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Operational Parameter Study

of Aircraft Dynamics on the Ground

James Rankin∗, Bernd Krauskopf, Mark Lowenberg,
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and Etienne Coetzee,
Landing Gear Systems, Airbus, Bristol, UK, BS99 7AR

Abstract

The dynamics of passenger aircraft on the ground are influenced by the nonlinear
characteristics of several components, including geometric nonlinearities, the aerody-
namics and interactions at the tyre-ground interface. We present a fully parametrised
mathematical model of a typical passenger aircraft that includes all relevant nonlinear
effects. The full equations of motion are derived from first principles in terms of forces
and moments acting on a rigid airframe, and they include implementations of the local
models of individual components. The overall model has been developed from and
validated against an existing industry-tested SimMechanics model.

The key advantage of the mathematical model is that it allows for comprehensive
studies of solutions and their stability with methods from dynamical systems theory,
in particular, the powerful tool of numerical continuation. As a concrete example,
we present a bifurcation study of how fixed-radius turning solutions depend on the
aircraft’s steering angle and centre of gravity position. These results are represented in
a compact form as surfaces of solutions, on which we identify regions of stable turning
and regions of laterally unstable solutions. The boundaries between these regions are
computed directly and they allow us to determine ranges of parameter values for safe
operation. The robustness of these results under the variation of additional parameters,
specifically, the engine thrust and aircraft mass, are investigated. Qualitative changes
in the structure of the solutions are identified and explained in detail. Overall our
results give a complete description of the possible turning dynamics of the aircraft in
dependence on four parameters of operational relevance.

1 Introduction

There are two primary concerns for commercial aircraft during taxiing: the safety of passen-
gers and the economy of operations. Methods used to control an aircraft and the conditions
under which it operates directly affect its dynamics on the ground. The design of automated
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control systems that can take these considerations into account is the ultimate goal in the
study of aircraft ground dynamics. Computer simulations of advanced multi-body models
play an important role in both the design stages of new aircraft and the study of existing air-
craft. Once a model has been developed and validated, it is relatively inexpensive, compared
to actual ground taxi tests, to simulate the model numerically so that many simulation runs
can be performed. Specifically, computer simulations have been used in conjunction with
actual tests in the study of aircraft ground manoeuvres [1, 2]. An important aspect of any
aircraft model are nonlinearities that are introduced via geometry and specific properties
of components, such as the steering mechanism, the tyres and aerodynamic surfaces. Since
nonlinearities are known to play an important role in the dynamics of a given system, it is
important to fully incorporate them as part of the model and the analysis. A number of
nonlinear models have been developed and investigated in the fields of aircraft dynamics,
mostly with more traditional methods, to study the dynamics of aircraft in flight [3] and on
the ground [4].

In this paper we employ the mathematical tool of numerical bifurcation analysis, which
allows one to find solutions of a nonlinear system, follow them in parameters and determine
their stability in an efficient way; one also speaks of numerical continuation. This approach
is implemented in software packages such as AUTO [5], which have been used to great effect
for the analysis of nonlinear systems in many areas of applications; see, for example, [6]
as an entry point to the literature. Continuation techniques are also beginning to make an
impact in areas that are of relevance to aircraft ground dynamics, for example, in the study of
automotive vehicles [7] and the flight dynamics of aircraft [8, 9]. A previous bifurcation study
of aircraft ground dynamics by the authors in Reference [10] was based on an industry-tested
software model, developed in the multibody systems software package SimMechanics [11, 12],
which was successfully coupled to the package AUTO. This allowed for a comprehensive
account of the possible turning dynamics of the aircraft for a particular aircraft configuration,
where the steering angle acted as the main parameter. The difficulty with such a software
model lies in its black-box nature. In particular, not all operationally relevant parameters
are accessible for bifurcation studies, and we also encountered some numerical difficulties in
computing periodic solutions.

