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Abstract In climate models, many parameters used to

resolve subgrid scale processes can be adjusted through a

tuning exercise to fit the model’s output to target clima-

tologies. We present an objective tuning of a low resolution

Atmosphere–Ocean General Circulation Model (GCM)

called FAMOUS where ten model parameters are varied

together using a Latin hypercube sampling method to

create an ensemble of 100 models. The target of the tuning

consists of a wide range of modern climate diagnostics and

also includes glacial tropical sea surface temperature. The

ensemble of models created is compared to the target using

an Arcsin Mielke score. We investigate how the tuning

method used and the addition of glacial constraints impact

on the present day and glacial climates of the chosen

models. Rather than selecting a single configuration which

optimises the metric in all the diagnostics, we obtain a

subset of nine ‘good’ models which display great differ-

ences in their climate but which, in some sense, are all

better than the original configuration. In those simulations,

the global temperature response to last glacial maximum

forcings is enhanced compared to the control simulation

and the glacial Atlantic Ocean circulation is more in

agreement with observations. Our study demonstrates that

selecting a single ‘optimal’ configuration, relying only on

present day constraints may lead to misrepresenting cli-

mates different to that of today.

Keywords GCM � Tuning � Latin hypercube sampling �
Last glacial maximum � Sea surface temperatures �
Palaeo-proxies

1 Introduction

In climate models, many parameterisations used to resolve

sub-grid scale processes use parameters poorly constrained

by observations or that can depend on the resolution of the

model. Model calibration, often called tuning, is a part of the

model development process which consist of searching for

the optimal parameter values that will minimise a metric (or

cost function) representing the discrepancy between obser-

vations and model output. Because General Circulation

Models (GCMs) are computationally demanding, these

models are generally ‘hand tuned’ often varying one

parameter at a time, having a strong limitation on the number

of tests that can be run and therefore relying heavily on expert

knowledge. More systematic methods of parameter estima-

tion that necessitate a large number of simulations have been

developed and used on intermediate complexity models

(Annan and Hargreaves 2007). With the increase of com-

puting resources, systematic methods of tuning can now be

applied to low resolution GCMs such as FAMOUS.

Jones et al. (2005) performed a systematic tuning of

FAMOUS, using an iterative algorithm. Smith et al. (2008)

further tuned the model manually by changing other

parameters in the model. FAMOUS was intended to be a

fast version of HadCM3 and was therefore tuned towards

equivalent HadCM3 results in both studies. However,

FAMOUS is increasingly being used for palaeoclimate

studies where it can be argued that a better tuning target is

present day observations and palaeo-data. Our aim was to

tune the version of FAMOUS used for modelling quater-

nary climate towards observational present day and Last

Glacial Maximum (LGM; 21 kyr B.P.) data.

The methodology used by Jones et al. (2005) is a suc-

cessive minimisation algorithm. Such methodology is

inadequate when parameters are correlated with each other
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which is the case for cloud parameters in FAMOUS. Three

other types of parameter estimation methods can be used in

climate modelling (Annan and Hargreaves 2007). The

simplest methods consist of sampling the whole parameter

space. This method usually requires a number of samples

which increases exponentially with the number of param-

eters but the efficiency of the sampling can be improved by

using a Latin Hypercube Sampling (LHS; Mckay 1992)

which has been successfully used in uncertainty analysis

studies (Schneider von Deimling et al. 2006; Edwards and

Marsh 2005). Efficient Heuristics methods, such as the

Monte Carlo Markov Chain (Hargreaves and Annan 2002),

genetic algorithms (Price et al. 2006) and oracle based

optimization (Beltran et al. 2006), require a lower number

of experiments. However, these methods are sequential and

if they were to be applied on a model such as FAMOUS, it

would require 100 days to perform 100 experiments with

one experiment a day. Annan and Hargreaves (2007)

argues that the most efficient calibration method for cli-

mate models is the Ensemble Kalman filter which has been

used on low complexity and low resolution climate models

(Annan et al. 2005a, b). Applied to climate models, the

Ensemble Kalman filter requires the use of an iterative

scheme to increases the spread of the ensemble around its

mean. Due to their architecture, modern cluster computers

lend themselves to parallel rather than sequential or itera-

tive schemes. Most climate models only scale to modest

number of processors (in the case of FAMOUS it is

16–32 cpus) and more processors cannot efficiently

increase the speed of the model. Our computational con-

straint is not the total CPU time but the wall-clock time it

would take to perform the tuning. We therefore favoured

the use of a parallel method rather than a sequential or

iterative method. For that reason we chose to use a Latin

hypercube sampling scheme to perform our tuning.

There are several issues with model calibration which

should be taken into account. Complex models such as

OAGCM output a large number of variables for which

observational data is available (e.g. Temperature, precipi-

tation, sea ice). The different diagnostics can be combined

into one metric in different ways, but the choices of the

metric used can influence the result of the tuning. As dis-

cussed in Rougier (2007), models are not a perfect repre-

sentation of reality and uncertainty exists not only due to the

lack of constraint on parameter values (parametric uncer-

tainty) but also due to the nature of approximation that are

made in the model (structural uncertainty). Parameter values

can compensate for missing processes in the model and if we

choose to include different variables in out metric then we

can imagine a case where different combinations of para-

meter values result in the same optimal metric value.

Therefore, performing a tuning which results in the selection

of a single ‘standard parameterisation’ may not be ideal.

