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Egocentric Visual Event Classification with
Location-Based Priors

Sudeep Sundaram and Walterio W. Mayol-Cuevas

Department of Computer Science, University of Bristol

Abstract. We present a method for visual classification of actions and events
captured from an egocentric point of view. The method tackles the challenge of a
moving camera by creating deformable graph models for classification of actions.
Action models are learned from low resolution, roughly stabilized difference im-
ages acquired using a single monocular camera. In parallel,raw images from the
camera are used to estimate the user’s location using a visual Simultaneous Lo-
calization and Mapping (SLAM) system. Action-location priors, learned using
a labeled set of locations, further aid action classification and bring events into
context. We present results on a dataset collected within a cluttered environment,
consisting of routine manipulations performed on objects without tags.1

1 Introduction and Related Work

Visual event and activity classification has been mostly studied for cases when the cam-
era is static and/or where the action is well centered and localized in the image [1–4].
Less work has been concerned with the case of a moving camera,which is the situation
in systems that are observing inside-out e.g. a wearable system.

Detecting events and activity on the move can lead to assistive devices and this is
indeed one of the primary goals for work carried out in this area. Examples of this are
applications ranging from monitoring systems for the elderly and disabled [5–7], to
systems that ”watch and learn” how to carry out complex tasks[8, 9].

When used for sequential activity recognition, knowledge of where the user is in
each time step, can play a vital role in ensuring robustness of the system. Location also
brings about the all-important element of context in terms of the user’s interaction with
the immediate environment. Benefits of using location for recognition of user activity
have previously been demonstrated. In [10] and [6],only location is used, while in [11],
location is combined with signals obtained from a microphone to recognize activity.
To the best of our knowledge, location has yet to be combined with human actions to
recognize events and activity on the move. Several recent systems have demonstrated
significant interest in human action recognition using cameras, although again a major-
ity of the methods deal with appropriately placed static cameras.

Feature descriptors used for representing actions, can be broadly classified based on
sparse or dense sampling of feature points from space-time representations of actions.

1 The authors are deeply grateful to the British Council for the PhD studentship granted to SS,
and to the EUFP7 COGNITO project for partially funding WMC.
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Space-time interest points for action recognition were used in [12–14] and yielded con-
siderably good results. However, densely sampled featureshave been shown to gener-
ally perform better [15]. In particular, Histograms of Oriented Gradients [1] has been a
popular choice of feature descriptor for actions [2–4].

Visual sensing for user location meanwhile, has recently seen important advances
and of particular importance here, are those methods amenable to real-time perfor-
mance. Specifically, some works related to localization andmapping [16, 17] have de-
veloped fast methods for re-location.

2 Motivation and Contributions

Any method for recognition of egocentric manipulations must address problems arising
due to - (1) camera motion, (2) changes in camera vantage point, (3) variations in the
way a manipulation is performed, and (4) computational efficiency, to enable real-time
performance.

In order to address the first problem, we carry out coarse stabilization of the input
sequence to compensate for camera motion, as described in Section 3.1. The presented
method learnstranslation-invariant, deformable graph models (covered in Section 5)
for each manipulation class, thus addressing the second andthird issues. Computational
efficiency is ensured by classifying actions using low resolution images.

In order to build on the use of location for activity recognition, we use the same
wearable camera to estimate the user’s location within a labeled (not tagged) environ-
ment using a Simultaneous Localization and Mapping system.Learned prior distribu-
tions of manipulations performed in known locations are used to enhance the classifier’s
performance.

The contributions of this paper are two-fold - (1) the use of deformable graph-based
action models for classification of egocentric visual events, and (2) the estimation of
user location from the same sensor to bring events into context, resulting in improved
classification.

3 Action Cell

This section describes the steps leading up to feature-based representations of action
sequences. Our approach for event classification aims to avoid the recognition of indi-
vidual objects that are being manipulated, and concentrates instead on the more generic
hand and arm motion and the general working scene detection.This demands careful
extraction of manipulation data with reduced background noise.