The purpose of this paper is to develop a fully parametrised mathematical model of an
aircraft as a vehicle on the ground, and to demonstrate that it allows us to extend previous
work with a bifurcation study into the effect of several operational parameters. The new
mathematical model takes the form of a system of coupled ordinary differential equations
(ODEs) that is derived by equating forces and moments. Specifically, we consider a tricycle
model of a typical mid-sized single aisle passenger aircraft in which the nose gear is used
for steering. The airframe is considered as a rigid body with six degrees of freedom and the
equations of motion are derived by balancing the respective forces and moments. Specific
sub-components are modelled in accordance with industry experience and test data, and
nonlinear effects are included in the models of the tyres and the aerodynamics. In this way,
the overall mathematical model incorporates a sufficient and relevant level of complexity,
in particular, the nonlinearities inherent in various components. This new model provides
several advantages over the existing model, especially when used with continuation software.
Its general functionality and computational efficiency with the software package AUTO is
dramatically improved. Furthermore, the model does not suffer from a black-box nature,
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which means that all variables and parameters — both design parameters (such as dimensions
of the aircraft) and operational parameters (such as total mass and center of gravity position)
— are fully accessible.

During ground manoeuvres aircraft make turns by adjusting the steering angle of the
nose gear, generally, for a fixed thrust level of the engines. The specific aircraft ground
manoeuvre that we consider here is a fixed steering angle turn, where we assume that neither
accelerations nor braking through the tyres are applied. The performance of turning circle
manoeuvres is a standard test case for aircraft; in our model when the aircraft follows a
turning circle (of fixed radius) this corresponds to a steady state solution of the system (in
the body-axes). It is these turning circle solutions and their stability that are the main
subject of our bifurcation analysis. With the use of the continuation package AUTO turning
solutions can be tracked or continued under the variation of parameters. Furthermore,
changes in stability can be detected. They occur at special points, called bifurcations [13],
and result in a qualitative change in the dynamics of the system. Turning solutions and their
bifurcations can thus be represented by plotting a system state as a function of one or more
parameters.

The development of the mathematical model was guided by the existing multibody model
in SimMechanics, and the first step was the validation of the model via a direct comparison
with existing results from Reference [10]. This validation is demonstrated here with a one-
parameter bifurcation analysis that focuses in detail on the agreement between the different
types of solutions in each model. In particular, we identify different types of stable turns
and also laterally unstable turning solutions for which the aircraft loses lateral stability. The
different solutions are presented across the full range of the steering angle for a particular
aircraft setup, which allows for a comprehensive comparison between the models.

We then present an extensive bifurcation analysis of turning solutions of the aircraft
in dependence on several operational parameters. One-parameter continuation runs are
computed in the steering angle at many discrete points of centre of gravity positions (over
a suitable range). Two-parameter continuation is used to follow curves of bifurcation points
directly to determine regions where turning is unstable. The results are represented as
surfaces of solutions that describe the possible dynamics over the full range of the two
parameters, the steering angle and the centre of gravity position. We find that a curve
of limit point bifurcations forms a fold in the surface of solutions; crossing this curve in
parameter space results in a significant change in the radius of the turning circle that the
aircraft attempts to follow. Additionally, we find that a curve of Hopf bifurcations bounds
a region of unstable turning solutions for which the aircraft follows a laterally unstable
motion relative to the unstable turning solution. The robustness of these results is further
investigated under the variation of the aircraft mass and the thrust level. We find that
quite small changes in thrust result in a sequence of qualitative changes of the solution
surface. This occurs for two different mass cases (heavy and light aircraft) but at different
thrust levels. Overall, a heavier aircraft will make stable turns over a larger range of centre
of gravity positions and at higher thrust levels. We also find that the region of laterally
unstable behaviour grows more rapidly with increased thrust for a lighter aircraft.

The paper is organised as follows: In Section 2 full details of the new model are given.
Its validation against the existing SimMechanics model is demonstrated in Section 3. An
extensive bifurcation analysis in several parameters is the subject of Section 4. Finally,
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conclusions and directions of future work are presented in Section 5.

2 Mathematical Model

In this section we give details of the derivation and implementation of a fully parametrised
mathematical model of a typical mid-sized single aisle passenger aircraft. Our model is
effectively a fully parametrised mathematical version of an industry-tested SimMechanics
[12] model that was used in a previous study [10]. Motivations for its development are: to
overcome the black-box nature of a model written in SimMechanics (especially concerning
full access to relevant system parameters), to improve functionality with the continuation
package AUTO [5], and to increase the computational efficiency so that more elaborate
bifurcation studies become feasible. The mathematical model has been derived via force
and momentum equations, coupled to relevant subsystem descriptions. It has been fully
validated against the existing SimMechanics model; see Section 3.

