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Behavioral/Systems/Cognitive

Spinal Processing of Noxious and Innocuous Cold
Information: Differential Modulation by the
Periaqueductal Gray

J. Lianne Leith, Stella Koutsikou, Bridget M. Lumb, and Richard Apps
Department of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom

In addition to cold being an important behavioral drive, altered cold sensation frequently accompanies pathological pain states. However,
in contrast to peripheral mechanisms, central processing of cold sensory input has received relatively little attention. The present study
characterized spinal responses to noxious and innocuous intensities of cold stimulation in vivo and established the extent to which they
are modulated by descending control originating from the periaqueductal gray (PAG), a major determinant of acute and chronic pain. In
lightly anesthetized rats, hindpaw cooling with ethyl chloride, but not acetone, was sufficiently noxious to evoke withdrawal reflexes,
which were powerfully inhibited by ventrolateral (VL)-PAG stimulation. In a second series of experiments, subsets of spinal dorsal horn
neurons were found to respond to innocuous and/or noxious cold. Descending control from the VL-PAG distinguished between activity
in nociceptive versus non-nociceptive spinal circuits in that innocuous cold information transmitted by non-nociceptive class 1 and
wide-dynamic-range class 2 neurons remained unaltered. In contrast, noxious cold information transmitted by class 2 neurons and all
cold-evoked activity in nociceptive-specific class 3 neurons was significantly depressed. We therefore demonstrate that spinal responses
to cold can be powerfully modulated by descending control systems originating in the PAG, and that this control selectively modulates
transmission of noxious versus innocuous information. This has important implications for central processing of cold somatosensation
and, given that chronic pain states are dependent on dynamic alterations in descending control, will help elucidate mechanisms under-
lying aberrant cold sensations that accompany pathological pain states.

Introduction
Understanding the neural mechanisms underlying cold sensation
is important behaviorally, given the vital role of temperature per-
ception in survival, but also clinically, given the aberrant cold
responses frequently observed in neuropathic pain (Ochoa and
Yarnitsky, 1994; Jorum et al., 2003). Peripheral mechanisms of
cold somatosensation in relation to both acute and chronic pain
states have received much recent interest. However, there is a
surprising lack of knowledge regarding central processing of cold
information, in particular whether cold-evoked responses at the
spinal level are modulated by descending control systems, which
are known to have powerful modulatory effects on other sensory
modalities (Lovick and Bandler, 2005; Heinricher et al., 2009).

Innocuous cooling activates subsets of A�- and C-fiber low-
threshold afferents (Bessou and Perl, 1969; Leem et al., 1993;
Campero et al., 1996). More intense cold stimuli additionally
activate populations of nociceptive afferents (both A�- and
C-fiber units), which display a range of activation thresholds and

encode changes in stimulus intensity (LaMotte and Thalhammer,
1982; Lynn and Carpenter, 1982; Leem et al., 1993; Simone and
Kajander, 1996, 1997; Cain et al., 2001). At the spinal level, elec-
trophysiological studies have demonstrated that wide-dynamic-
range and nociceptive-specific neurons in the dorsal horn are
excited by cold stimuli and encode intensity to noxious cold over
a wide range of temperatures (Christensen and Perl, 1970; Khasabov
et al., 2001; Brignell et al., 2008). Additionally, cold stimulation of
the hindpaw or face evokes intensity-dependent Fos expression
in spinal and medullary dorsal horn neurons, respectively
(Strassman et al., 1993; Abbadie et al., 1994; Doyle and Hunt,
1999; Todd et al., 2005).

Spinal processing of sensory information is subject to dynamic
descending modulation from supraspinal structures, which is a ma-
jor determinant of the acute pain experience evoked by noxious
mechanical and heat stimuli (Millan, 2002; Heinricher et al.,
2009). In particular, the periaqueductal gray (PAG) is a key
source of descending control that operates in different behavioral
states (Keay and Bandler, 2001; Lovick and Bandler, 2005), and it
is now recognized that chronic pain states are dependent on de-
scending control from brainstem centers, including the PAG
(Pertovaara et al., 1996; Urban and Gebhart, 1999; Pertovaara,
2000; Monhemius et al., 2001; Pertovaara and Wei, 2003; Vanegas
and Schaible, 2004; Carlson et al., 2007). Descending control
from the PAG profoundly modulates processing of mechanical
and heat information (Heinricher et al., 2009). However, it re-
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mains unknown to what extent processing of cold information is
subject to descending control.

By recording noxious cold-evoked withdrawal reflexes and
dorsal horn neuronal activity in response to both innocuous and
noxious cold stimuli, the present study provides direct evidence
that descending control from the ventrolateral (VL)-PAG selec-
tively modulates transmission of noxious cold information.
Dynamic alterations in descending control underlie central sen-
sitization and chronic pain states; therefore, changes in descend-
ing modulation of cold inputs during the transition from acute to
chronic pain may contribute to aberrant responses to cold that
accompany neuropathic pain.

Materials and Methods
Animal preparation
All experiments were performed in accordance with the UK Animals
(Scientific Procedures) Act 1986 and associated guidelines. Male adult
Wistar rats (280 –320 g; n � 38; Harlan) were housed in standard condi-
tions and handled frequently to minimize stress on the day of the
experiment.