Using large ensembles to perform a single experiment can

provide an estimate of the uncertainty in the result (Rougier

2007) but this requires a great amount of computational

resources every time we want to perform an experiment. We

choose to use a middle ground approach by which we do not

restrict ourselves to selecting a single model configuration

but choose to select a subset of experiments which represent

‘possibilities’.

We present here a tuning of FAMOUS (a low resolution

version of the Hadley Centre climate model, HadCM3),

performed using a Latin hypercube tuning method. We

define a comprehensive cost function which takes into

account seasonality and incorporates variables representing

different aspects of the climate system. As well as using

present day observations in our cost function, we choose to

include a proxy for the climate of the LGM, in part because

our model is particularly useful for paleoclimate studies and

also because the LGM has been shown to provide additional

constraint for the climate sensitivity of the models (Edwards

et al. 2007; Annan et al. 2005c). After briefly describing the

model in Sect. 2, we detail the tuning method in Sect. 3.

Section 4 investigates how the definition of the cost function

impacts on the results of the tuning and Sect. 5 describe the

present day and LGM climates of the subset of selected runs.

2 Model description

FAMOUS is a low resolution ocean atmosphere GCM

derived from the Hadley Centre coupled model HadCM3

(Gordon et al. 2000). Its resolution is roughly half of

HadCM3’s, both in the ocean and the atmosphere, which

makes it ten times faster to run than its parent HadCM3.

The atmospheric resolution is 7.5� longitude by 5� latitude

with 11 vertical levels and a time step of 1 h. The ocean

resolution is 3.75� longitude by 2.5� latitude with 20 ver-

tical levels and a time step of 12 h. Land processes are

modelled with the Met. Office’s land surface scheme

(MOSES1, Cox et al. 1999).

FAMOUS has previously been tuned in a systematic way

(Jones et al. 2005) towards HadCM3 and then manually

(Smith et al. 2008) to reduce the original northern high lati-

tude cold bias. Our version of the model is different to the

version of Smith et al. (2008): it uses a slightly different

topography and uses two sweep time stepping (or double

scan dynamics) to allow for a better numerical stability of the

model under LGM boundary conditions. This different

dynamical scheme introduces a significant warming in the

northern high latitudes therefore the tuning of Smith et al.

2008 is not optimum for this version of the model.

For this tuning study we run sets of simulations with

present day (PD) and LGM boundary conditions. The

present day boundary conditions are identical to the version
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of Smith et al. (2008) except for the orography which

follows ICE-5G’s present-day fields (Peltier 2004). For

LGM boundary conditions, the orography and ice sheets

extent are taken from ICE-5G reconstructions and the

greenhouse gases and insolation values follow the PMIP2

standards (Braconnot et al. 2007).

3 Method

To perform our tuning, we chose to use a Latin hypercube

sampling scheme which consists of (1) choosing the

parameters to tune and defining the range of possible val-

ues, (2) sampling sets of parameter values within the

parameter space and using these to perform an ensemble of

experiment, (3) defining and applying a cost function

which compares the output of experiments to observational

data to determine optimum experiments (and associated

parameter values).

3.1 The tuning parameters

3.1.1 Description

More than 100 parameters can potentially be tuned within a

model like FAMOUS but varying a large number of

parameters in a tuning increases the number of simulations

to run. We have decided to tune ten parameters. These

include the six parameters chosen by Jones et al. (2005) for

the initial tuning of FAMOUS, that were chosen for having

a high impact on the climate of HadCM3 (Murphy et al.

2004):

• RHcrit: the threshold of relative humidity for cloud

formation (Smith 1990).

• Vf1: precipitating ice fall-out speed (Heymsfield 1977).

• Ct: the conversion rate of cloud liquid water droplets to

precipitation (Smith 1990).

• Cw: the threshold values of cloud liquid water for

formation of precipitation (Smith 1990). The value of

this parameter is different for land and sea and will be

varied together by the same fraction.

• Z0 (sea): the free convective roughness length over the

sea for boundary layer processes (Smith 1993).

• Wave: gravity wave and trapped lee wave constants.

These two parameters will also be varied together

(Gregory et al. 1998).

Four parameters were added in this study:

• AlphaM: the sea ice low albedo (Crossley and Roberts

1995).

• Atm Diff: The horizontal atmospheric diffusion para-

meters varied together.

• Ocn H Diff: the oceanic horizontal diffusion parameters

varied together.

• Ocn V Diff: the oceanic vertical diffusion parameters

varied together.

The sea ice low albedo in FAMOUS decreases linearly

with temperature within a specific range. Outside this

range, the albedo is kept to a high value, for colder tem-

peratures, and to low value (AlphaM), for warmer tem-

peratures. This parameterisation accounts for the presence

of melting ponds that form on the sea ice in summer.

AlphaM was manually tuned in the study of Smith et al.

(2008) and was set to a value of 0.2 which is lower than the

range of values estimated in Murphy et al. (2004) for this

parameter. We therefore included this parameter to our

tuning.

The diffusion parameters were added to this tuning in

order to improve the energy transport by the atmosphere

and the ocean and thus reduce the cold northern bias

present in the model as suggested by Jones et al. (2005).

We do not include the entrainment rate coefficient of the

convection scheme in this tuning because this parameter is

known to have a large impact on the structure of the

atmosphere. As it is difficult to include any target for the

vertical structure of the atmosphere, tuning this parameter

could lead to a model with an unrealistic atmospheric

structure.