3.1 2-D Affine Image Registration

Given our use of a wearable camera, we first attempt to roughlycompensate for cam-
era motion relative to the background. LetIk be the current frame being processed,
andIk+1 be the next incoming frame. Letφ(I, µ) denote the result obtained when an
imageI is affine transformed by parameter vectorµ. We approximate camera motion
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compensation by finding the affine transformation parametervectorζ that minimizes
the absolute intensity difference betweenφ(Ik, ζ), andIk+1. Estimation ofζ and the
corresponding stabilized difference imageDk is given by:

ζ = argminµ(Ik+1 − φ(Ik, µ)) (1)

Dk = Ik+1 − φ(Ik, ζ) (2)

(a) Ik (b) Ik+1 (c) Ik+1 − Ik (d) Ik+1 − φ(Ik, ζ)

Fig. 1. Consecutive frames (a, b) from a “Spray” action sample, with contrast normalized dif-
ference images (c, d). Once camera motion is compensated, foreground motion of the hand and
object is more clearly visible

3.2 Action Cell Extraction and Matching

The volume of stabilized difference images over the action sequence is then split into
16x16xt spatio-temporal blocks, wheret is the temporal length of the sequence. His-
tograms of oriented gradients are computed from the image contained within each time
step in each spatio-temporal block, as described in [1]. Thehistograms are then con-
catenated over the entire temporal length to obtain a feature vector of sizenb× t, where
nb is the number of histogram bins. We term this feature vector,along with information
about its spatial location in the image, as anaction cell.

In order to match any two given action cellsa1 anda2, respectively of lengthst1
andt2, a distance matrix∆ of sizet1 × t2 is constructed such that cell∆xy contains
theL2 distance between histogramsx ∈ a1 andy ∈ a2. Normalized dynamic time
warping is used to compute a matching cost betweena1 anda2 by finding the shortest
path through∆.

4 Action Fragment

A number of action cells belonging to a single action sequence may be modeled as
vertices of a graph, which we term as anaction fragment. This section deals with the
extraction and matching of action fragments. Formally, anygiven action sequenceA
can be converted to a sequence of roughly stabilized difference images, which in turn
is used to generate a set of action cellsα i.e.A := {αi : i = 1, 2, ..., |α|}. An action
fragment is located on the action sequence as a set of unique action cells, and is modeled
as graphΥA = 〈υA, εA〉, whose verticesυA ⊆ α are the action cells, and edgesεA may
be found using one of various methods such as Delaunay Triangulation.
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(a) (b) (c)

Fig. 2. Example of an action sequence (a) represented as a set of action cells (b). Randomly
picked action cells form the vertices of a graph that represents a seed fragment (c)

4.1 Seed Fragment

The first step in every iteration of the learning process is torandomly pick an action
fragment in some given action sequence. In the above example, this is done by specify-
ing |υA| : 1 ≤ |υA| ≤ |α|, and populatingυA with action cells randomly picked from
α. εA is determined by performing a Delaunay Triangulation on thespatial centroids of
υA. An example of this process is shown in Figure 2.

4.2 MRF-Based Fragment Localization

Consider any two action sequencesA andB. LetΥA = 〈υA, εA〉 be an action fragment
computed fromA. This section deals with the localization ofΥA in B. In other words,
we attempt to find the action fragmentΥB = 〈υB, εB〉 such that the costC(ΥA, ΥB) of
matchingΥA to ΥB is minimized:

ΥB = argminΥb
(C(ΥA, Υb)) ∀ Υb ∈ B (3)

Finding an exact solution forΥB is clearly NP-hard. Instead, we use the MAX-SUM
approach [18] to find an approximation, in a manner previously adopted in [19].

The matching cost can be measured as:

C(ΥA, ΥB) = C(υA, υB) + C(εA, εB) (4)

whereC(υA, υB) measures the cost of matching corresponding action cells between
the two fragments, andC(εA, εB) measures the cost of matching structures of the two
graphs. The dual of Equation 4 would be to maximize thequalities of υB andεB. The
overall quality of the localized fragmentΥB , to be maximized, is given by:

Q(ΥB) =
∑

υ∈υB

Q(υ) +
∑

ε∈εB

Q(ε) (5)

ΥB is computed using a Markov Random Field, which represents a graph consisting of
M = |υA| nodes. The adjacency of the nodes is maintained as inΥA. Each node, called
an object, consists ofN fields or labels, with associated qualities. The labels of two ad-
jacent nodes are fully connected byN2 edges. An example of such a graph is shown in
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(a) (b)

Fig. 3.Fragment Localization using a Markov Random Field. The model graph (action fragment)
in (a) is localized on the MRF (b). The localized action fragment is highlighted by shaded (red)
vertices and thick (blue) edges

Figure 3. Maximizing Equation 5 is equivalent to finding a maximum posterior config-
uration of the MRF shown. In the current problem, labels corresponding to some Object
i represent theN action cells inυB, that are most similar toυA(i). Labels are found us-
ing an exhaustive search through the setυB, using the matching technique described in
Section 3.2. The quality of a label is inversely proportional to the cost for matching the
label to its corresponding object. Dummy labels, with relatively low qualities, are added
to each object, to facilitate localization where one or moreobjects remain unmatched.
Label qualities for a single object are normalized to have a maximum value of 0 and a
median of -1, and therefore lie in the range[−∞, 0]. The quality of an edge is computed
as the weighted sum of its length and orientation similarities to the corresponding edge
in the model graph. Edge qualities are normalized to lie in the range[−1, 0].