Anesthesia was induced using 4% halothane in O2, and the jugular
vein was cannulated for anesthetic maintenance using a constant intra-
venous infusion of alphaxalone (�25 mg � kg �1 � h �1 Alfaxan; Jurox).
The carotid artery was exposed and cannulated for recording of blood
pressure, and the trachea was intubated. Body temperature was main-
tained within physiological limits by means of a feedback-controlled
heating blanket and rectal probe. In animals in which dorsal horn neu-
ronal activity was to be recorded, a laminectomy was performed between
T11 and T13 to expose the lumbar spinal cord. Animals were then posi-
tioned in a stereotaxic frame and a craniotomy was performed to allow
access to the PAG with glass micropipettes.

In neuronal recording experiments, anesthesia was maintained at a
level at which there were no precipitous changes in blood pressure in
response to minor noxious stimuli, and in electromyographic (EMG)
recording experiments it was reduced to a level at which animals were
moderately responsive to firm pinch of the contralateral forepaw. Ani-
mals were allowed to stabilize at these levels for a minimum of 30 min
before recording of neuronal or EMG activity.

Recording of skin temperature
Surface skin temperature on the hindpaw was recorded using a K-type
thermocouple (Physitemp) held in place with a small dab of cyanoacry-
late glue (distant from the site of stimulation; Loctite; Henkel). The ther-
mocouple was connected to a digital thermometer (BAT-12; Physitemp),
and the output signal was digitized using a 1401plus data acquisition
system (Cambridge Electronic Design). Subcutaneous skin temperature
was recorded using a T-type thermocouple (made in-house) connected
to a digital thermometer, and then the output signal was digitized via a
1401plus.

Recording of EMG activity
An intramuscular bipolar electrode, custom made from two short
lengths of Teflon-coated, 0.075-mm-diameter, stainless steel wire (Ad-
vent Research Materials), was inserted into the biceps femoris of the left
hind leg to record EMG activity during the withdrawal reflex. The EMG
signal was amplified (�5000) and filtered (50 Hz to 5 kHz; NeuroLog
System; Digitimer), before being captured for subsequent analysis via a
1401plus (Cambridge Electronic Design) onto a PC running Spike2 ver-
sion 5 software (Cambridge Electronic Design). The magnitude of the
withdrawal reflex evoked by thermal stimuli was quantified by measuring
the modulus of the EMG using Spike2 software. This value was then
corrected for background noise by subtracting noise over the same length
of time as the response (measured before application of the thermal
stimulus). In some experiments, surface and subsurface skin tempera-
tures were recorded simultaneously, and it was therefore possible to mea-
sure the threshold temperature at which the withdrawal reflex occurred
in addition to response magnitude. If no EMG was observed following

PAG stimulation, withdrawal threshold was assigned as 0°C for data
analysis.

Recording of dorsal horn neuronal activity
The vertebral column was clamped at each end of the laminectomy to
maximize stability during neuronal recordings. The dura was removed, a
pool was made with skin flaps, and the whole area was filled with agar to
further stabilize the preparation. Once set, a small window was cut out of
the agar over the desired recording site and filled with warm paraffin oil.
A glass-coated tungsten microelectrode (�5 M�; Melanie Ainsworth;
Northamptonshire, UK) was lowered into the cord. Extracellular single-
unit neuronal activity was amplified (�5000) and filtered (500 Hz to 10
kHz; NeuroLog System; Digitimer) before being captured at 10 kHz for
subsequent analysis via a 1401plus (Cambridge Electronic Design) onto a
PC running Spike2 version5 software (Cambridge Electronic Design).

Functional classification of spinal neurons
Single units were isolated using gentle tapping, stroking, or firm pinch of
the hindlimb, delivered manually, as a search stimulus. It was not feasible
to use cooling as a search stimulus; therefore, it must be borne in mind
that the search stimuli used biased the population to mechanically sen-
sitive neurons.

Once a unit had been identified, the peripheral receptive field was
characterized using low-threshold (brush, tap) and high-threshold
(pinch) mechanical stimuli. According to their mechanical response
properties, units were classified as class 1 (low threshold, non-noxious),
class 2 (low and high threshold, wide dynamic range), or class 3 (high
threshold, nociceptive specific) (Menetrey et al., 1977; 1979). Neurons
were then tested for responsiveness to the following thermal stimuli:
noxious heat (50°C water; 1 ml), innocuous cooling (acetone; 1 ml), or
noxious cold [ethyl chloride (EC); 1 ml].

Responses to acetone and EC were quantified by counting the total
number of spikes evoked until activity returned to the prestimulus level;
this value was then corrected for spontaneous activity of the neuron over
the same length of time as the response (measured before application of
the thermal stimulus). In some neurons, afferent input was further char-
acterized by monitoring responses to percutaneous electrical stimuli (1
ms square pulse) delivered to the center of the receptive field via needle
electrodes. Thresholds for A- and C-fiber activation were established and
repeated sweeps were made at both 1.5 and 3 times C-fiber threshold
voltage (a train of 20 1 ms square pulses delivered at 0.1 Hz). All neurons
tested showed responses at latencies consistent with input from both A-
and C-fiber afferents and were therefore classified as C positive (Waters
and Lumb, 2008).