The ranges of values for atmospheric and sea ice

parameter were taken from Murphy et al. (2004), the ran-

ges of the ocean and atmospheric diffusion coefficients

were decided by performing stability tests, and the lower

range of the sea ice low albedo is set to the value of Smith

et al. (2008).

3.1.2 Preliminary sensitivity analysis study

We performed a preliminary study to determine the effect

of individual parameters on the present day and LGM

climates. We ran a set of single parameter perturbations

where we change the value of each parameter to its maxi-

mum and minimum values. Our control simulation (CTRL)

is our version of the model before tuning and has the same

parameter values as Smith et al. (2008). The parameter

values of CTRL correspond to intermediate values within

the range of possible values except for the wave and ocean

horizontal diffusion parameters which are set to their

maximum possible value and for the sea ice low albedo

which is set to the lower boundary of its range.

We perturbed each parameter to its maximum or mini-

mum value taken from Murphy et al. (2004), and whenever

the parameter values used in CTRL is already equal to the

maximum or minimum value we also perturbed the para-

meter to an ‘intermediate’ value which corresponds to the
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middle to the range (Table 1). These perturbed simulations

were run for 200 years starting from a spun-up state of the

control model. The change in parameter values and the

response in PD and LGM temperatures are shown in Table 1.

The range of values varies quite a lot from one parameter

to another, showing the difference in uncertainty and

understanding in these parameters. The change in PD tem-

perature does not necessarily reflect the magnitude of the

parameter change, but rather the sensitivity of the model to it.

Compared to other parameters, RHCRIT has a small

uncertainty in its parameter value, but strongly influences the

global temperature for PD. On the other hand, CW was

changed by an order of magnitude but only gives a temper-

ature response twice as big as the perturbation of RHCRIT.

We found that cloud and sea ice parameters influence

temperature on a global scale changing the energy balance at

the top of the atmosphere, whereas convection and gravity

wave affects temperature at regional levels. The sea ice low

albedo is the parameter which has the largest effect on the

difference in temperature between present day and LGM

(i.e. LGM cooling): increasing the sea ice low albedo from

0.2 to 0.65 increases the LGM cooling by more than 1�C.

This effect of the sea ice low albedo is investigated in more

detail in Sect. 5.2. The effects of individual parameters on

the present day climate are described more fully in Table 1.

3.2 Sampling strategy

To perform the tuning, we varied all the parameters

simultaneously using a Latin hypercube Sampling, a

stratified-random procedure which provides an efficient

way of sampling variables (Mckay et al. 1979). With this

sampling scheme, the number of samples should be at least

ten times the number of parameters (Loeppky et al. 2009).

Table 1 Parameter perturbations and associated responses in global

mean annual temperature for present day and LGM boundary

conditions. The parameter change is calculated as the % change

compared to the control values. The PD temperature anomaly is the

difference between annual average global mean temperature between

a perturbed run and the control run for present day. The LGM

sensitivity change is: |T(LGM)-T(PD)| –|Tctrl(LGM)-Tctrl(PD)|

Parameters % parameter

change

PD temp

anomaly

LGM sensitivity

change

Comments

RHCRIT min -13 -1.68 -0.13 Increased values yield an increase of low clouds in the tropics and

a decrease of higher clouds in medium and high latitudes. The

result is a global warming higher over tropical land
max 31 2.5 -0.28

VF1 min -71 3.18 -0.1 A decrease leads to an increase of high clouds. The greenhouse

effect increases more than the planetary albedo leading to a

global warming
max 14 -0.11 -0.2

CT min -47 -3.62 ?0.45 A decrease reduces the total cloud coverage (especially high

clouds) except over Indonesia. The planetary albedo increase

leads to global cooling
max 325

CW min -43 -0.09 -0.19 An increase of CW leads to less precipitation and more low

clouds. This leads to a higher planetary albedo which produces a

global cooling
max 1176 -4.9 ?0.19

Z0FSEA min -82 0.21 -0.22 High Z0FSEA values decrease the temperature over the ocean at

medium and high latitudesmax 350 -0.36 -0.26

Waves min -50 0.19 ?0.03 A minimum value causes changes in atmospheric circulation in

northern high latitude leading to warmer conditions over Siberia

and north Pacific and cooler conditions over north Atlantic in

winter

int -25 0.06 -0.08

AlphaM int 150 -1.29 ?0.69 A higher value produces a cooling over sea ice (particularly strong

in the arctic) and an increase of sea ice especially in autumnmax 225 -2.93 ?1.08

Atm. diff. min -17 -0.98 ?0.01

int -8 -0.65 -0.19

Ocean vert. diff. min -80 -0.11 -0.02

max 10 -0.08 -0.24

Ocean hor. diff. min -20 -0.09 ?0.13

int -10 -0.04 ?0.01
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Since we vary ten parameters, we should sample at least

100 sets of parameter values. Uncertainty analysis studies

performed on intermediate complexity models have used a

sampling size an order of magnitude greater (Schneider

von Deimling et al. 2006; Edwards and Marsh 2005) but

performing an uncertainty analysis is beyond the scope of

this study. Our aim is to find optimum sets of parameter

values. Increasing the number of samples could improve

the accuracy of the tuning but we are limited in the number

of simulations we can perform, because the cost of running

a GCM is high relative to the available computing

resources. We therefore chose to sample 100 sets of

parameters. We then use these sets of parameters to per-

form 100 simulation for present day and 100 simulations

for the LGM. The ensemble of runs performed used more

than 5,200 h of CPU time and produced 2 TB of raw data.

