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Egocentric Visual Event Classification with
Location-Based Priors

Sudeep Sundaram and Walterio W. Mayol-Cuevas

Department of Computer Science, University of Bristol

Abstract. We present a method for visual classification of actions arhts
captured from an egocentric point of view. The method tackhe challenge of a
moving camera by creating deformable graph models for ifileaton of actions.
Action models are learned from low resolution, roughly fitaéd difference im-
ages acquired using a single monocular camera. In panaiglimages from the
camera are used to estimate the user’s location using al \Bgualtaneous Lo-
calization and Mapping (SLAM) system. Action-locationqs, learned using
a labeled set of locations, further aid action classificaiod bring events into
context. We present results on a dataset collected withintgeced environment,
consisting of routine manipulations performed on objedthout tags?

1 Introduction and Related Work

Visual event and activity classification has been mostlgisuifor cases when the cam-
era is static and/or where the action is well centered analileed in the image [1-4].
Less work has been concerned with the case of a moving camieic) is the situation
in systems that are observing inside-out e.g. a wearablerays

Detecting events and activity on the move can lead to asgsidgvices and this is
indeed one of the primary goals for work carried out in thissarExamples of this are
applications ranging from monitoring systems for the didand disabled [5-7], to
systems that "watch and learn” how to carry out complex t§3k3].

When used for sequential activity recognition, knowled§evbere the user is in
each time step, can play a vital role in ensuring robustnehesystem. Location also
brings about the all-important element of context in terrihe user’s interaction with
the immediate environment. Benefits of using location faogmition of user activity
have previously been demonstrated. In [10] anddfly location is used, while in [11],
location is combined with signals obtained from a microphom recognize activity.
To the best of our knowledge, location has yet to be combinigid uman actions to
recognize events and activity on the move. Several recatess have demonstrated
significant interest in human action recognition using casgalthough again a major-
ity of the methods deal with appropriately placed static esas.

Feature descriptors used for representing actions, caraglly classified based on
sparse or dense sampling of feature points from space-gpresentations of actions.

! The authors are deeply grateful to the British Council fa BhD studentship granted to SS,
and to the EUFP7 COGNITO project for partially funding WMC.
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Space-time interest points for action recognition werelus¢12—14] and yielded con-
siderably good results. However, densely sampled feahaes been shown to gener-
ally perform better [15]. In particular, Histograms of Omted Gradients [1] has been a
popular choice of feature descriptor for actions [2—4].

Visual sensing for user location meanwhile, has recentiynsmportant advances
and of particular importance here, are those methods anemalreal-time perfor-
mance. Specifically, some works related to localization magping [16, 17] have de-
veloped fast methods for re-location.

2 Motivation and Contributions

Any method for recognition of egocentric manipulations tragdress problems arising
due to - (1) camera motion, (2) changes in camera vantage, (8)nvariations in the
way a manipulation is performed, and (4) computational iefficy, to enable real-time
performance.

In order to address the first problem, we carry out coarselgtation of the input
sequence to compensate for camera motion, as describedtinrs8.1. The presented
method learngrandation-invariant, deformable graph models (covered in Section 5)
for each manipulation class, thus addressing the seconthaddssues. Computational
efficiency is ensured by classifying actions using low regoh images.

In order to build on the use of location for activity recogmit, we use the same
wearable camera to estimate the user’s location within eléab(not tagged) environ-
ment using a Simultaneous Localization and Mapping systerarned prior distribu-
tions of manipulations performed in known locations aredtseenhance the classifier's
performance.

The contributions of this paper are two-fold - (1) the useefbdmable graph-based
action models for classification of egocentric visual eseand (2) the estimation of
user location from the same sensor to bring events into ggmesulting in improved
classification.

3 Action Cell

This section describes the steps leading up to featuredbapeesentations of action
sequences. Our approach for event classification aims id &we recognition of indi-
vidual objects that are being manipulated, and concestiastead on the more generic
hand and arm motion and the general working scene detedtios.demands careful
extraction of manipulation data with reduced backgroundeo

3.1 2-D Affine Image Registration

Given our use of a wearable camera, we first attempt to rouggrypensate for cam-
era motion relative to the background. L&t be the current frame being processed,
andI;, be the next incoming frame. Lé{1, 1) denote the result obtained when an
image! is affine transformed by parameter vectorWWe approximate camera motion
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compensation by finding the affine transformation parametetor( that minimizes
the absolute intensity difference betweg(y, ¢), and ;. Estimation of¢ and the
corresponding stabilized difference imabg is given by:

¢ = argming(Ix+1 — ¢(Ix, i) (1)
Dy, = Iiy1 — oI, C) (2

@) I (b) Ix41 ©) Iy1 — I (d) Ik+1 — (1, ¢)

Fig. 1. Consecutive framesa( b) from a “Spray” action sample, with contrast normalized- dif
ference imagesc( d). Once camera motion is compensated, foreground motioneohand and
object is more clearly visible

3.2 Action Cell Extraction and Matching

The volume of stabilized difference images over the actegugnce is then split into
16x16x spatio-temporal blocks, whetes the temporal length of the sequence. His-
tograms of oriented gradients are computed from the imag&ated within each time
step in each spatio-temporal block, as described in [1]. Aik®grams are then con-
catenated over the entire temporal length to obtain a feategtor of sizey, x t, where
ny is the number of histogram bins. We term this feature vealong with information
about its spatial location in the image, asaation cell.

In order to match any two given action cells andas, respectively of lengths;
andt,, a distance matrixA of sizet; x ¢, is constructed such that cell,, contains
the Lo distance between histogramse a; andy € as. Normalized dynamic time
warping is used to compute a matching cost betwgeandas by finding the shortest
path throughA.

4 Action Fragment

A number of action cells belonging to a single action seqaanay be modeled as
vertices of a graph, which we term as action fragment. This section deals with the
extraction and matching of action fragments. Formally, giwen action sequence
can be converted to a sequence of roughly stabilized diffterémages, which in turn
is used to generate a set of action cellse. A := {«; : i =1,2,..., |a|}. An action
fragmentis located on the action sequence as a set of uritjoa aells, and is modeled
as grapi’s = (va,e4), whose vertices 4 C « are the action cells, and edgesmay
be found using one of various methods such as Delaunay Tiatgn.
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Fig. 2. Example of an action sequenca) fepresented as a set of action celty. Randomly
picked action cells form the vertices of a graph that represa seed fragment)(

4.1 Seed Fragment

The first step in every iteration of the learning process isattdomly pick an action
fragment in some given action sequence. In the above exathjgés done by specify-
ing |val : 1 < |val < |al, and populating 4 with action cells randomly picked from
a. € 4 is determined by performing a Delaunay Triangulation onsha&tial centroids of
v 4. An example of this process is shown in Figure 2.

4.2 MRF-Based Fragment Localization

Consider any two action sequencésandB. LetTs = (va,e4) be an action fragment
computed fromA. This section deals with the localizationBf in B. In other words,
we attempt to find the action fragmelit = (v, ep) such that the cost' (Y4, 1s) of
matchingY 4 to Tz is minimized:

Y = argminy, (C(Ta, 1)) VY, € B (3)

Finding an exact solution fdfs is clearly NP-hard. Instead, we use the MAX-SUM
approach [18] to find an approximation, in a manner previpadbpted in [19].
The matching cost can be measured as:

C(TA,TB)ZC(UA,UB)+C(€A,€B) (4)

whereC(v4,vp) measures the cost of matching corresponding action cefigeles
the two fragments, an@'(c 4, ¢ 5) measures the cost of matching structures of the two
graphs. The dual of Equation 4 would be to maximizedbalities of v ande . The
overall quality of the localized fragmefiiz, to be maximized, is given by:

Qe)= > Q)+ > Q) (5)

vEVR E€CeRB

T'p is computed using a Markov Random Field, which representapihgconsisting of
M = |va| nodes. The adjacency of the nodes is maintained &g ifcach node, called
an object, consists df fields or labels, with associated qualities. The labels of &ad-
jacent nodes are fully connected By edges. An example of such a graph is shown in
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Fig. 3. Fragment Localization using a Markov Random Field. The rhgdeph (action fragment)
in (a) is localized on the MRFh). The localized action fragment is highlighted by shaded)r
vertices and thick (blue) edges

Figure 3. Maximizing Equation 5 is equivalent to finding a fmaxm posterior config-
uration of the MRF shown. In the current problem, labelsesponding to some Object
i represent thév action cells inv, that are most similar to 4 (¢). Labels are found us-
ing an exhaustive search through thewsgt using the matching technique described in
Section 3.2. The quality of a label is inversely proportidoahe cost for matching the
label to its corresponding object. Dummy labels, with tigkdy low qualities, are added
to each object, to facilitate localization where one or mavgects remain unmatched.
Label qualities for a single object are normalized to havesximum value of 0 and a
median of -1, and therefore lie in the rangex, 0]. The quality of an edge is computed
as the weighted sum of its length and orientation simikesito the corresponding edge
in the model graph. Edge qualities are normalized to lie értingg—1, 0].