Antidromic testing of spinal neurons for a supraspinal projection
In some experiments, dorsal horn neurons were tested for a supraspinal
projection to the caudal brainstem. Supraspinal projection neurons were
identified by their antidromic responses to electrical stimulation in the
vicinity of the contralateral inferior olivary complex [�12.5 mm caudal
to bregma, 1.2–1.5 mm lateral to the midline, and 8.5–9.0 mm deep to the
cortical surface according to the brain atlas of Paxinos and Watson
(2005)] using a bipolar stimulating electrode (interpolar distance of 0.5
mm; SNE-100X; Harvard Apparatus). Single pulses (20 –100 �A, 0.1 ms
duration, at a rate of 0.1 Hz) were delivered via the stimulating electrode,
and dorsal horn neurons were classified as projection neurons if they met
the following standard criteria for antidromic activation: (1) an all-or-
none response to stimulation, (2) constant latency responses, (3) fre-
quency following to three stimuli delivered at a rate of 100 Hz, and (4)
collision of the antidromic spike with a spontaneous or evoked ortho-
dromic spike (Lipski, 1981).

Cold stimulation of the skin
Two different cooling stimuli were used. One milliliter of either 100% EC
(Acorus Therapeutics) or 100% acetone (Fisher Scientific) was applied
topically to the hindpaw (in withdrawal reflex experiments) or the hind-
limb receptive field (in dorsal horn neuronal recording experiments)
using a pipette. Care was taken not to touch the skin with the pipette tip.
Because of the position of the animal in the stereotaxic frame, the pipette
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was aimed at the lateral paw, but the coolant very rapidly (�1 s) spread
over the whole paw, including both dorsal and plantar surfaces.

Neuronal activation in the PAG
Glass micropipettes (Harvard Apparatus) were driven stereotaxically
into the VL-PAG at �7.6 –7.8 mm caudal to bregma, 0.8 –1.0 mm lateral
to midline, and 5.3–5.5 mm deep to the cortical surface according to the
brain atlas of Paxinos and Watson (2005). Micropipettes were filled with
a 50 mM solution of the excitatory amino acid DL-homocysteic acid
(DLH; Sigma) containing pontamine sky blue dye (Gurr) to mark injec-
tion sites. Microinjections of DLH (60 – 80 nl) were given under micro-
scopic guidance using a custom-made, paraffin-filled pressure injection
system attached to a 1 �l syringe (SGE Analytical Science). The concen-
tration of DLH was the same as that used in previous studies of descend-
ing control from the PAG (Waters and Lumb, 1997; McMullan and
Lumb, 2006a, 2006b; Koutsikou et al., 2007; Waters and Lumb, 2008),
and since only very small amounts of DLH were injected, it is likely that
its administration results in excitation of PAG neuronal cell bodies rather
than depolarizing block (Lipski et al., 1988). Consistent with previous
studies (see above), microinjections into the VL-PAG evoked transient
decreases in mean arterial pressure (data not shown).

Experimental protocol
Descending modulation of cold-evoked withdrawal reflexes. Following pre-
paratory surgery, a glass micropipette containing DLH solution was low-
ered vertically into the left VL-PAG (ipsilateral to the stimulated
hindpaw). Flexion withdrawal reflexes were recorded in response to EC
delivered to the left hindpaw at 5 min intervals. After three “baseline”
withdrawal responses to EC were recorded, an injection of DLH was
made into the VL-PAG. EC was applied again to the paw 10 s after DLH
injection (“PAG” in bar charts) and responses to three further applica-
tions were conducted at 5 min intervals (at 5, 10, and 15 min post-DLH
microinjection, termed “PAG�5 min,” “PAG�10 min,” and “PAG�15
min,” respectively, in bar charts).

Descending modulation of cold-evoked neuronal activity. Following iso-
lation of a neuron and characterization of its receptive field and response
properties, a glass micropipette containing DLH solution was lowered
vertically into the left VL-PAG (ipsilateral to the stimulated hindlimb).
Neuronal activity was recorded in response to acetone or EC delivered to
the receptive field of the neuron at 5 min intervals. After three baseline
neuronal responses to acetone or EC were recorded, an injection of DLH
was made into the VL-PAG. Acetone or EC was applied again to the
receptive field 10 s after DLH injection (PAG in bar charts), and re-
sponses to three further applications were conducted at 5 min intervals
(at 5, 10, and 15 min post-DLH microinjection; termed PAG�5 min,
PAG�10 min, and PAG�15 min, respectively, in bar charts).

Histology
At the end of experiments, animals were killed by overdose of sodium
pentobarbital (30 mg i.v. bolus; Sigma). The brain was removed, fixed for
24 h in paraformaldehyde solution (4% in 0.1 M phosphate buffer), and
then cryoprotected in 30% sucrose solution for 24 h. Brains were sec-
tioned at 60 �m and PAG injection sites marked with pontamine sky blue
dye were localized with reference to the rat brain atlas of Paxinos and
Watson (2005) and plotted onto standard transverse diagrams of the
midbrain.

Data analysis
All EMG and neuronal activity data are displayed as mean � SEM. All
statistical analysis was performed using Prism 4 (GraphPad). Post-DLH
(PAG on bar charts) and recovery responses (PAG�5 min, PAG�10
min, and PAG�15 min on bar charts) to acetone or EC were compared
with baseline responses using Kruskal–Wallis test followed by Dunn’s
multiple comparison test. Significance was taken at the 5% level.