The aircraft modeled here has a tricycle configuration in which the nose gear is used for
steering. We model the aircraft as a single rigid body with six degrees of freedom (DOF);
three translational DOF and three rotational DOF. On the aircraft there are two tyres per
gear. Due to the small separation distance they can be assumed to act in unison and, hence,
are described as a single tyre in the model. We do not include oleos in the model presented
here, that is, we assume the landing gears to be rigid. The reason for this simplifying
assumption is that oleo dynamics are not excited in turning as considered in the bifurcation
study in Section 4. However, oleos could be included into the model, but at the expense of
increasing its dimensionality.

Throughout this study we use one of the conventionally accepted coordinate systems for
aircraft. Specifically, the positive x-axis points towards the nose of the aircraft, the z-axis
is toward the ground and the y-axis completes the right-handed coordinate system. This
body coordinate system is assumed to coincide with the aircraft’s principal axes of inertia,
a reasonable assumption due to symmetries of the airframe. The equations of motion were
derived from Newton’s Second Law by balancing either the forces or moments in each degree
of freedom [14].

In Figure 1 the relative positions and directions of the force elements that act on the
aircraft are shown in the three standard projections. These diagrams illustrate how the
equations of motion are derived by balancing force elements along each axis and moment
elements about each axis. The equations of motion for the velocities in the body coordinate
system of the aircraft are given as six ordinary differential equations (ODEs):

m(V̇x + VzWy − VyWz) = FxTL + FxTR − FxR − FxL − FxN cos(δ)− (1)

FyN sin(δ) − FxA + FzW sin(θ),

m(V̇y + VxWz − VzWx) = FyR + FyL + FyN cos(δ) − FxN sin(δ) + FyA, (2)

m(V̇z + VyWx − VxWy) = FzW − FzR − FzL − FzN − FzA, (3)

IxxẆx − (Iyy − Izz)WyWz = lyLFzL − lyRFzR − lzLFyL − lzRFyR− (4)

lzNFyN cos(δ) + lzNFxN sin(δ) + lzAFyA +MxA,
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Figure 1: Schematic diagram showing relative positions of force elements F∗ acting on the
airframe with dimensions defined by l∗ in Table 1. Three projections are shown in the
aircraft’s body coordinate system: the (x, z)-plane in panel (a), the (x, y)-plane in panel (b),
and the (y, z)-plane in panel (c). The centre of gravity position is represented by a checkered
circle, the aerodynamic centre by a white circle and the thrust centre of each engine by a
white square.
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IyyẆy − (Izz − Ixx)WxWz = lxNFzN − lzNFxN cos(δ) − lzNFyN sin(δ)− (5)

lxRFzR − lzRFxR − lxLFzL − lzLFxL+

lzTFxTL + lzTFxTR + lzAFxA + lxAFzA +MyA,

IzzẆz − (Ixx − Iyy)WxWy = lyRFxR − lyRFxL − lxRFyR − lxLFyL+ (6)

lxNFyN cos(δ) − lxNFxN sin(δ) + lxAFyA+

lyTFxTL − lyTFxTR +MzA.

Here a dot notation is used to show the first derivative with respect to time of these states.
The dimensions l∗, given in Table 1, are defined in terms of the centre of gravity position
which is parametrized as CG. The parameter CG is defined as a percentage measured along
the mean aerodynamic chord lmac, taken from the leading edge. The aircraft mass m as
defined for two cases presented in the bifurcation analysis are given in Table 1; corresponding
values of the principal moments of inertia Ixx, Iyy and Izz are used in the model. The
velocities along each of the aircraft’s axes are given by V∗ and the rotational velocities about
the axes by W∗. The weight of the aircraft acting at the centre of gravity (CG) position is
denoted FzW = mg and is assumed to act along the z-axis in the aircraft body coordinate
system because the pitch and roll angles remain relatively small throughout this analysis.
The steering angle applied to the nose gear, defined in degrees, is denoted δ. It is used as
a parameter in the bifurcation analysis. The modeling of tyre forces is discussed in Section
2.1 and the orthogonal force elements on each of the nose, main right and main left tyres
are denoted F∗N , F∗R and F∗L, respectively. The modeling of the aerodynamics is discussed
in Section 2.2. The individual aerodynamic force and moment elements are defined with
respect to the aerodynamic centre of the aircraft and are denoted F∗A and M∗A, respectively.
The thrust force is assumed to act parallel to the x-axis of the aircraft and is denoted FxT ;
the total thrust force from both of the engines is parametrized as T which is defined as a
percentage of the maximum available thrust.

