals will be shorter. If we
suppose that bids arrive independently and that no two bids
arrive simulataneously, then we may assume that the time
until first arrival of a bid in each price segment follows an
exponential distribution.

The value we wish to estimate is the most likely expected
number of bids, λi, that will be posted in each price segment,
i, during a given time interval; thus allowing us to evaluate
the relative proportion of bidders, or demand, in each price
segment.

We model λi using a Poisson distribution by assuming the
following:

A Bids arrive at random in continuous time.

B Bids arrive singly: the probability of two bids arriving
simultaneously is zero.

C Bids arrive uniformly: the expected number of bids
in a given interval is proportional to the size of the
interval; and arrival rates do not vary over time.3

D Bids arrive independently: the probability of a bid ar-
riving with price i in any small interval is independent
of the probability of a bid arriving with price i in any
other small interval.

We make some further assumptions about the strategic be-
haviour of bidders:

E Bidders bid at exactly their limit price.

F Bidders attempt to post a bid upon arrival: they do
not strategically wait.

Finally, we assume the following is true of the auction mech-
anism:

G Posted bids must be greater than current auction price.

3In reality, arrival rates rapidly increase towards the end of an
auction as bidders attempt to snipe. Preliminary analysis has
shown that as many as 25% of all bidders arrive during the final
hour. Hence, the model is likely to underestimate arrival rates.



3.2 Estimating Arrival Rates
Following [12], let us segment prices into K equally sized
bins and let Xi denote the time of arrival of the first bid
in price segment i, where i = 1, 2, . . . K. Then, Xi is an
exponentially distributed continuous random variable with
probability distribution function:

f(x) =



λie
−λix : x ≥ 0

0 : x < 0
(1)

Hence, Xi has mean time 1
λi

and expected arrival rate λi.

The probability of Xi occurring near time t = T is:

P [t < X ≤ δt] = f(t) · δt (2)

The probability of X occurring after time T is:

P [X > T ] = 1 − P (X ≤ T )

= 1 −

Z T

0

λie
−λit

= 1 −
h

−e
λit

iT

0

= 1 + e
−λiT − e

0

= e
−λiT (3)

We demonstrate how to estimate arrival rates λ1, λ2, . . . , λK

through a worked example with n = 2 bidders; however the
result can be generalised to n bidders.

Assume there are two potential bidders with limit prices i
and j (i < j) and corresponding arrival times Xi and Xj .
Then, when an auction is complete, it is possible that the
bid history may contain: (a) no bidders; (b) one bidder of
type i; (c) one bidder of type j; or (d) two bidders. Let
〈xi, xj , . . . , xn : at〉 denote the recorded bid history of auc-
tion a with end time t, then for an auction AT , we can
calculate the following likelihoods:

(a) Probability no bidders appear in bid history:

P [〈− : AT 〉] = P [(Xi > T ) ∩ (Xj > T )]

= e
−λiT · e−λjT

(b) Probability only bidder i appears in bid history:

P [〈xi : AT 〉] = P [(xi < Xi ≤ xi + δxi) ∩ (Xj > T )]

= λie
−λixiδxi · e

−λjT

(c) Probability only bidder j appears in bid history:

P [〈xj : AT 〉] = P [(Xi > Xj) ∩ (xj < Xj ≤ xj + δxj)]

= e
−λixj · λje

−λjxj δxj

(d) Probability both i and j appear in bid history:

P [〈xi, xj : AT 〉]

= P [(xi < Xi ≤ xi + δxi) ∩ (xj < Xj ≤ xj + δxj)]

= λie
−λixiδxi · λje

−λjxj δxj

Assume that we have observed three auctions with bid his-
tories as follows: two bids 〈xi, xj : AT 〉; no bids 〈− : AT 〉;

one bid 〈xj : AT 〉. Then the likelihood function is:

L (λi, λj) = λie
−λixiδxi · λje

−λjxj δxj · e
−λiT

· e−λjT · e−λixj · λje
−λjxj δxj

Taking natural logarithm gives the log-likelihood function:

l (λi, λj) = ln λi + 2 ln λj + ln δxi + 2 ln δxj

− λixi + T + xj − λjxj + T + xj

Then, maximum likelihood values of arrival rates are:

∂l

∂λi

=
1

λi

− (xi + T + xj) = 0 ⇒ λ̂i =
1

xi + T + xj

∂l

∂λj

=
2

λj

− (xj + T + xj) = 0 ⇒ λ̂j =
2

xj + T + xj

Thus, we see that the maximum likelihood arrival rate for
type i is the number of auctions in which we observe a bid
of type i (1 in example, above) divided by the sum of the
arrival times in each auction of either: the first bid to arrive
of type i; or in auctions where no bids of type i appear, the
first bid to arrive of the next highest type; or if no higher
bids arrive, the auction close time, T .

Similarly, the arrival rate for type j is the number of auctions
in which we observe a bid of type j (2 in above example)
divided by the sum of the arrival times in each auction of
either: the first bid to arrive of type j; or in auctions where
no bids of type j appear, the first bid to arrive of the next
highest type; or if no higher bids arrive, the auction close
time T .

For brevity, let xn
i+

be the arrival time of bidder i in the

nth auction if bidder i is recorded in the nth auction, or the
arrival time of the next highest bidder, or the auction du-
ration if no higher bidder arrives. Then, we get the general
result:

λ̂i =
# auctions in which type i bid appears

x1
i+

+ x2
i+

+ . . . + xn
i+

Let us call the divisor in the above equation the effective
opening time for bidders of type i; i.e., the total time type
i bidders have available to place a bid across all auctions.
Once an auction price has surpassed a bidder’s limit price,
the auction is effectively closed to that bidder. If limit price
is never surpassed, then the effective auction close equals ac-
tual auction close. Using this terminology, the above equa-
tion can be rewritten in words:

λ̂i =
total number of bids from type i bidders

total effective opening time

This is an intuitive result: the average arrival rate of bidders
equals the number of bidders observed over the total time
available for bids to be placed. Finally, to effectively con-
sider parallel auctions, we must measure bid arrivals using
absolute time rather than auction time. Then, the arrival
rate of bidders of each bin is calculated as:

λ̂i =
total number of bids from type i bidders

total time that at least one auction is effectively open



3.3 Confidence Interval Estimation
The model developed in the previous section reduces to the
standard formula for calculating survival rates with Type I
censored data (see, for example, [1]). Under Type I censor-
ing, the maximum likelihood for survival rate, λ, is:

λ̂ =
r

Pn

i=1 xi

(4)

where xi is the ith data point (may be arrival or censoring
point), n is total number of data points, both censored and
uncensored, and r is number of failures. Using this, we can
estimate the 100(1 − α)% confidence interval for λ as:

2n

λ̂i · χ2

(2n; α
2 )

<
1

λi

<
2n

λ̂i · χ2

(2n;1−α
2 )

(5)

Where λ̂i is maximum likelihood estimation, λi is true value,
and χ2

(v;x) is the value of chi squared distribution with k
degrees of freedom that gives x cumulative probability.

3.4 Multiple Bids from Individual Bidders
Once a bidder has placed a bid in an auction, there is noth-
ing to stop them from bidding in other auctions.4 Indeed,
it is likely that once an auction has effectively closed an un-
successful bidder will move to an alternative auction venue.
However, unless a bidder wins an auction and then subse-
quently bids in another auction, we assume that each bidder
demands only one item. Thus, directly counting proxy bids
will lead to an overestimation of demand.

The model estimates demand by resolving multiple bids ac-
ross auctions as follows:

A Simulate each auction using proxy bid data to calculate
the effective opening times of each price bin.