Let the MxN matrix L represent the label qualities for each of the objects, aad th
le a|x N2 matrix E represent edge qualities between pairs of labels. Thedatgity of
the labelingS = {n1, ...,nyp } with n; € {1, ..., N} is given by

M leal
Q(S) =Y L(m,S(m))+ > Ele, B(E,S ) 6)
m=1 e=1

wheres(E, S, £ 4) denotes the column representing the edge between the tdimslen
to represent the edge (¢). Rewriting Equations 3, 4 and 5 in terms of the MAX-SUM
problem,Ys can be computed by finding the s&t = argmaxzs(Q(S5)).

5 Learning Action Models

Consider a dataset of manipulatiofs= {4; : i = 1,..., Z} labeled class-wise, con-
sisting ofZ classes. Let any clasbe represented by the sét = {A;; : class(A;;) =
i; j=1,...,|4;]} of manipulationsi;;.

5.1 Fragment Models

Consider a seed fragmetit, chosen from a randomly picked manipulation sample
Aim, @s described in Section 4.1. In order to build a fragmentehaue first localize
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Seed Fragment
Localized Fragments Similar Fragments
£ N ; — p—
> \ 1 Model Fragment
7\ FILTERE 7\ MEAN:: Z

Fig. 4. From seed fragmenf,, to similar fragments: to model fragment’s

A
Localize
=

Y., in all samplesd;; € A;, resulting in a set of similar action fragments
k=AY, : 5=1,..,|4]; Y; = argminy (C(1,»,Y1)) VY € A;;} @)

Each?; is evaluated using the quality of localizifi§y, on A;;, obtained using Equation
6. If this quality is found to be low, thelf; is discarded from:. Once all fragments are
validated, if the size of is too small, then a new seéd, is found, and the process
repeats. This filtering step ensuramsistency across learned action fragments of the
same class.

If the size ofk is large enough, a fragment model can be created. Using etioh a
cell v,, € 7,, as a reference, each of the corresponding action cells 7; are
re-aligned using dynamic programming as described in 8e@i2 so that they are
of the same length as,,. Mean feature vectors are then computed at each time step,
resulting in a learned set of action cells. These actiorsdeltm the vertices of the
learned fragment modé1;.

We now run a filtering step to check whether or not to retjn by attempting to
localize Yy on all samples inl. If 7y has been generated using a seed from class
andg;;, represents the quality obtained by localizifigon some sampld ., then the
quality @ of 7y is computed as follows:

1 Z |44l

= T 30 dli e ®)
=1 k=1
1 Z 1451

M= A Z Z(l — 6(i,5))e®* 9)
AT A 22
Ms

= 10

Qf s + Nd ( )

whered(., .) is the Dirac delta function.

If Q¢ is high enough, then the component action cells are assige#hts equal
to @y and added to the consensus $gtlf @); is not high enough, the fragment is
discarded and the process repeats. This step ensureséhatathed fragment idis-
criminative across classes.
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Note that the graphs representingBjlc x have the same adjacency matrix, since
they were all obtained by localizing a single seed. Whils #tructure remains consis-
tent, the spatial location of each of the correspondingaatells is likely to vary. This
makes the fragment modehnslation-invariant anddeformable. Changes in the cam-
era mount and/or changes in the user’s pose will thus, htikedifect on classification.

5.2 Fragments to Actions

Section 5.1 described the procedure to obtain a single femgymmodel, and assign
weights to the component action cells. This procedure isatga a number of times
for each class, resulting in consensus §éts: i = 1, ..., Z}. The next step is to con-
vert each of these consensus sets into models that can béusetion classification.

Figure 5(a) shows an example consensus set, that consistsumhber of action cells,

@ (b) (c)

Fig. 5. Consensus sd; (a), clustered using KMean$) to form the action mode); (c)

obtained from “high quality” action fragments. It is likethhat highly discriminative
action cells are present as part of more than one action fagmwhile the less discrim-
inative ones may occur only once. In order to retain the moigoirtant action cells, we
perform Euclidian distance based K-Means clustering, as/shn Figure 5(b). Clus-
ters with low populations are discarded. In each cluster tb@aains, the action cell
with the highest weight is retained as a representativeissassigned a weight equal to
the sum of the weights of all elements in the cluster. The mneimg action cells in the
cluster are discarded.

We now have a set of weighted highly discriminative actioliscéVe use these
action cells as vertices of a graph, whose edges are giveretigrming a Delaunay
Triangulation on the centroids of the action cells. An ex&nip shown in Figure 5(c).
The vertex weights in this graph are normalized to form a plulity distribution, while
the edges are assigned equal weights. This gives rise &ateom model v; for each
class.