The states that vary most significantly during the aircraft’s motion are the velocity Vx
in the x-direction, the velocity Vy in the y-direction, and the angular velocity Wz about
the z-axis (yaw velocity); they are calculated from equations (1), (2) and (6), respectively.
A reasonable approximation of the aircraft’s dynamics is given by these three equations
alone. However, to calculate the asymmetric loading on the landing gears dynamically and
with a high level of accuracy it is necessary to solve the equations in the other degrees of
freedom: the vertical velocity Vz, angular velocity Wx about the x-axis (roll velocity) and
angular velocity Wy about the y-axis (pitch velocity) given by equations (3), (4) and (5),
respectively.

To calculate the position of the aircraft as it moves over the ground plane it is necessary
to do so with reference to a fixed location and orientation in space. Therefore, we solve a
set of equations describing the position of the aircraft in the world coordinate system with
position (X, Y, Z) and angular orientation given by the Euler angles (ψ, θ, φ), where ψ is
the yaw angle, θ the pitch angle and φ the roll angle. The plane given by Z = 0 is the
(flat) ground plane. Transformations between the body coordinate system and the world
coordinate system can be performed by applying the standard sequence of rotations given in
Reference [15]. Defining the velocities in the world axis as VxW , VyW and VzW , the velocity
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transformation equations are given by:




VxW
VyW
VzW



 =





CθCψ SφSθCψ − CφSψ CφSθCψ + SφSψ
CθSψ SφSθSψ − CφCψ CφSθSψ + SφCψ
−Sθ SφCθ CφCθ









Vx
Vy
Vz



 , (7)

where C∗ = cos(∗) and S∗ = sin(∗) for notational convenience. Defining the angular velocities
in the world axis as WxW , WyW and WzW , the angular velocity transformation equations are
given by:





WxW

WyW

WzW



 =





1 SφSθ/Cθ CφSθ/Cθ
0 Cφ −Sφ
0 Sφ/Cθ Cφ/Cθ









Wx

Wy

Wz



 . (8)

Therefore the equations for the position of the aircraft are given by:

Ẋ = VxW , ψ̇ = WzW ,

Ẏ = VyW , θ̇ = WyW ,

Ż = VzW , φ̇ = WxW .

(9)

The position (X, Y ) and orientation ψ are used to plot trajectories of the aircraft motion.
The height Z above the ground plane and the angles θ and φ that the aircraft makes with
the ground plane are used to calculate the load distribution between landing gears.

2.1 Tyre modeling

The force elements acting on the tyres are calculated with a tyre model developed by a
GARTEUR action group investigating ground dynamics [16], it was also used in the SimMe-
chanics model [10]. The main difference now is that the local velocities and displacements
of the tyres at the ground interfaces are calculated using equations in terms of the aircraft
states instead of being given by SimMechanics. The model used here assumes that the roll
axis of the tyre is always parallel to the ground because the pitch and yaw angles of the air-
craft remain relatively small. It is therefore appropriate to use the velocities of the aircraft in
the body coordinate system and Euler angles to calculate local displacements and velocities
of the tyres. This section focuses on these calculations, which are used in obtaining the tyre
forces.

To model the vertical force component on the tyre a linear spring and damper system
can be used [11, chapter 4]. For example, the total force acting on the nose gear is:

FzN = −kzNδzN − czNVzN (10)

where VzN is the vertical velocity of the nose gear tyre, and δzN is the nose gear tyre deflection
representing the change in tyre diameter between the loaded and unloaded condition. The
stiffness coefficients kz∗ and damping coefficient cz∗ are specified in Table 1. Differences in
the vertical velocity and deflection of each tyre give the asymmetric load distribution between
the gears. The vertical velocity of each tyre can be calculated in terms of the velocities in
the body coordinate system as:

VzN = Vz − lxNWy, (11)

VzR = Vz + lyRWx + lxRWy,

VzL = Vz − lyLWx + lxLWy,

James Rankin et al. CND-09-1022 7



Symbol Parameter Value

dimensions relative to CG-position
lxN x-distance to nose gear (10.186 + CG÷ 100 × lmac)m
lzN z-distance to nose gear 2.932m
lxR,L x-distance to main gears (2.498 − CG÷ 100 × lmac )m
lyR,L y-distance to nose gear 3.795m
lzR,L z-distance to nose gear 2.932m
lxA x-distance to aerodynamic centre ([0.25 − CG÷ 100] × lmac)m
lzA z-distance to aerodynamic centre 0.988m
lxT x-distance to thrust centre ([0.25 − CG÷ 100] × lmac)m

lyTR,TL y-distance to thrust centre 5.755m
lzT z-distance to thrust centre 1.229m

mass light case heavy case
m mass of the aircraft 45420 kg 75900 kg

tyre parameters
kzN stiffness coeff. of nose tyre 1190 kN/m
kzM stiffness coeff. of main tyre 2777 kN/m
czN damping coeff. of nose tyre 1000Ns/m
czM damping coeff. of main tyre 2886Ns/m
µR rolling resistance coeff. 0.02

aerodynamics parameters
lmac mean aerodynamic chord 4.194m
Sw wing surface area 122.4m2