Results
Acetone and ethyl chloride evoke distinct skin
cooling profiles
In the present study, two different chemical coolants, acetone and
EC, were used to produce different intensities of cooling. These

stimuli have been used in behavioral studies of cold somatosen-
sation; however, the skin temperature changes evoked are rarely
measured (cf. Colburn et al., 2007). We therefore recorded sur-
face and subsurface skin temperature changes during topical ap-
plication of both acetone and EC to the hindpaw in vivo (Fig. 1).
Both stimuli generated rapid changes in surface and subsurface skin
temperature; however, the magnitude of temperature change was
significantly different. Acetone lowered surface and subsurface skin
temperature by 7.7 and 8.9°C, respectively (surface 28.6 � 0.1 to
20.9 � 0.4°C, and subsurface 28.6 � 0.1 to 19.7 � 0.1°C; 7 trials
from n � 3 animals) (Fig. 1B). In contrast, EC application evoked
significantly colder skin temperatures than acetone ( p � 0.001,
Kruskal–Wallis test and Dunn’s multiple comparison test) (Fig. 1B),
lowering surface and subsurface skin temperature by 25.4 and
21.8°C, respectively (surface 28.6 � 0.1 to 3.2 � 1.0°C, and subsur-
face 28.6 � 0.1 to 6.8 � 1.1°C; 7 trials from n � 3 animals) (Fig. 1B).
Skin temperature returned to prestimulus levels within the inter-
stimulus interval of 5 min following both types of stimulus.

Cold stimulation of the paw with EC consistently evoked ro-
bust withdrawal reflexes in lightly anesthetized animals (mea-
sured as hindlimb EMG activity) (Figs. 1A, 2A), suggesting that
EC produces noxious cooling of the skin. The mean threshold of
EC-evoked withdrawal reflexes was 6.2 � 0.6°C at the skin sur-
face and 16.1 � 0.7°C subcutaneously (9 trials from n � 3 ani-
mals) (Fig. 2C). In addition, EC application frequently evoked

Figure 1. Acetone and ethyl chloride evoke very different skin cooling profiles in vivo.
A, Example traces of surface and subsurface skin temperature measurements following appli-
cation of acetone and EC to the hindpaw. Note that ethyl chloride evokes withdrawal reflexes in
lightly anesthetized animals [measured as EMG activity from biceps femoris; marked with as-
terisk (*)], whereas acetone does not. B, Bar chart showing prestimulus skin temperatures and
maximum surface and subsurface temperature changes following hindpaw acetone and EC
application (mean � SEM; 7 trials from n � 3 animals).
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increases in mean arterial blood pressure, indicative of a noxious
intensity of stimulation (data not shown). In the preparation
used here, noxious intensities of stimulation are required to
evoke withdrawal reflexes (McMullan et al., 2004), which indi-
cates that EC is largely a noxious cold stimulus. In contrast, in the
same animals withdrawal reflexes were never observed following
acetone application, nor did acetone evoke any changes in blood
pressure, suggesting it produces innocuous cooling of the skin.
Nonetheless, it is likely that the temperature changes produced by
acetone application will activate a small proportion of nocicep-
tive afferents, since some cold-responsive nociceptors are re-
ported to have activation thresholds of 	20°C (although most
have thresholds at much colder temperatures) (Cain et al., 2001;
Campero et al., 1996; Simone and Kajander, 1996). Clearly, how-
ever, activation of such afferents is not generally sufficient to
produce overt behavioral responses to acetone, either in lightly
anesthetized rats (this study) or in awake normal rats, which
show little or no response to acetone (Choi et al., 1994; Decosterd
and Woolf, 2000; Kim et al., 2009; Hulse et al., 2010); therefore,
we consider acetone to be predominantly (though not exclu-
sively) an innocuous cooling stimulus.

Cold-evoked withdrawal reflexes are significantly depressed
by VL-PAG stimulation
Descending control originating in the PAG has been shown to
powerfully modulate withdrawal reflexes evoked by noxious me-
chanical and thermal (heat) stimuli (e.g., Mayer et al., 1971; Fardin et
al., 1984; Carstens et al., 1990; McMullan and Lumb, 2006a; Leith
et al., 2007). However whether this control extends to noxious
cold stimulation remains unclear; therefore, the effect of VL-PAG
stimulation on cold-evoked withdrawal thresholds and response
magnitudes was investigated.

PAG stimulation strongly depressed cold-evoked withdrawal
reflexes in vivo to the extent that the responses were frequently
abolished (Fig. 2). Cold-evoked withdrawal reflex magnitude was
significantly reduced to 0.1 � 0.1% of baseline ( p � 0.01, n � 5;
Kruskal–Wallis test and Dunn’s multiple comparison test) (Fig.
2B), and withdrawal threshold temperature was significantly
colder (from 6.2 � 0.6°C at the skin surface and 16.1 � 0.7°C s.c.
to 0°C at both the surface and the subsurface; both p � 0.05, n �
3; Kruskal–Wallis test and Dunn’s multiple comparison test)
(Fig. 2C). Reflex magnitude and threshold recovered partially
during the 15 min period following PAG stimulation (Fig. 2B,C).

Although stimulation of the PAG has been shown to alter
cardiovascular parameters (Carrive, 1993; Bandler et al., 2000)
that might alter the rate and extent of cooling produced by the
stimulus, the profile of skin cooling evoked by EC was not altered
following PAG stimulation (Fig. 2A). This suggests that the de-
pression of withdrawal reflexes is caused mainly by direct central
modulatory effects on neuronal excitability rather than being sec-
ondary to changes in peripheral blood flow.

The data therefore provide evidence that cold-evoked with-
drawal reflexes can be strongly modulated by descending control
from the VL-PAG. However, given that acetone does not evoke
withdrawal reflexes in lightly anesthetized preparations, this ap-
proach does not allow us to test whether the PAG also modulates
responses to innocuous cold. We therefore examined the activity
of dorsal horn neurons in the spinal cord in response to both
acetone and EC and whether this activity could be altered follow-
ing stimulation of the PAG.