This represent a substantial achievement with a model as

complex as FAMOUS.

We chose to sample the parameter values uniformly

over the parameter space (i.e. we define our prior as a

uniform distribution of the parameter values within their

range). This choice was made because previous tuning

studies for FAMOUS used simple techniques that did not

span the whole parameter space we therefore expected that

parameter values far from those of the control simulations

could minimise the cost function. The range of each

parameter is thus divided into 100 equiprobable intervals

(equally spaced in this case because we assume uniform

distribution) and in each interval a value is randomly

selected. The 100 values obtained for each parameter are

randomly grouped with the values of the other parameters

producing a total of 100 sets of parameter values.

Unlike the iterative method proposed by Jones et al.

(2005) in the initial tuning of FAMOUS, our method

enables us to cover the whole parameter space and to take

into account the interdependency of the parameters by

varying them all simultaneously.

Using the sets of parameters created we ran an ensemble

of 100 FAMOUS runs with modern boundary conditions

and 100 runs with glacial boundary conditions. All simu-

lations started from the spun-up control model conditions

and were run for 200 years. Mean climatologies are com-

puted over the last 30 years of the runs. A cost function

was then applied to calculate their ranking and a subset of

13 simulations were extended to 1,000 years to bring them

to equilibrium.

3.3 The definition of the cost function

3.3.1 The target of the tuning

We chose to compare our model to climatological datasets.

As in Jones et al. (2005), we include a wide range of

diagnostics to avoid the risk of improving one aspect of the

model output at the expense of another. For present day,

our diagnostics include well known climatic parameters

such as temperature and precipitation rate but also diag-

nostics relating to the energy balance of the model both at

the top of the atmosphere and at the surface of the ocean.

The model diagnostics we chose are stated in Table 2 along

with the source dataset used. Where possible, each dataset

was chosen carefully to avoid introducing artificial con-

straints such as reanalysis data. For example, in areas

poorly covered by observations, using reanalysis data

would potentially result in tuning our model towards

another model. Some of the climatologies used here are

poorly constrained in some regions of the globe. This is the

case for the National Oceanography Center NOC 1.1 cli-

matology in the southern ocean. We will show in the next

section how we will deal with such uncertainties by

adapting the weights in the cost function.

Assessing the ability of a model to simulate glacial

climate is a more difficult task than for the present day

climate. Very little data is available for this period and the

uncertainties associated with climate reconstructions from

proxies are large and difficult to evaluate. We therefore

concentrate on the sea surface temperatures (SST) which

have been carefully reconstructed within several interna-

tional projects. We use annual SST anomalies from the

Multiproxy Approach for the Reconstruction of the Glacial

Ocean surface reconstruction (MARGO project members

2009) which provides a global reconstruction of the SSTs

Table 2 Diagnostics used as a

target in the tuning and datasets

associated

a New et al. 1999, bUK

Meteorological Office 2006,
cHarrison et al. 1990, dGrist and

Josey 2003

Diagnostics Unit Target

Surface air temperature over land (temp) �C CRU CL 1.0a

Precipitation rate over land (precip) mm/day CRU CL 1.0

Sea surface temperatures (SST) �C HadISSTb

Sea ice concentrations (0–1) HadISST

Top of the atmosphere shortwave (SW) W/m2 ERBEc

Top of the atmosphere longwave (LW) W/m2 ERBE

Net heat flux at the surface of the ocean W/m2 NOC1.1ad

Wind stress at the surface of the ocean (TauU, TauV) N/m2 NOC1.1a
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using different proxies with an indication of uncertainty. The

uncertainty associated with this reconstruction is particu-

larly important in the North Atlantic basin where there is a

large discrepancy between the temperatures reconstructed

from different proxies. The Southern Ocean basin has a poor

coverage in terms of annual mean temperature reconstruc-

tion. We therefore only consider temperature reconstruction

on the tropical region between 40�N and 40�S.

3.3.2 The metric

As a large number of simulations are performed, it is

necessary to define a metric or cost function to evaluate the

difference between model output and observations in a

single number. We chose to use a weighted version of the

‘Arcsin Mielke’ score (AMS; Watterson 1996) that was

chosen by Jones et al. (2005) in the initial tuning of

FAMOUS. It takes into account several aspects of the field

to be compared. It is expressed as follows:

AMS ¼ 2

p
arcsin

2q

rþ 1=rþ b2

 !
ð1Þ

b is the normalised bias between the two fields given by

b ¼ �x� �yffiffiffiffiffiffiffiffi
sxsy
p ð2Þ

where x and y represent the latitude-longitude field of

observations and model output for the same variable, �x is

the area weighted mean and sx is the spatial standard

deviation. r is the ratio of the spatial standard deviations sx

and sy. q is the pattern correlation coefficient defined by

q ¼ x0y0

sxsy
ð3Þ

Values are normalized from -1 to ?1 where ?1 is

obtained for a perfect agreement between the two fields and

-1 for anticorrelated fields. Values close to 0 or below

indicate bad agreement. To use this score, both of the fields

must be defined on the same grid points. Thus, the

observational fields from the datasets are regridded onto

the model grid and a mask is applied so that both fields

have the same spatial distribution.