Let theMxN matrixL represent the label qualities for each of the objects, and the
|εA|xN2 matrixE represent edge qualities between pairs of labels. The totalquality of
the labelingS = {n1, ..., nM} with ni ∈ {1, ..., N} is given by

Q(S) =

M∑

m=1

L(m,S(m)) +

|εA|∑

e=1

E(e, β(E,S, εA)) (6)

whereβ(E,S, εA) denotes the column representing the edge between the labelschosen
to represent the edgeεA(e). Rewriting Equations 3, 4 and 5 in terms of the MAX-SUM
problem,ΥB can be computed by finding the setS∗ = argmaxS(Q(S)).

5 Learning Action Models

Consider a dataset of manipulationsΛ = {Λi : i = 1, ..., Z} labeled class-wise, con-
sisting ofZ classes. Let any classi be represented by the setΛi = {Λij : class(Λij) =
i ; j = 1, ..., |Λi|} of manipulationsΛij .

5.1 Fragment Models

Consider a seed fragmentΥm chosen from a randomly picked manipulation sample
Λim, as described in Section 4.1. In order to build a fragment model, we first localize
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Fig. 4. From seed fragmentΥm to similar fragmentsκ to model fragmentΥf

Υm in all samplesΛij ∈ Λi, resulting in a set of similar action fragmentsκ.

κ = {Υj : j = 1, ..., |Λi| ; Υj = argminΥ (C(Υm, Υ )) ∀ Υ ∈ Λij} (7)

EachΥj is evaluated using the quality of localizingΥm onΛij , obtained using Equation
6. If this quality is found to be low, thenΥj is discarded fromκ. Once all fragments are
validated, if the size ofκ is too small, then a new seedΥm is found, and the process
repeats. This filtering step ensuresconsistency across learned action fragments of the
same class.

If the size ofκ is large enough, a fragment model can be created. Using each action
cell υm ∈ Υm as a reference, each of the corresponding action cellsυj ∈ Υj are
re-aligned using dynamic programming as described in Section 3.2 so that they are
of the same length asυm. Mean feature vectors are then computed at each time step,
resulting in a learned set of action cells. These action cells form the vertices of the
learned fragment modelΥf .

We now run a filtering step to check whether or not to retainΥf , by attempting to
localizeΥf on all samples inΛ. If Υf has been generated using a seed from classi,
andqjk represents the quality obtained by localizingΥf on some sampleΛjk, then the
qualityQf of Υf is computed as follows:

ηs =
1

|Λi|

Z∑

j=1

|Λj |∑

k=1

δ(i, j)eqjk (8)

ηd =
1

|Λ| − |Λi|

Z∑

j=1

|Λj |∑

k=1

(1 − δ(i, j))eqjk (9)

Qf =
ηs

ηs + ηd

(10)

whereδ(., .) is the Dirac delta function.
If Qf is high enough, then the component action cells are assignedweights equal

to Qf and added to the consensus setΨi. If Qf is not high enough, the fragment is
discarded and the process repeats. This step ensures that the learned fragment isdis-
criminative across classes.
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Note that the graphs representing allΥj ∈ κ have the same adjacency matrix, since
they were all obtained by localizing a single seed. While this structure remains consis-
tent, the spatial location of each of the corresponding action cells is likely to vary. This
makes the fragment modeltranslation-invariant anddeformable. Changes in the cam-
era mount and/or changes in the user’s pose will thus, have little effect on classification.

5.2 Fragments to Actions

Section 5.1 described the procedure to obtain a single fragment model, and assign
weights to the component action cells. This procedure is repeated a number of times
for each class, resulting in consensus sets{Ψi : i = 1, ..., Z}. The next step is to con-
vert each of these consensus sets into models that can be usedfor action classification.
Figure 5(a) shows an example consensus set, that consists ofa number of action cells,

(a) (b) (c)

Fig. 5. Consensus setΨi (a), clustered using KMeans (b) to form the action modelψi (c)

obtained from “high quality” action fragments. It is likelythat highly discriminative
action cells are present as part of more than one action fragment, while the less discrim-
inative ones may occur only once. In order to retain the more important action cells, we
perform Euclidian distance based K-Means clustering, as shown in Figure 5(b). Clus-
ters with low populations are discarded. In each cluster that remains, the action cell
with the highest weight is retained as a representative, andis assigned a weight equal to
the sum of the weights of all elements in the cluster. The remaining action cells in the
cluster are discarded.