Figure 2. Noxious cold-evoked withdrawal reflexes are depressed by VL-PAG stimulation. A, Typ-
ical examples of EC-evoked withdrawal reflexes (measured as EMG activity) with corresponding sur-
face and subsurface skin temperature measurements before and after stimulation of the VL-PAG; the
withdrawal reflex is abolished by PAG stimulation, however the profile of skin cooling remains unal-
tered. B, C, The effects of VL-PAG stimulation on withdrawal reflex magnitude (n � 5) (B) and
threshold (surface and subsurface; both n � 3) (C). Data are expressed as mean � SEM. Statistical
analysis compared post-DLH (PAG) and recovery (PAG�5 min, PAG�10 min, PAG�15 min) groups
with baseline responses using Kruskal–Wallis test followed by Dunn’s multiple comparison test;
*p � 0.05; **p � 0.01. D, Injection sites in the PAG from which the effects of PAG stimulation
on EC-evoked responses were tested; coordinates are relative to bregma (Paxinos and Watson,
2005). DM, Dorsomedial; DL, dorsolateral; L, lateral; VL, ventrolateral.
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Subsets of class 1, 2, and 3 spinal neurons respond to acetone
and ethyl chloride
A total of 47 lumbar dorsal horn neurons (mean depth in cord
729 � 40 �m; range 280 –1430 �m) were studied and classified
by responses to low- and high-threshold mechanical stimula-
tion of the receptive field according to the scheme defined by
Menetrey et al. (1977); class 1, n � 6; class 2, n � 27; and class 3,
n � 14. Subsets of neurons in each class (class 1, n � 2; class 2, n �
8; class 3, n � 7) were antidromically identified as supraspinally
projecting, at least to the level of the caudal brainstem. There was
no distinction between a neuron’s response to cold stimuli and
whether or not a supraspinal projection could be detected.

Response characteristics of all spinal
neurons to acetone and EC are summa-
rized in Figure 3. The response of each
neuron to each type of cold stimulus was
consistent from trial to trial. The majority
(66%; 4/6) of non-nociceptive class 1 neu-
rons responded to cold [acetone only, n �
0 (0%); acetone and EC, n � 3 (50%); EC
only, n � 1 (17%); neither n � 2 (33%)]
(Fig. 3A). Class 1 neurons tended to show
prolonged, high-frequency responses to
both acetone and EC. In the three neurons
that responded to both stimuli, responses
to EC were always similar to or less than
the responses to acetone (Fig. 3B,C, top
panels) suggesting, as expected, that these
neurons are not able to encode stimulus
intensity into the noxious range. This in-
dicates that the EC response in class 1 neu-
rons represents the innocuous cooling
component of the stimulus, since EC will
activate low-threshold, cooling-sensitive
afferents in addition to those in the noci-
ceptive range.

The majority (85%; 23/27) of wide-
dynamic-range class 2 neurons responded
to cold [acetone only, n � 2 (7%); acetone
and EC, n � 17 (63%); EC only, n � 4
(15%); neither, n � 4 (15%)] (Fig. 3A).
Class 2 neurons showed a range of re-
sponse magnitudes to both acetone and
EC that appeared to be related to receptive
field location; neurons with receptive
fields on proximal regions of the hindlimb
(e.g., thigh) tended to show greater re-
sponses to cold than those with distal re-
ceptive fields (e.g., paw) (Fig. 3C, middle
panel). This is unlikely to be caused by a
different skin-cooling profile, since tem-
perature measurements at the thigh were
not significantly different compared with
those at the paw (data not shown). In-
stead, the greater responses of neurons
with proximal receptive fields are likely to
be due to the higher degree of conver-
gence of input in the spinal cord from pe-
ripheral afferents (Willis and Coggeshall,
1991). All class 2 neurons that were re-
sponsive to both cold stimuli showed
greater responses to EC than acetone (Fig.
3B,C, middle panels), indicative of their
ability to encode stimulus intensity into

the noxious range (Khasabov et al., 2001).
Only half of class 3 neurons (50%; 7/14) responded to cold

stimuli [acetone only, n � 0 (0%); acetone and EC, n � 4 (29%);
EC only, n � 3 (21%); neither, n � 7 (50%)] (Fig. 3A). In class 3
neurons, unlike class 2, there was no clear relationship between
receptive field location and response magnitude, and they did not
encode stimulus intensity to the same extent, although it should
be noted that the sample size of class 3 neurons is small (Fig. 3C,
bottom panel). A large proportion of class 3 neurons did not
respond to either acetone or EC. However, it remains possible
that these neurons are cold responsive because the stimulus used

Figure 3. Subpopulations of class 1, 2, and 3 dorsal horn neurons respond to acetone and ethyl chloride. A, Summary of the
proportions of class 1, 2, and 3 neurons that responded to acetone and/or EC. B, Typical examples of responses to acetone and EC
in cold-responsive class 1, 2, and 3 neurons (in each example the two sets of responses are recorded from the same neuron; raw
dorsal horn (DH) recordings and corresponding peristimulus time histograms (spikes per 1 s bin) are shown). Note, however, that
the majority of class 3 neurons did not respond to acetone. Arrows indicate onset of cold stimulus. C, For each neuron class,
responses (mean spikes � SEM) to the two cold stimuli are grouped in relation to receptive field location; numbers above each bar
represent sample size.
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in this study may not have achieved
temperatures adequate for their activa-
tion. Somewhat unexpectedly, a small
proportion (4/14; 29%) of nociceptive-
specific class 3 neurons (as classified by
mechanical stimulation) also responded
to acetone. However, as stated above, the
skin temperatures produced by acetone
application (�20°C) are likely to be suffi-
cient to activate a small proportion of no-
ciceptive afferents that could, in turn,
activate nociceptive-specific class 3 neu-
rons in the spinal cord. Therefore, acetone
responses observed in class 3 neurons may
indeed represent nociceptive activity (see
Discussion).