The climate resulting from the previous tuning of

FAMOUS had a strong bias in the northern high lati-

tudes which was especially important in winter. The cost

function has thus been adapted in an attempt to reduce

this bias. The score is calculated for each month and

averaged over the year in order to take into account the

seasonal cycle. To emphasise high latitudes, three

regions are defined as followed: southern high latitudes

(90�S to 40�S), tropics (40�S to 40�N) and northern high

latitudes (40�N to 90�N).

We defined our cost function as the average of the score

for each month, each region and each diagnostics using

weights specified in Table 3. We determined the weights

taking into account different criteria: (1) the importance of

the regions by applying a coefficient of 1.5 for the North, 1

for the Tropics and 1 for the south, (2) the importance of

each diagnostic by putting more emphasis on temperatures,

precipitation, SSTs and sea ice concentrations, (3) the

relative number of grid cells covered by data in each

region, and finally (4) the reliability of the data in each

region which is interpreted from the literature into a

coefficient. These weights are subjective and can be

adapted to specific needs without the need to rerun simu-

lations which is an advantage of this technique. We are

specifically interested in tuning FAMOUS to well represent

the high latitudes so that it can be coupled successfully to

an ice sheet model, we therefore applied higher weights to

the north region than to the tropics. We also apply a low

coefficient in the southern region to the wind stress at the

surface of the ocean (TauU and TauV) to reflect the higher

uncertainty in the dataset. The sensitivity of the results to

the weights used is discussed in Sect. 4.3.

4 Investigating the ensemble of simulations

4.1 An overview of the ensemble of experiments

Before applying our cost function to identify simulations that

agree best with the observations, it is important to understand

how it behaves when we apply it to our targets. Figure 1

shows the AMS scores obtained from the ensemble of

models for each diagnostic. As noted by Watterson (1996),

fields with a strong north–south gradient, such as surface air

temperature over land and SST, generally have a high score,

Table 3 Weights used in the cost function from the different diag-

nostics and regions, expressed as a percentage of the total score

North Tropical South Total

Temperatures 13.3 11.0 0.8 25.2

Precipitations 8.0 6.6 0.5 15.1

SST 4.1 6.2 3.3 13.6

Sea ice 8.9 0.0 5.9 14.8

SW 2.2 5.0 2.0 9.2

LW 2.5 4.8 2.0 9.3

Surface heat flux 0.5 1.7 0.4 2.6

TauU 0.2 0.8 0.2 1.2

TauV 0.2 0.8 0.2 1.2

LGM SST 0.0 7.9 0.0 7.9

The top plot shows the scores for all the acceptable simulations and

the bottom plot zooms in the higher scores to show the spread of the

points
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whereas scores for precipitation are much lower: any shift in

precipitation pattern results in a lower score. Diagnostics

related to the energy budget also have lower ranges of scores

than temperatures and sea ice diagnostics. This should be

taken into account when determining the rank of the simu-

lations and weights can be chosen to compensate for this

effect. In this study, we value temperature, precipitation, and

sea ice more than energy fluxes at the ocean surface.

The control experiment is amongst the top scores for most

of the diagnostics (Fig. 1) except for the sea ice, for which

there are 53 simulations with better scores. For most of the

diagnostics it is possible to obtain a higher score than the

control simulation by choosing a different set of parameters.

Surface air temperature is the only diagnostic for which the

score of the control model is not surpassed but we find

simulations with a similarly good temperature scores.

For comparison, we show the score obtained with Had-

CM3 calculated on the same grid as FAMOUS. The scores

obtained by the lower resolution model are generally lower

than the scores of HadCM3, except for the LGM SSTs where

78 members of the ensemble have higher LGM scores.

Some parameter combinations result in very unrealistic

climates with global mean temperatures range from 5 to

38�C. Some of the simulations where the climate has been

pushed far from the initial state of the control simulation are

still drifting considerably after 200 years. Rather than

continuing those runs, we have decided to exclude them

since our goal is to find simulations which are as similar as

possible to observational data. We therefore only take into

account models with a present day global mean temperatures

of 14 ± 5�C. A total of 73 out of 101 models fall into this

category (henceforth referred to as ‘acceptable models’).

Using the weights of Sect. 3.3, we can calculate the total

score, and rank the models from highest to lowest scores.

The total scores for ‘acceptable’ models range from 0.43 to

0.57. The control simulation comes at rank 14 with a score

of 0.55. There are therefore 13 simulations which have a

higher score than the control simulations and are therefore

considered ‘better’ according to our criteria. We choose to

select the subset of top 13 runs on the basis that they have

higher scores than the control simulation and we define this

subset as the ‘better’ models.

4.2 No clear optimum in the parameter values

We have evaluated whether a region of optimum parameter

values can be identified. Figure 2 shows the AMS scores

against each of the parameter coefficients, normalised from

0 for the minimum value to 1 for the maximum value. At

first sight, it seems that lower values of RHCRIT and

higher values of VF1 give higher scores. For the other

parameters, however, no clear optimum can be found.

Parameters seem to compensate for each other so that very

different combinations of parameter values can give similar

AMS scores. This emphasises the benefits of using an

objective tuning method over the more common hand

tuning method. Performing more simulations or using a

climate emulator as in Rougier et al. (2009) and Murphy

et al. (2007) would be necessary to make any further

conclusions on the relationship between parameter value

and the score of a model. Moreover, the nature of the cost

function used could also have an impact on the relationship

between parameter values and score. Our cost function

consists of adding scores obtained for different diagnostics

and we may have different optima for the different diag-

nostics (i.e. precipitation and sea ice). This could lead to

having a lot of local optimums in the parameter space.