The model-building process described above takes pladgeeotih a subset of the
available dataset. Classification of the actions, on therdttand, is designed to be
online, and happens immediately after the action is coraplet

5.3 Action Classifier

Given atest action, it is matched with the learned modelsgusie MRF-based method
described in Section 4.2. This time, instead of finding acfiagments, the matcher
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attempts to find the graphical action model on the test acfibe recognized class
for any input action? is given byw = argmaz;(Q(¢;, 2)), whereQ(v;, £2) is the
quality of localizing action mode); on actions?.

6 User Location for Action Classification

Daily routine actions and activities are usually perfornmethe same environment(s)
on a regular basis. We aim to take advantage of consistesrniation available in the
user’s surroundings to improve event classification. Sparaps of 3D features repre-
senting the user’s environment are built, from the cameatithused for action classifi-
cation, using a Simultaneous Localization and MappingesystVe are more interested
in the localization part, and thus the maps are built offlind atored. Probability dis-
tributions of actions performed in each map are learned usied as priors to improve
the accuracy of the action classifier.

Given some action sequence, the SLAM system is pushed ilowatezation mode.
In this manner, there is a resemblance with the work of [20¢mehdisjoint locations
are used for placing information. Here however, we use thtéhaakefor relocalization
described in [17] for its performance and reduced memoryireqments. The localiza-
tion method is robust to a degree of alterations in the mappgtonment as produced
by objects moving or being occluded. If the system managesdcalize in one of the
stored maps, the corresponding action prior is loaded aed tasimprove classification
accuracy.

@ (b)

(d)

Fig. 6. User Location is provided by Relocalization in a 3D SLAM méjigures &,c) show
examples of building a SLAM map offline, whil®,¢l) show relocalization in the classifier

7 Experiments and Results

7.1 Dataset

Manipulation samples were collected by a single candidagg different days span-
ning 4 weeks - in order to capture natural variations in act®amples were collected
for 7 manipulation classes in 4 locations. Figure 7 showauger setup and a map of
the environment, followed by snapshots of the 4 locationsr@lsamples were col-
lected. The manipulation classes (and the location(s) Wexg performed in) include
Answer Phone (Niche), Chop (Kitchen), Drink (Kitchen, Desk),Open Door (Door),
Pour (Kitchen), Spray (Kitchen, Niche),Unscrew (Kitchen, Desk). In all, the dataset
consists of 277 manipulations, with a minimum of 34 per class
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@ (b)

Fig. 7. User Setup and Environmeng)(shows the user with the wearable setuy).ghows the
environment used, consisting @) kitchen, niche, d) desk and door locations

7.2 Results

A subset of the dataset - 12 samples from each class - wasméyidelected to train
the classifier. The learned models provided a classificat@muracy of 95.24% on the
training set alone. In order to analyze the performance efcthssifier, statistics were
generated over the entire dataset for varying valued ghumber of labels in MRF),
both with and without the use of location-based priors. Slfastion accuracies are

measured for each individual action modelas= W whereT'P(i) and
T N (i) are respectively the number of “true positive” and “true adge” classifications

z .
for classi. The overall classification accuracy is computedas= w

&

&

8

2

er féame, in ms)

(y

Classification Accuracy
]

Classification Accuracy

Average Computation Time

o

AoRINDOY UOTe!,

£

s e

* Number of Labels n'° *Number of Labels N
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Fig. 8. Classification accuracies for each class (a) without locaéind (b) with location, with
the dashed line indicating the change in average individlzasification accuracy. (c) Overall
classification accuracy, compared with computation tinegsfiame

Figure 8 contains classification accuracy plots for indidtclasses, and for the
overall dataset analyzed against varying valued/ofClassification accuracies for in-
dividual classes (see Figures 8(a) and 8(b)) remain cemigtabove 80% both with
and without the use of location, fa¥ > 3. With location, the overall classification
improves by 4.3% on average, but more importantly reducest@imputation time by
29.23%, due to the reduced number of models to be matchedré=8gc)).

8 Conclusion

We have presented a method that learns probabilistic grapimodels to describe ac-
tions observed from a wearable camera. Further, we usedathe sensor to estimate
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the user’s location, and combined this information with &lotion classifier to improve
its accuracy and performance. The results also validateiskeeof a monocular cam-
era as a stand-alone sensor, capable of recognizing usépurtetion activity without
the need to recognize individual objects. Future work imesltests of our method for
a number of candidates over longer periods of time. An exten® this work will
involve automatic detection and classification of evergsifcontinuous video.
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