An important additional consideration
when interpreting these data is that both
the cooling stimuli used here involve a
low-threshold mechanical component
(i.e., application of liquid to the skin). It is
therefore possible that part of the re-
sponse observed was due to stimulation
of mechanically sensitive afferents. To
determine the extent of firing evoked
solely by this mechanical stimulus, a con-
trol stimulus of the same volume of room
temperature water was applied to the re-
ceptive field of some neurons (n � 9;
data not shown). In class 1 and 2 neu-
rons, room temperature water evoked
a brief (�1 s), modest increase (�10
spikes) in firing, but no response was ob-
served in class 3 neurons, which indi-
cates that the response to acetone and
EC (typically of long duration and high
firing frequency) (Fig. 3) was predomi-
nantly due to skin cooling rather than
any mechanical stimulation.

Descending control from the PAG
modulates spinal neuronal responses to
noxious but not innocuous cold
Responses of non-nociceptive class 1 neu-
rons to both acetone and EC remained
unaltered after stimulation of the VL-
PAG, as shown in Figure 4 [117 � 63 and
122 � 16% of baseline responses; n � 3
and n � 4 (including one projection neu-
ron), respectively; both p 	 0.05, Kruskal–
Wallis test and Dunn’s multiple comparison test], indicating that
descending control from the PAG does not significantly alter
responses to innocuous cold in these neurons.

Similarly, stimulation of VL-PAG did not significantly alter
responses of wide-dynamic-range class 2 neurons to acetone as
shown in Figure 5 [123 � 45% of baseline responses; n � 6 (none
positively identified as projection neurons); p 	 0.05, Kruskal–
Wallis test and Dunn’s multiple comparison test]. However, re-
sponses of class 2 neurons to EC were significantly reduced by
VL-PAG stimulation [to 17 � 7% of baseline; n � 7 (including
two projection neurons); p � 0.01, Kruskal–Wallis test and
Dunn’s multiple comparison test] (Fig. 5), indicating that de-
scending control from the PAG selectively depresses responses to

noxious versus innocuous cold in these neurons. EC responses
recovered to baseline levels within 5 min of VL-PAG stimulation
(PAG�5 min, PAG�10 min, and PAG�15 min, all p 	 0.05
compared with baseline, Kruskal–Wallis test and Dunn’s multi-
ple comparison test) (Fig. 5).

Stimulation of VL-PAG strongly depressed cold-evoked activity
in all nociceptive-specific class 3 neurons tested; responses to EC
were significantly depressed as shown in Figure 6 [to 14 � 11% of
baseline responses; n � 4 (including two projection neurons);
p � 0.01, Kruskal–Wallis Test and Dunn’s multiple comparison
test]. These responses recovered only partially during the 15 min
period following VL-PAG stimulation and remained significantly
lower than baseline levels 15 min after VL-PAG stimulation

Figure 4. Cold-evoked activity remains unaltered in non-nociceptive class 1 neurons following PAG stimulation. A, Typical
examples of a class 1 neuron response to acetone and EC [recorded from the same neuron; peristimulus time histograms (spikes per
1 s bin) are shown] before and after PAG stimulation. B, The effect of VL-PAG stimulation on class 1 neuronal responses to acetone
(n � 3) and EC (n � 4). Data are expressed as mean � SEM of normalized spike counts in response to acetone or EC. Statistical
analysis compared post-DLH (PAG) and recovery (PAG�5 min, PAG�10 min, PAG�15 min) groups with baseline responses using
Kruskal–Wallis test followed by Dunn’s multiple comparison test; ns, p 	 0.05. C, Injection sites in the PAG from which the effects
of PAG stimulation on acetone- and/or EC-evoked responses were tested; coordinates are relative to bregma (Paxinos and Watson,
2005). DM, Dorsomedial; DL, dorsolateral; L, lateral; VL, ventrolateral.
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(37 � 8%, p � 0.05 compared with baseline, Kruskal–Wallis test,
and Dunn’s multiple comparison test) (Fig. 5). This suggests that
different mechanisms may be responsible for descending modu-
lation of class 3 neuronal responses (that remain depressed over
the time period studied) compared with class 2 neuronal re-
sponses (that recover more rapidly). A total of 4/14 class 3 neu-
rons (29%) also responded to acetone (in addition to EC), and in
one of these neurons (not positively identified as a projection
neuron) the effects of descending control from the PAG were
tested. VL-PAG stimulation abolished the response to acetone in
this neuron (Fig. 6A,B). Noxious pinch-evoked activity was also
tested in this neuron, which was similarly abolished by PAG stim-
ulation (data not shown).

Discussion
An understanding of the spinal processing
of cold sensory input, including its de-
scending control, is essential not only in
determining how forward transmission of
cold signals may be altered in different be-
havioral states, but ultimately in the de-
velopment of novel strategies for the
treatment of aberrant cold sensations that
accompany pathological pain states. Here,
we show that spinal responses to cold can
be powerfully modulated by descending
control systems originating in the PAG
and that this control selectively modulates
transmission of noxious versus innocuous
information.