ρ density of air 1.225 kg/m3

Table 1: System parameters and their values as used in the model.
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where Vz∗ is the local vertical velocity of the respective tyre. Due to the assumptions that
the roll axes of the tyres remain parallel to the ground and that the pitch and roll angles
of the aircraft remain small, the deflection of each tyre is given in terms of the aircraft’s
position states in the world coordinate system as:

δzN = −lzN − Z + lxNθ, (12)

δzR = −lzR − Z − lxRθ − lyRφ,

δzL = −lzL − Z − lxLθ + lyLφ.

The longitudinal and lateral forces at the tyre-ground interface depend on the vertical
load acting on the tyre and on its slip angle. The slip angle of a tyre is the angle the tyre
makes with its direction of motion. For each respective tyre, the slip angle α∗ is defined in
terms of its local longitudinal velocity Vx∗ and its local lateral velocity Vy∗ as:

α∗ = arctan

(

Vy∗
Vx∗

)

. (13)

Therefore, to find the slip angle it is necessary to find the longitudinal and lateral velocity
of each tyre. These velocities are calculated in terms of the aircraft’s velocities in the body
coordinate system and the steering angle applied to the nose gear δ as:

VxN = Vx cos(δ) + (Vy + lxNWz) sin(δ),

VyN = (Vy + lxNWz) cos(δ) − Vx sin(δ),

VxR = Vx − lyRWz, (14)

VyR = Vy − lxRWz,

VxL = Vx + lyLWz,

VyL = Vy − lxLWz.

Longitudinal forces on the tyres are due to the rolling resistance force caused by hysteresis
in the rubber of the tyre. The pressure in the leading half of the contact patch is higher than
in the trailing half, and consequently the resultant vertical force does not act through the
middle of the wheel. A horizontal force in the opposite direction of the wheel movement is
needed to maintain an equilibrium. This horizontal force is known as the rolling resistance
[17, pp. 8-18]. The ratio of the rolling resistance Fx, to vertical load Fz, on the tyre is known
as the coefficient of rolling resistance µR as given in Table 1 [18]. Therefore, the rolling
resistance force on the respective tyre Fx∗ is given by

Fx∗ = −µRFz∗ cos(α∗), (15)

which incorporates a cosine function to capture two key features. Firstly, the longitudinal
force drops off to zero when the tyre is moving sideways (α∗ = ±90◦) and secondly, there is
a sign change when the direction of motion changes (|α∗| > 90◦).

When no lateral force is applied to a tyre, the wheel moves in the same direction as the
wheel plane. When a side force is applied, the tyre generates a slip angle α∗ as defined in
Equation (13). For small slip angles (α∗ < 5◦) the tyre force increases linearly after which
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Figure 2: Lateral force Fy plotted against slip angle α as calculated from Equation (16). The
maximum point Fymax that can be generated by the tyre occurs at the ‘optimal’ slip angle
αopt.

there is a nonlinear relationship [17, pp. 30-38]. The lateral force on the respective tyre Fy∗
is a function of α∗ and can be represented as:

Fy∗(α∗) = 2
Fymax∗αopt∗α∗

α2
opt∗ + α2

∗

, (16)

where Fymax∗ is the maximum force that the tyre can generate and αopt∗ is the ‘optimal’ slip
angle at which this occurs. The parameters Fymax∗ and αopt∗ depend quadratically on the
vertical force on the tyre Fz∗ and, hence, change dynamically in the model. The values for
nose gear tyres FymaxN and αoptN , and main gear tyres FymaxR,L and αoptR,L are obtained
from the equations:

FymaxN = −3.53 × 10−6F 2

zN + 8.83 × 10−1FzN ,

αoptN = 3.52 × 10−9F 2

zN + 2.80 × 10−5FzN + 13.8, (17)

FymaxR,L = −7.39 × 10−7F 2

zR,L + 5.11 × 10−1FzR,L,

αoptR,L = 1.34 × 10−10F 2

zR,L + 1.06 × 10−5FzR,L + 6.72.