4.3 Sensitivity of the result to the definition of the cost

function

In order to evaluate if the results of the tuning are depen-

dent on the overall cost function, we applied different

weights to our cost function and compared the scores

obtained for each simulation. We computed a simple cost

function where the diagnostics are weighted only by the

number of grid points containing data. Figure 3 compares

this simple cost function to the one described in Sect. 3.3.

There seems to be a linear relation between the result of the

two functions showing that they both identify ‘good’ and

‘bad’ simulations in a similar way. However, focusing on
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just the very top scores, the points are more scattered. This

means that using different weights changes the ranking of

the simulations within the ensemble but without signifi-

cantly changing the subset of top simulations (the subsets

of top 14 simulations determined by the two scores only

vary by 2 simulations). Therefore, the choice of cost

function can influence the result of traditional methods of

tuning which result in the selection of one model configu-

ration but has less impact on our tuning method.

4.4 The effect of including LGM data

in the cost function

Adding glacial constraints doubles the number of simu-

lations to run for this tuning. It is thus important to

verify if using glacial data adds an additional constraint

on determining ‘good’ simulations. To test that, we

compare the LGM score (anomalies of tropical SST), to

the score for present day tropical SSTs (Fig. 4). Simu-

lations with high PD tropical SST scores have a wide

range of LGM scores and only a subset of them perform

well during the LGM. Therefore, the LGM data clearly

adds a further constraint on the tuning of the model and

shows the benefits of using this broader range of tuning

targets. We will investigate the benefits of using further

palaeo targets in future work. Another advantage of

performing those LGM simulations is that we can look

at characteristics of the LGM climate such as the global

temperature signal or the ocean circulations, as demon-

strated in Sects. 5.2 and 5.3.

5 The subset of selected simulations

As noted in Sect. 4.1, there are 13 simulations which have a

higher score than the control. Since 200 years is a rela-

tively short time for coupled ocean atmosphere GCM

simulations to get to equilibrium we extended the length of

the top 13 simulations to a total of 1,000 years of inte-

gration. After 1,000 years of integration, the trend in sur-

face air temperatures (calculated over the last 200 years of

the runs) are small: in all of the present day and LGM

simulations the trend are less than 0.12�C per century and

in most cases less than 0.07�C per century. We therefore

conclude that after 1,000 years of integration, the simula-

tions are close to equilibrium. We then calculated the cli-

matologies over the last 30 years and recalculated the cost

function. In 4 of these 13 simulations, the climate conti-

nued to drift after the initial 200 years resulting in a lower

overall cost function than the control. We therefore reject

these four models and the new subset of the top nine

simulations is now defined as the ‘good models’.

5.1 A great variety of behaviours amongst

the ‘good’ simulations

Figure 5 shows the scores of the top 10 models (e.g. the

‘good’ models and the control model) obtained in each

diagnostics compared with each other. These models have

a great variety of performance. The control simulation has

the strongest score for temperature diagnostics but quite a

weak score for precipitation and energy budget compared
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with the other ‘good’ models. The top simulation on the

other hand, has a better score for sea ice and precipitation

but a lower score for SSTs. Rather than obtaining a single

simulation which has optimised the cost function for all the

diagnostics, we have a variety of simulations with indi-

vidual strengths and weaknesses while all having equally

good overall scores.

Figure 6 shows a map of the range of present day annual

mean temperature simulated within the subset of top ten

models. The temperature variability within the subset is

higher over continents and over area covered with sea ice.

In the Arctic region, the difference between individual

models in the top ten is more than 5�C. This variability in

the subset is especially high in winter.
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5.2 LGM temperature response within the selected runs

We define glacial climate sensitivity (or glacial cooling) as

the absolute difference between present day and LGM

annual mean surface air temperature. In other words, it is

the global temperature response to the LGM forcing. The

LGM cooling for the subset of top ten models is between

4.6 and 5.7�C, with lowest glacial cooling obtained by the

control experiment. This result is within the range of the

PMIP2 results (which is 3.6 to 5.7�C) amongst state-of-the-

art ocean atmosphere coupled GCMs (Braconnot et al.

2007).

We tested whether the glacial cooling depends on any

particular parameter. We found that the glacial cooling

varies linearly with the sea ice low albedo (Fig. 7) with a

correlation coefficient of 0.94. The impact of this sea ice

parameter on glacial cooling was already highlighted in

Table 1 which showed that a change of this parameter from

its minimum to maximum value increased the glacial

sensitivity (or glacial cooling) by 1�C.

Increasing the sea ice low albedo has the effect of

increasing the amount of sea ice in summer but does not

change the amount of sea ice in winter. This parameter

only acts when the temperatures are warm. It therefore

increases the reflectivity of the summer sea ice, which

cools the atmosphere above, and results in more sea ice in

summer. Because there is more sea ice in summer, there is

also more sea ice in the subsequent autumn, even though

the sea ice albedo in autumn is not affected by the change

of parameter value. At the LGM, the effect is even greater

because the sea ice cover is greater. As a result, the cooling

at the LGM is greater than the cooling for the present day

which explains the link between glacial cooling and the sea

ice low albedo.