B Order all proxy bids across all auctions by time. Be-
gin with the earliest bid and move down the list in
order of time. For each bid, if bidder ID is new—ID
does not appear in Demand list—add bid to Demand;
otherwise, edit bid in Demand such that:

(a) Bidder ID: identity of bidder.

(b) Bid time: time of earliest bid.

(c) Bid price: price of highest bid.

C For each price bin, calculate the mean arrival rate of
bidders by dividing the number of bids in Demand by
the total effective opening time.

3.5 Model Validation
To validate the statistical model, we employ a simple sim-
ulation of eBay containing 4 parameter distributions: bid
price, Bp; time to next bid arrival, Bt; time to next auction
opening, At; and auction length, Al. Let X ∼ N(µ, σ) de-
note random variable X is normally distributed with mean
= µ and standard deviation = σ; and X ∼ U({i, j, . . . , n})
denote X is random variable uniformly distributed across
the set of values {i, j, . . . , n}. Then, set: Bp ∼ N(50, 15)

4Bidders have been observed strategically posting stub quotes in
multiple simultaneous auctions; submitting very low bids in the
hope that no other bidders join the auction.
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Figure 2: Simulation of eBay. Demand estimation
(solid line) is a good fit of true demand (dot).

dollars; Bt ∼ N(4, 1) hours; At ∼ N(2, 0.5) days; and
Al ∼ U({1, 3, 5, 7, 10}) days.

Fig. 2 shows the true and observed demand of bidders in a
simulated eBay market over 16 simulated weeks. This data
replicates that shown in Fig. 1; and demonstrates censoring
between observed (dash) and true (dot) demand. Plugging
observed demand from the simulation into the statistical
model, we generate an estimate of true market demand (solid
line). Clearly, there is a good fit between estimated and
true demand, suggesting the model works as anticipated;
effectively recovering censored data.

4. EBAY APPLICATION
Here, we demonstrate the model on real eBay data; using
S&D analysis to inform dynamic pricing strategy. Data is
taken from the German market5 for Lexmark X7170 multi-
function printers over a 6 month period between 01-Nov-05
and 01-Apr-06.

4.1 Competitive Demand
Fig. 3 displays the S&D curves estimated by the statistical
model introduced in Section 3. These curves suggest a mar-
ket equilibrium price, Ep = $130, and equilibrium quantity,
Eq = 275.

Using market S&D it is possible to estimate the expected
revenue a seller, Xs, would achieve by increasing supply vol-
ume. We make a conservative assumption: that the highest
bidders have already been supplied by the market. Hence,
if Xs increases supply, only excess (or competitive) demand
will be captured. This produces the intuitive result that in-
creasing sales volume will reduce market price. Competitive
demand—the shaded area of Fig. 3—is calculated as the dif-
ference between demand and supply at all prices below Ep:
notice that, as price tends to 0, competitive demand tends
to the demand curve.

We use competitive demand to estimate the price a seller

5http://www.ebay.de/



Demand
Supply

Quantity

Supply & Demand
Pr

ic
e 

(U
S$

)

Excess Demand

Figure 3: Six months estimated supply (line) and
demand (dash) for Lexmark X7170 in Germany.

will attain for increasing sales volume by a given quantity.

4.2 Revenue and Costs
The application has two revenue models. These are:

Differential pricing: assume each item is sold at the high-
est price it can attain. Prices will vary between sales.

Fixed pricing: assume all units are sold at the same fixed
price. This is a more conservative estimator of revenue.

Fig. 4 shows anticipated revenue and costs for a seller, Xs,
using a fixed price revenue model. These costs include eBay
and shipping costs associated with each sale and rise with
volume sold. Other costs specific to Xs, such as labour
costs or OEM commission, are entered into the model as
customized variables. These costs are not graphed, but are

factored into profit calculations, below.

The revenue curve is calculated using competitive demand.
In Fig. 4, we see anticipated revenue has a maximum around
quantity 700, but then steeply falls. This is because we are
using a fixed revenue model—all units sold at the same price.
Thus, as volume increases and marginal price falls, the price
of each unit also falls.