For values of α∗ outside the quadrant of α∗ ∈ (0◦, 90◦), the curve in Figure 2 is reflected ap-
propriately to either represent the tyre rolling backwards or turning in the opposite direction.
Details of extending Equation (16) in this way are given in Reference [10].

2.2 Modeling the aerodynamics

Aerodynamic effects are nonlinear because the forces are proportional to the square of the
velocity of the aircraft. Due to the geometry of the aircraft, the forces also depend nonlinearly
on the angle the it makes with the airflow, the sideslip angle β and on the angle of attack
σ. We consider ground manoeuvres, with no incident wind. Hence, the sideslip angle β of
the entire aircraft is equal to and interchangeable with its slip angle. The slip angle of the
aircraft is defined in the same way as the tyres, but this time in terms of the velocities of the
entire aircraft: αac = arctan(Vy/Vx). Because we are studying ground manoeuvres the angle
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of attack σ remains relatively steady. There are six components to the aerodynamic forces;
three translational and three moments. The forces are assumed to act at the aerodynamic
centre of the aircraft [14], defined as 25% along the mean aerodynamic chord from its leading
edge. The six force elements are given by

FxA = 1

2
ρ|V |2SwCx(αac, σ), MxA = 1

2
ρ|V |2SwlmacCl(αac, σ),

FyA = 1

2
ρ|V |2SwCy(αac, σ), MyA

= 1

2
ρ|V |2SwlmacCm(αac, σ),

FzA = 1

2
ρ|V |2SwCz(αac, σ), MzA = 1

2
ρ|V |2SwlmacCn(αac, σ),

(18)

where the parameters ρ, Sw and lmac are defined in Table 1. The dimensionless coefficient
functions C∗ depend nonlinearly on αac and σ and are based on wind-tunnel data and results
from computational fluid dynamics. The coefficients used here were obtained from a model
developed by the GARTEUR group [16].

3 Model validation

We now present results that were used as part of the validation process for the mathematical
model described in Section 2 against the established SimMechanics model [10]. Specifically,
we show in Figure 3 a comparison of a one-parameter bifurcation study of turning solutions
as a function of the steering angle δ. Throughout Figure 3, solutions for the mathematical
model (1)–(6) are in grey and those of the SimMechanics model are in black. This comparison
shows that there is a high level of agreement between the two models over the entire relevant
range of δ. Furthermore, a detailed comparison of periodic solutions (corresponding to
unstable turning) shows that the two models also agree closely in terms of laterally unstable
behaviour.

Figure 3(a) shows a direct comparison of a bifurcation diagram in δ of turning solutions
for CG = 14% and T = 19%, where the forward velocity of the aircraft Vx is used as a
measure of the solution; the data from the SimMechanics model has been reproduced from
Reference [10, Figure 4]. A single branch of solutions originates in the top left of the diagram
and terminates in the top right; stable parts are solid curves and unstable parts are dashed
curves. Changes in stability occur at the limit point bifurcations L1, L2, L3, L4 and at
the Hopf bifurcation point H2. There is a branch of periodic solutions that originates from
H2; the maximum and minimum velocities of these solutions are shown as a continuous
solid grey curve for model (1)–(6) and as a series of black dots at discrete points for the
SimMechanics model. More details of the solutions represented in the bifurcation diagram
and the significance of passing the different bifurcations is discussed in greater detail in
Reference [10].

Overall there is close agreement in Figure 3(a) between the bifurcation curves of the two
models. Any differences are quite small and restricted to certain regions of operation. At
the initial point where δ = 0 the aircraft travels in a straight line. Here model (1)–(6) has a
velocity of Vx ≈ 87m/s, while the SimMechanics model has a velocity of Vx ≈ 90m/s. This
small difference exists on the branch between the initial point and the bifurcation point L1