5.3 The glacial ocean circulation of the selected runs

We investigate the Atlantic Meridional Overturning Cir-

culations (AMOC) in the ensemble, under PD and LGM

boundary conditions. Among the ‘good’ models, the pres-

ent day maximum strength of the AMOC varies from 15.8

to 18.8 Sv, which is within to the range of observational

estimates of 18 ± 3–5 Sv (Talley et al. 2003).

To evaluate the response in AMOC under glacial

boundary conditions, we determine for each run the

changes of depth of the North Atlantic Deep Water

(NADW) (which is calculated as the change of depth of the

0 Sv contour of the AMOC at the equator) and the changes

in the maximum of the stream function between present

day and LGM runs. Figure 8 shows the values obtained for

the top ten models. With the exception of one model,

‘good’ models all show a weakening of the AMOC with

generally slightly shallower NADW. The control model

has a strengthening and deepening of the AMOC and a

very weak Antarctic bottom water cell. Palaeo-proxies

suggest that the AMOC was of comparable strength or

slightly slower than today with a NADW cell shallower

than today (McManus et al. 2004; Lynch-Stieglitz et al.

Fig. 6 The range of present day temperatures (in K) obtained within the top ten models for each grid point defined as [max(T)-min (T)] for

annual mean (annual), December to February (DJF) and June to August (JJA) means
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2007). This behaviour of the glacial NADW is followed by

all but one of the nine selected models which is analyse in

the next section. Our ensemble of ‘good’ models is there-

fore more in agreement with proxy data than the control

simulation.

5.4 Improving the simulation of present day

precipitations

As shown in Fig. 5, the control simulation has the lowest

precipitation score in the top ten simulations. In this sec-

tion, we have a closer look at simulation number 4 (S4),

which obtained the highest score in precipitation and out-

going longwave at the top of the atmosphere, to understand

the link between parameter values, clouds and score.

S4 has relatively similar parameter values to the control

experiment except for greatly enhanced CT and CW

(Fig. 9). This simulation has slight changes in other cloud

parameters, such as RHcrit and VF1, but most importantly

it has the same value for the sea ice low albedo.

The climate obtained in S4 is colder than the control

simulation over the mid and high latitudes northern hemi-

sphere continents and over the sea ice. This cooling over

northern hemisphere continents happens in summer (see

Fig. 10) and autumn. Because the summers are cooler,

there is an increase in sea ice in autumn which produces a

cooling over the Arctic sea ice during autumn. The summer

cooling over northern hemisphere land is due to an increase

in the amount of low clouds (Fig. 11) which provides

additional shading without increasing the greenhouse

effect.

It is the combination of the increase in CT and CW

which produces this increase in low clouds over land.

These two parameters are both used in the equation that

determines the amount of precipitation in clouds from their

amount of liquid water. CT determines the rate at which

water precipitates but only when the cloud liquid water

content is high compared to CW. So the two parameters act

in opposite direction. The change in cloud happens over

land because the value of CW is higher over land than over

sea to account for the difference in the size of droplets. In

our tuning we varied the land and sea values of CW

together by the same coefficient. As a result CW over land

is increased much more than over sea. CW and CT com-

pensate each other over sea, but the effect of CW is greater

than the effect of CT over land, leading to a reduction in

the precipitation rate over land only. The change in climate

happens in summer because during this season, the relative

humidity is lower, therefore the cloud liquid water content

is lower and closer to the threshold controlled by CW.

Summer conditions thus maximise the effect of CW.

Figure 10 shows the difference between S4 and obser-

vation and between the control and observation for the

temperature and precipitation in summer (June, July and

August average). We can see that the errors in temperature

are not reduced compared to CTRL which is consistent

with the score for temperature obtained. We go from a

warm bias in the northern high latitude continents in CTRL

to a cold bias. The errors in precipitation on the other hand

seem to be reduced: there is less excess of precipitation on

northern high latitude continents and the errors in the ITCZ

are reduced especially in the West Pacific due to the shift in

the ITCZ and the increase in precipitation over the West

Pacific.

S4 and CTRL have very similar responses to LGM

boundary conditions. The glacial cooling of S4 is similar to
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the CTRL because they have very similar values for the sea

ice low albedo. As a result, their LGM sea ice extent is

comparable, and in both simulations, there is an increase in

the glacial Atlantic overturning circulation compared to the

present day AMOC. Therefore, the parameter combination

in S4 modifies the present day climate but does not change

its sensitivity to glacial boundary conditions.

5.5 Improving present day sea ice and the effect

on LGM climate

The experiment which has the best sea ice score ranks the

highest (S1). The precipitation and longwave fields are

slightly improved compared to the control and the net

surface heat flux is greatly improved (see Fig. 5). Tem-

perature and SSTs scores on the other hand are slightly

lower than CTRL. This is the simulation which, according

to our criteria, is the most balanced. Most of the parameters

in this simulation are different to those of the control

simulation, in particular the sea ice low albedo is increased

(Fig. 9).

As in the simulation S4, we observe a cooling over land

in summer above 40�N compared to CTRL (Fig. 12). This

cooling is not as high as in S4 but since the pattern and

season correspond, it could be due to the effect of the

combined increase in CT and CW as described in previous

section. We also observe a cooling over sea ice in summer

and autumn (Fig. 12). This cooling is related to an increase

in sea ice cover in summer and autumn in the northern

hemisphere except in the Nordic sea (Fig. 13). This can be

attributed to the effect of the sea ice low albedo as

explained in Sect. 5.2. We observe seasonal shifts in the

ITCZ linked with the seasonal changes in temperatures and

a general increase in the precipitation in the tropics

(Fig. 12). As for S4, the errors in the precipitation field are

reduced but the errors in the temperature are increased. In

particular the tropics in S1 are 1–2�C warmer than obser-

vations (Fig. 12).