We now have a set of weighted highly discriminative action cells. We use these
action cells as vertices of a graph, whose edges are given by performing a Delaunay
Triangulation on the centroids of the action cells. An example is shown in Figure 5(c).
The vertex weights in this graph are normalized to form a probability distribution, while
the edges are assigned equal weights. This gives rise to anaction model ψi for each
class.

The model-building process described above takes place offline on a subset of the
available dataset. Classification of the actions, on the other hand, is designed to be
online, and happens immediately after the action is complete.

5.3 Action Classifier

Given a test action, it is matched with the learned models using the MRF-based method
described in Section 4.2. This time, instead of finding action fragments, the matcher
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attempts to find the graphical action model on the test action. The recognized classω
for any input actionΩ is given byω = argmaxi(Q(ψi, Ω)), whereQ(ψi, Ω) is the
quality of localizing action modelψi on actionΩ.

6 User Location for Action Classification

Daily routine actions and activities are usually performedin the same environment(s)
on a regular basis. We aim to take advantage of consistent information available in the
user’s surroundings to improve event classification. Sparse maps of 3D features repre-
senting the user’s environment are built, from the camera that is used for action classifi-
cation, using a Simultaneous Localization and Mapping system. We are more interested
in the localization part, and thus the maps are built offline and stored. Probability dis-
tributions of actions performed in each map are learned, andused as priors to improve
the accuracy of the action classifier.

Given some action sequence, the SLAM system is pushed into relocalization mode.
In this manner, there is a resemblance with the work of [20] where disjoint locations
are used for placing information. Here however, we use the method for relocalization
described in [17] for its performance and reduced memory requirements. The localiza-
tion method is robust to a degree of alterations in the mappedenvironment as produced
by objects moving or being occluded. If the system manages torelocalize in one of the
stored maps, the corresponding action prior is loaded and used to improve classification
accuracy.

(a) (b) (c) (d)

Fig. 6. User Location is provided by Relocalization in a 3D SLAM map.Figures (a,c) show
examples of building a SLAM map offline, while (b,d) show relocalization in the classifier

7 Experiments and Results

7.1 Dataset

Manipulation samples were collected by a single candidate over different days span-
ning 4 weeks - in order to capture natural variations in action. Samples were collected
for 7 manipulation classes in 4 locations. Figure 7 shows theuser setup and a map of
the environment, followed by snapshots of the 4 locations where samples were col-
lected. The manipulation classes (and the location(s) theywere performed in) include
Answer Phone (Niche), Chop (Kitchen),Drink (Kitchen, Desk),Open Door (Door),
Pour (Kitchen),Spray (Kitchen, Niche),Unscrew (Kitchen, Desk). In all, the dataset
consists of 277 manipulations, with a minimum of 34 per class.
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(a) (b) (c) (d)

Fig. 7. User Setup and Environment. (a) shows the user with the wearable setup. (b) shows the
environment used, consisting of (c) kitchen, niche, (d) desk and door locations

7.2 Results

A subset of the dataset - 12 samples from each class - was randomly selected to train
the classifier. The learned models provided a classificationaccuracy of 95.24% on the
training set alone. In order to analyze the performance of the classifier, statistics were
generated over the entire dataset for varying values ofN (number of labels in MRF),
both with and without the use of location-based priors. Classification accuracies are
measured for each individual action model asηi = TP (i)+TN(i)

|Λ| , whereTP (i) and
TN(i) are respectively the number of “true positive” and “true negative” classifications

for classi. The overall classification accuracy is computed asηall =
PZ

i=1
TP (i)

|Λ| .

(a) (b) (c)

Fig. 8. Classification accuracies for each class (a) without location and (b) with location, with
the dashed line indicating the change in average individualclassification accuracy. (c) Overall
classification accuracy, compared with computation times per frame

Figure 8 contains classification accuracy plots for individual classes, and for the
overall dataset analyzed against varying values ofN . Classification accuracies for in-
dividual classes (see Figures 8(a) and 8(b)) remain consistently above 80% both with
and without the use of location, forN ≥ 3. With location, the overall classification
improves by 4.3% on average, but more importantly reduces the computation time by
29.23%, due to the reduced number of models to be matched (Figure 8(c)).

8 Conclusion

We have presented a method that learns probabilistic graphical models to describe ac-
tions observed from a wearable camera. Further, we used the same sensor to estimate
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the user’s location, and combined this information with theaction classifier to improve
its accuracy and performance. The results also validate theuse of a monocular cam-
era as a stand-alone sensor, capable of recognizing user manipulation activity without
the need to recognize individual objects. Future work involves tests of our method for
a number of candidates over longer periods of time. An extension to this work will
involve automatic detection and classification of events from continuous video.
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