along which the solutions represent large radius turning circles. When the steering angle is
increased to a value beyond L1 the aircraft will attempt to follow a smaller radius turning
circle at low velocity. Following the solution branch through L1, at which there is a change
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Figure 3: Comparison between the mathematical model (1)–(6) (black curves) and the Sim-
Mechanics model (grey curves). Panel (a) shows one-parameter bifurcation diagrams for
varying steering angle δ and fixed CG = 14% and T = 19%. There is a single branch of
turning solutions; stable parts are solid and unstable parts are dashed. Changes in stability
occur at the bifurcation points L1−4 and H2. The maximum and minimum forward velocity
of a branch of periodic solutions originating at H2 are also shown. Panel (b) shows the
branch of periodic solutions plotted in the (δ, Vy, Vx)-projection; the (grey) surface was com-
puted from the mathematical model and the individual orbits (black closed curves) on the
surface were computed with the SimMechanics model. Panel (c) shows a comparison of the
individual periodic orbits at δ = 10◦ in the (Wz, Vx)-projection. The corresponding CG-trace
of the aircraft in the (X, Y ) ground plane is shown in panel (d) with markers indicating the
orientation of the aircraft at regular time intervals.

James Rankin et al. CND-09-1022 12



in stability, we see that the curves computed with the different models agree closely. Along
section of the solution branch that is approximately horizontal, which represents small radius
turns, the two models remain in almost exact agreement up to the bifurcation L4. A branch
of periodic solutions originates at the Hopf bifurcation H2 which is the typical behaviour
[13]. The respective maximum and minimum velocities along the branch of periodic solutions
show a high level of agreement; these solutions are discussed in further detail below. The
limit point bifurcation L4 is only detected in model (1)–(6), but nevertheless the two models
exhibit qualitatively the same behaviour in this region of the bifurcation diagram. For the
large radius solutions along the branch between L3 and the final point in the top right
of Figure 3(a) the two models show again a slight difference in velocity along the branch.
Furthermore, the limit point bifurcation L3 occurs at a somewhat lower value of δ in model
(1)–(6).

Figure 3(b) shows the branch of periodic solutions in the (δ, Vy, Vx)-projection, where Vy
is the lateral velocity of the aircraft. In a previous study these solutions were studied in
great detail and four types of qualitatively different behaviour were identified [10]. We show
this data to demonstrate that the two models agree to a high level of detail even in terms of
the laterally unstable motion that the periodic solutions represent. The periodic solutions
form a surface in parameter × phase space. For the mathematical model (1)–(6) it can be
computed directly by continuation of the periodic solutions from the Hopf bifurcation point
H2. For the SimMechanics model, on the other hand, periodic solutions can only be found
at discrete values of δ by numerical simulation. The two models show excellent agreement:
the (black) periodic orbits of the SimMechanics model lie on the grey surface of periodic
solutions of model (1)–(6) to very good accuracy. Figure 3(c) shows a specific periodic orbit
in more detail for δ = 10◦ in the (Vx,Wz)-projection; Wz is the angular velocity in degrees
of the aircraft about its vertical axis. The two periodic orbits indeed agree so closely that
the (black) periodic orbit of the SimMechanics model is eclipsed by that of model (1)–(6).
Figure 3(d) shows a trace of the aircraft’s centre of gravity position over one period of the
its motion in the (X, Y ) ground plane for each of the two models. Markers drawn to scale on
the CG-trace show the aircraft’s relative direction of motion at equal time intervals along the
trajectory. The trajectories computed with the two models agree very closely in the initial
section but appear to diverge slightly after a point close to (X, Y ) = (100, 100) where the
tangent of the CG-trace changes very quickly. In fact, at this point in the trajectory, where
the velocity of the aircraft is very low, the plot exaggerates a very small discrepancy in the
amount the aircraft rotates. Either side of this point the trajectories agree very precisely.

In summary of the validation process, the models agree very closely both in terms of
the turning circle solutions represented in the bifurcation diagram, as well as the lateral
unstable periodic solutions. The agreement is well within the accuracy of comparisons with
actual test data, so that the mathematical model (1)–(6) can be used with confidence. In
the bifurcation diagram there were only some small observable differences at high velocities.
These differences occur because the mathematical model (1)–(6) does not include the oleos.
As we checked, with the oleos included the aircraft assumes a slightly elevated angle of
attack that increases the lift and, therefore, reduces the loads on the tyres. This, in turn,
reduces the longitudinal and lateral forces on the tyres and, thus, the aircraft travels faster
with the oleos included. The slight discrepancy in the amount the aircraft rotates at the
point of lowest velocity of the periodic solution is also due to the fact that the oleos are
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not included in model (1)–(6). Namely, with oleos a slight shift of weight from the inner to
the outer gears accounts for a greater rotation as exhibited by the SimMechanics model in
Figure 3(d). In spite of these small discrepancies, the dynamics of the two models are still
sufficiently close and qualitatively the same over the entire operating range. Furthermore,
the close agreement between the two models justifies that we do not to include the oleos as
part of model (1)–(6) for the bifurcation study of turning solutions.