Neural mechanisms of
cold somatosensation
Two different intensities of cold stimuli
were used to investigate central process-
ing of both innocuous and noxious cold,
providing novel information regarding
mechanisms underlying behavioral re-
sponses to cold. Acetone produced only
mild cooling of the skin and never evoked
withdrawal reflexes in lightly anesthetized
rats, consistent with observations that
normal rats show little or no response to
acetone, and with the use of acetone as a
test for cold allodynia following neuropa-
thy (Choi et al., 1994; Decosterd and
Woolf, 2000; Kim et al., 2009; Hulse et al.,
2010). Together with reports from human
studies that temperatures between 15 and
20°C are perceived as cool (Greenspan et
al., 1993), this suggests that acetone pro-
duces predominantly innocuous cooling.
In contrast, EC produced a more intense
cold stimulus, generating skin surface
temperatures approaching 0°C in the
present study, and its application consis-
tently evoked withdrawal reflexes accom-
panied by increases in blood pressure.
Together, this indicates that EC is a nox-
ious cold stimulus. EC has been used pre-
viously in behavioral studies, and similar
temperature changes have been reported
(Hao et al., 1996, 1999; Sjolund et al.,
1998). These temperature changes are suf-

ficiently cold to activate populations of nociceptive afferents
(LaMotte and Thalhammer, 1982; Lynn and Carpenter, 1982;
Leem et al., 1993; Simone and Kajander, 1996, 1997). However,
temperatures reported to produce cold pain sensation in humans
and nociceptive behaviors in animals are highly variable, likely
due to the wide variety of stimuli used and responses measured,
making comparison between studies difficult. In humans, tem-
peratures of �10�15°C and below are reported to evoke noxious
sensations (Chery-Croze, 1983; Yarnitsky and Ochoa, 1990;
Davis, 1998; Gottrup et al., 1998; Harrison and Davis, 1999). We
observed cold-evoked withdrawal in lightly anesthetized rats at
skin surface temperatures of �6°C, which is consistent with

Figure 5. Noxious cold-evoked activity is selectively inhibited in wide-dynamic-range class 2 neurons by PAG stimulation.
A, Typical examples of a class 2 neuron response to acetone and EC [recorded from the same neuron; peristimulus time histograms
(spikes per 1 s bin) are shown] before and after PAG stimulation. B, The effect of VL-PAG stimulation on class 2 neuronal responses
to acetone (n � 6) and EC (n � 7). Data are expressed as mean � SEM of normalized spike counts in response to acetone or EC.
Statistical analysis compared post-DLH (PAG) and recovery (PAG�5 min, PAG�10 min, PAG�15 min) groups with baseline
responses using Kruskal–Wallis test followed by Dunn’s multiple comparison test; ns, p	0.05; **p�0.01. C, Injection sites in the
PAG from which the effects of PAG stimulation on acetone- and/or EC-evoked responses were tested; coordinates are relative to
bregma (Paxinos and Watson, 2005). DM, Dorsomedial; DL, dorsolateral; L, lateral; VL, ventrolateral.
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Allchorne et al. (2005), who defined cold
threshold in normal rats at 5°C, and Jasmin
et al. (1998), who reported nocifensive be-
haviors �3°C. Using operant assays, Vi-
erck et al. (2004) reported thresholds for
“lick/guard/jump” behaviors at �4°C;
however, escape behaviors were observed
at much warmer temperatures (�16°C).

The present study provides novel in-
formation regarding the population of
spinal neurons excited by acetone and EC,
both of which are used in behavioral pain
studies. We found that the majority of
class 1 and 2 neurons are cold responsive,
while half of class 3 neurons were not.
Consistent with our data, Khasabov et al.
(2001) found that an almost identical pro-
portion of wide-dynamic-range (class 2)
neurons responded to cold delivered via a
Peltier thermode, which encoded intensity
to noxious cold over a broad range of tem-
peratures. Furthermore, functional ana-
tomical studies have shown that hindpaw
and facial cold stimulation evoke intensity-
dependent Fos expression in dorsal horn
neurons, including NK-1-positive lamina I
projection neurons, which are believed to
form spinal-brainstem feedback loops with
important roles in the development of
chronic pain states (Strassman et al., 1993;
Abbadie et al., 1994; Doyle and Hunt, 1999;
Suzuki et al., 2002; Todd et al., 2005). How-
ever, in contrast to our findings, Khasabov
et al. (2001) found a higher proportion of
cold-responsive class 3 neurons, but around
half (42%) only responded to cooling�0°C.
Many cold-sensitive nociceptors have thre-
sholds of �0°C (Simone and Kajander,
1996; 1997) (although this could be in re-
sponse to tissue damage). It is possible,
therefore, that the cold “insensitive” class 3
neurons described here are cold responsive
but with thresholds at very low tempera-
tures; therefore, the stimulus we used would
not have produced cooling sufficient to ac-
tivate them.

A seemingly unexpected finding was
that some nociceptive-specific neurons
(classified by standard mechanical meth-
ods) responded to acetone application,
which is generally considered to be innoc-
uous. However, this activity may be due to
nociceptive input, since the temperatures produced by acetone
application are sufficient to activate nociceptive afferents with
cold thresholds at relatively warm temperatures (	20°C) (Cain
et al., 2001; Campero et al., 1996; Simone and Kajander, 1996).
Any class 3 neurons receiving afferent input from these lower-
threshold nociceptors could therefore be acetone responsive. If
this is the case, and given the small proportion of nociceptors
with thresholds of 	20°C, it is not surprising that a small pro-
portion of class 3 neurons were found to be activated by acetone
application. An additional possibility is that information trans-
mitted by nociceptive-specific class 3 neurons is interpreted by

higher centers as nociceptive, regardless of the intensity of the
input.