At the LGM, S1 has a lower tropical SST score than the

control simulation but its glacial AMOC is more in

agreement with proxies as it is slower and slightly shal-

lower than at present day. The maximum overturning is

reduced from 18 Sv at present day to 14 Sv for the LGM,

and the sea ice cover is increased compared to the control

LGM simulation. Sea ice area is larger all year long but is

especially increased in late summer and early autumn (see

Fig. 10 Difference in summer (June, July and August mean) temperature and precipitation between S4, CTRL and CRU climatology data (New

et al. 1999)

Fig. 11 Difference in summer (June, July and August mean) low

cloud cover in grid cells between S4 and CTRL
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Fig. 13). The deep water formation in the north Atlantic

occurs further south than in the LGM control, due to the

increase in the sea ice extent. Finally, the glacial cooling is

increased compared to CTRL, because the sea ice extends

further at the LGM than at present day.

In the S1 simulation, the combination of parameter

values result in an improvement of the overall present day

climate according to our metric. This combination of

parameter values also substantially affects the LGM cli-

mate and in particular improves the overturning circula-

tion. As we showed here, this change in LGM climate is

linked to the effect of the sea ice and is likely caused by the

change in sea ice albedo.

6 Conclusion

We have tuned a low resolution GCM using Latin hyper-

cube sampling. This method enables us to investigate the

whole parameter space by taking into account the inter-

dependencies between the parameters. The method is easy

to implement and offers great flexibility by allowing all

model experiments to be run in parallel. It is therefore well

adapted to the use of modern computer clusters.

The ranking of the models are then determined by a cost

function which compares the model output to present day

and LGM data. This cost function can easily be adapted to

specific needs by putting more emphasis on some diag-

nostics, and taking into account the uncertainty in the

dataset used. In theory, different cost functions can be used

on the same ensemble (without the need for additional

experiments), optimising the use of the model for different

purposes.

The ‘objective’ tuning method we present, along with

other parameter estimation techniques, encompasses a

bigger range of tuning options than the traditional hand

tuning. It still necessitates subjective choices which are

driven by ‘expert solicitation’, such as the choice of

parameters selected for tuning, the range of values spanned

by the sampling and the definition of the cost function. But

these choices are made clear during the process, and the

definition of the tuning problem is greatly improved.

Fig. 12 Difference in annual mean temperature and precipitation between S1, CTRL and CRU climatology data (New et al. 1999)
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Fig. 13 Annual cycle of the arctic sea ice cover at present day (in

red) and LGM (in blue) in S1 (solid lines) and CTRL (dashed lines).

The black line corresponds to the present day observations from

HadISST (UK Meteorological Office 2006)
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Although including glacial data in our cost function

necessitates running the ensemble of models with glacial

boundary conditions, we show that it offers additional

constraints on the tuning. Implicit within using the LGM as

a tuning target is that we are tuning a model to the given set

of forcings, and the tuning may also be compensating for

some missing forcing (e.g. higher atmospheric dust

concentrations).

We select a subset of top nine models defined as ‘good’

models which display a great variety of behaviours, but

have a higher score than the standard control version of the

model. Although the cost function applied is subjective, we

show that weighting the target diagnostics differently does

not greatly change the subset of ‘good’ runs obtained, but

the ranking of the simulations differ. This effect of the

choice of cost function on the ranking of simulations would

influence the result of traditional methods of tuning where

only a single solution is selected.

We investigated how the glacial sensitivity and the

Atlantic overturning circulation vary within our ensemble

of models. The control model has the lowest glacial sen-

sitivity of the ensemble, due to a sea ice parameter which

was tuned to improve present day climate. The ‘good’ runs

display present day AMOC strengths that lie within the

range of observational estimates. And most of the ‘good’

models have shallower and weaker glacial NADW than the

control model, which is in better agreement with estimates

from palaeo-proxies.

Most tuning exercises focus on improving the present

day climate. We showed that including other climate

regimes as targets such as the LGM leads to a different

choice of tuned models. Using present day constraints is a

necessary but not sufficient condition for accurate repre-

sentation of past and future climates. Moreover, a single

model cannot give a perfect representation of the climate

due to the intrinsic structural uncertainty of GCMs. It is

therefore necessary to consider more than one configura-

tion. Our study provides a compromise between the use of

big ensemble of models to investigate uncertainty in

modelling (Stainforth et al. 2005; Murphy et al. 2004), and

the constraints associated with the use of computationally

intensive models such as state-of-the-art GCMs. Such

subset of models have some benefits over the purely sta-

tistically based approaches in that the smallness of the

subset allows investigations of the different possible

responses of the climate to specific forcings as well as

giving insight on the mechanisms operating. Examples of

applications of our small ensemble of tuned models are

freshwater hosing experiments, to investigate the range of

response of the climate model to freshwater forcing under

present day or LGM boundary conditions, and ice sheet

forcing, to analyse the sensitivity of the Northern Hemi-

sphere LGM ice sheets to climate forcing.
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