4.3 Profit
Profit equals total revenue minus total cost.6 Fig. 5 shows
anticipated profit as a function of increased sales quantity.
We see that a maximum profit of approximately $10, 000 is
achieved with approximately 700 sales. Once sales exceed
1000, profits become negative.

Assuming costs rise as volume is increased, there will always
be a turning point in the profit curve; even under differen-
tial pricing. This turning point is the maximum possible
anticipated profit available to a seller for a given product.
Maximum profit and volume can be used to produce sum-
mary estimates of current production efficiency.

6Note that Fig. 4 does not include costs that are specific to a
particular seller, Xs. Hence, profit cannot be directly calculated
from the revenue and costs curves displayed.
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Figure 5: Profit is maximised with 700 sales. Profit
becomes negative when quantity exceeds 1000.

4.4 Extensions
We have described a model for estimating demand in elec-
tronic auction venues and applied it, using real eBay data,
to infer optimal sales strategy and dynamic pricing. This is
a promising first step. However, the model makes some un-
realistic assumptions such as fixed arrival rates, which are
likely to reduce estimation accuracy. In future, we would
like to address this by modifying the model to incorporate
more realistic behaviours, such as sniping; and use heuristic
methods to calibrate the model against empirical data, e.g.,
[11].

5. PRICING CLOUDS
Over the last 50 years, roughly once a decade, the com-
mercial provision of IT has undergone a step change—from
mainframes to the Internet via mini-computers, single-user
PCs and the client-server LAN model [4]. Following this pat-
tern, we appear to be entering a new paradigm: the online
utility provision of hardware and software services, or “cloud
computing”. Offering on-demand availability to effectively
infinite computing resources at prices kept low though scale
economies of central supply, cloud computing has the poten-
tial to positively impact the whole of society, in a manner
analogous to the impact of the utility provision of electricity
during the 20th Century [5].

Computing behemoths such as Amazon, Google and Mi-
crosoft are investing heavily in the provision of cloud com-



puting infrastructure through large warehouse-scale com-
puting facilities [2]. However, current understanding of ad-
vanced pricing mechanisms for cloud services is inadequate.
Traditionally, hosted services operate on a simple amortized
cost-plus charging model, with little price differentiation.

Research into the decentralised control and provision of util-
ity computing through the use of auction markets has gen-
erated a large literature [3]. Such utility computing markets
present a direct opportunity to apply techniques—structural
estimation of S&D for dynamic pricing—developed in this
paper. It future, we aim to extend our work toward dynamic
pricing of cloud computing services—a pertinent research
goal with highly lucrative commercial potential.

6. SUMMARY AND CONCLUSIONS
We have described a statistical model for estimating prod-
uct demand by utilising the bid information available from
electronic auction markets such as eBay. Further, we have
applied this model to estimate supply and demand for a
real marketplace using actual empirical data. To forecast
future revenue accurately, sellers must have an accurate un-
derstanding of consumer demand. The more accurately a
seller understands demand, the better they are able to max-
imise profit. Whilst the experience of sellers, trial and error,
and market research reports each lend some insight into the
behaviour of customers, each is a very poor alternative to
the quantitative estimates produced by the model presented
here. Producing a full demand curve, the model allows sell-
ers to maximise profit by predicting sales volume and av-
erage price ahead of time. This accurate forecasting ability
allows sellers to optimise their strategy ahead of time, ren-
dering costly (and risky) trial and error strategies obsolete
and presenting an opportunity for dynamic pricing.

The model is entirely general. As long as there is an ascend-
ing auction format, the model is able to build a represen-
tation of demand, whatever the product or where ever it is
sold. By understanding demand, sellers are able to better
optimise their sales strategy and reduce risk. As such, the
model is of value to any company or individual that wants
to sell, offering significant positive impact on the revenue-
generating potential of all auction sellers.
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