Descending modulation of spinal cold processing
Stimulation of descending pathways from the PAG has been
shown to powerfully modulate the responses of spinal neurons to
peripheral mechanical and thermal (heat) stimulation in vivo
(Mayer et al., 1971; Jones and Gebhart, 1988; Sandkuhler et al.,
1991; Waters and Lumb, 1997, 2008; McMullan and Lumb,
2006b). This modulatory control is selective for responses to nox-
ious versus innocuous stimulus intensities (Bennett and Mayer,

Figure 6. Cold-evoked activity in class 3 nociceptive-specific neurons is inhibited by PAG stimulation. A, Examples of a class 3
neuron response to acetone and EC [recorded from the same neuron; peristimulus time histograms (spikes per 1 s bin) are shown]
before and after PAG stimulation. B, The effect of VL-PAG stimulation on mean class 3 neuronal responses to acetone (n � 1) and
EC (n � 4). Data are expressed as mean � SEM of normalized spike counts in response to acetone or EC. Statistical analysis
compared post-DLH (PAG) and recovery (PAG�5 min, PAG�10 min, PAG�15 min) groups with baseline responses using
Kruskal–Wallis test followed by Dunn’s multiple comparison test; *p � 0.05; **p � 0.01. C, Injection sites in the PAG from which
the effects of PAG stimulation on acetone- and/or EC-evoked responses were tested; coordinates are relative to bregma (Paxinos
and Watson, 2005); DM, Dorsomedial; DL, dorsolateral; L, lateral; VL, ventrolateral.
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1979; Gebhart et al., 1983; Sandkuhler et al., 1991; Waters and
Lumb, 1997). We therefore hypothesized that this selective con-
trol might also extend to the modality of cold and tested this
directly by examining whether acetone- and EC-evoked re-
sponses of spinal dorsal horn neurons were altered by PAG stim-
ulation. We found that spinal processing of cold input can also be
powerfully modulated by the PAG, and that this control differ-
entiates between activity in nociceptive versus non-nociceptive
circuits. This pattern of descending control therefore resembles
that for other modalities and suggests that stimulus intensity (i.e.,
nociceptive versus non-nociceptive) rather than modality is the
determining factor in whether spinal activity is subject to de-
scending control.

Our findings do not, however, include cold-specific neurons
that are not driven by mechanical stimulation (Han et al., 1998),
since these would not have been encountered in our experiments.
Given that these neurons will also contribute to cold-evoked be-
haviors, it will be important to investigate whether these cells are
also modulated by descending pathways.

Functional significance
Temperature perception is vital for survival, providing environ-
mental information that drives appropriate behavioral responses
and, if necessary, escape from potentially harmful conditions.
Knowledge of the central processing and modulation of cold sen-
sory input is therefore important from a behavioral perspective,
yet has received little attention. The present study demonstrates
that descending control originating in the PAG can dramatically
alter spinal responses to noxious cold input, leaving information
regarding innocuous cold unaltered. In normal animals, modu-
lation of spinal nociception by the VL-PAG is hypothesized to act
as part of a coordinated passive coping strategy triggered by in-
escapable stressors (Keay and Bandler, 2001; Lumb, 2002; Lovick
and Bandler, 2005). Selective inhibition of noxious information
would allow an animal to respond appropriately to threatening or
stressful situations without the distraction of nociceptive input,
therefore enabling the generation of adaptive behaviors that are
beneficial to survival.

Recent evidence suggests that the PAG retains the capacity to
modulate cold responses in pathophysiological states, since elec-
trical stimulation of the PAG attenuates enhanced behavioral
responses to cold in neuropathic rats (Lee et al., 2000). It is now
recognized that alterations in descending controls from brain-
stem centers, including the PAG, contribute to central sensitiza-
tion and chronic pain states (Pertovaara et al., 1996; Urban and
Gebhart, 1999; Pertovaara, 2000; Monhemius et al., 2001;
Pertovaara and Wei, 2003; Vanegas and Schaible, 2004). Indeed,
cold allodynia is dependent on descending control systems, since
lidocaine block of the rostroventromedial medulla (RVM), a ma-
jor relay of outflow from the PAG, attenuates cold allodynia in
models of neuropathic injury (Taylor et al., 2007). Therefore,
knowledge of descending influences on spinal processing of cold
information is clinically important, given the heightened cold
sensitivity frequently reported by patients with neuropathic in-
jury (Ochoa and Yarnitsky, 1994; Jorum et al., 2003). We hypoth-
esize that dysfunction of descending control from the PAG
(decreased descending inhibition and/or increased facilitation),
likely acting through the RVM and other medullary structures,
contributes to cold allodynia, driving the exaggerated behavioral
responses (Choi et al., 1994) and increased spinal neuronal excit-
ability to cold (Brignell et al., 2008) observed in neuropathic pain
models, in addition to peripheral mechanisms. Future studies
investigating dynamic modulation of cold responsiveness in the

transition from acute to chronic pain will provide important in-
formation regarding underlying neural mechanisms responsible
for altered cold responses in pathological pain states.
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