4 Two-parameter bifurcation study and sensitivity anal-

ysis

In this section we present two-parameter bifurcation diagrams, where we track turning so-
lutions in dependence on the steering angle δ and the centre of gravity position CG. By
choosing to represent turning solutions in terms of their corresponding forward velocity Vx,
we obtain a surface of turning solutions in (δ, Vx, CG)-space. From a practical point of
view, this surface is assembled from one-parameter continuation runs in δ, as presented in
Section 3, which are computed at discrete values of CG that cover an appropriate range.
Two-parameter continuation with AUTO is used to compute the loci of limit point and Hopf
bifurcations directly under the variation of both δ and CG. Combining the results from
these two computations into a single plot is an effective way of representing the turning
dynamics and its stability over the complete range of δ and CG in a single figure. What is
more, we are able to perform a sensitivity analysis of turning solutions by computing the
respective solution surfaces for different fixed values of other parameters. Specifically, we
consider different thrust cases for a heavy aircraft in Section 4.1, and for a light aircraft in
Section 4.2. Finally, we show two-dimensional projections of bifurcation curves to highlight
certain features that explain qualitative changes in the bifurcation structure when the thrust
is changed.

4.1 Heavy aircraft case

Figure 4 shows three surfaces of turning solutions in (δ, Vx, CG)-space for the case of a
heavy aircraft. Computed solution branches for fixed discrete values of CG originate on the
left side of the diagram; they are initially stable and may become unstable at bifurcation
curves on the surface, namely along the curve L of limit point bifurcations and the curve
H of Hopf bifurcations. Note that the typical operating range for the centre of gravity
position is CG ∈ (10%, 40%). Nevertheless, it is convinient to show an extended CG-range
to demonstrate completeness of the overall bifurcation structure.

In Figure 4(a), for a thrust of T = 16% of maximal thrust, we can see that for a forward
CG-position (CG < 20%) the solutions are uniformly stable. At δ = 0◦ the aircraft travels
in a straight line with Vx ≈ 68m/s; this initial velocity remains constant under variation of
CG. As δ is increased, the velocity of the stable solutions decreases rapidly before starting
to plateau out at δ ≈ 7.5◦; the velocity of solutions continues to decrease gradually down
to 0m/s as δ is increased towards 90◦. Therefore, for CG < 20% and with increasing δ,
there is a continuous and stable transition from stable large radius solutions via stable small
radius solutions all the way to a stationary solution where the nose gear is perpendicular
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Figure 4: Surfaces of turning solutions in (δ, Vx, CG)-space for a heavy aircraft (as specified
in Table 1) and for three fixed values of the thrust; T = 16% in panel (a), T = 18% in panel
(b), and T = 20% in panel (c). Stable solutions are blue and unstable solutions are red; limit
point bifurcations occur along the thick blue curve L and Hopf bifurcations occur along the
thick red curve H ; the black dots in panel (c) are points of Bogdanov-Takens bifurcations.

to the direction of motion. For fixed CG ∈ (20%, 50%) the individual solution branches
intersect the curve of limit point bifurcations L at two bifurcation points. The minimal
point on L at CG ≈ 20% is a cusp point [19] which is discussed further in Section 4.2. When
traversing the surface from left to right (fixing CG but varying δ) there are fold points in
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the solution branches that occur at intersections with L. When the limit point bifurcation
curve L is crossed at the left fold (by increasing δ) the large-radius turning solution becomes
unstable and, the aircraft spirals towards and then follows a stable small-radius solution.
Similarly, when L is crossed at the right fold (by decreasing δ) the small-radius solution
becomes unstable and the aircraft spirals out to and settles down onto a stable large-radius
solution. Therefore, as is typical in systems with several limit point bifurcations, there is a
hysteresis loop [20] between large- and small-radius turns. A similar hysteresis loop exists
between large-radius and small-radius solutions under the variation of CG at fixed values of
δ > 5◦. At large values of δ and CG the solutions that can be seen in the background of the
Figure 4(a) represent large-radius turns for which the nose gear does not generate enough
force to keep the aircraft stationary and is, hence, effectively dragged along the ground. For
sufficiently large values of CG > 55% the solution branches become uniformly stable, and
they represent large-radius turns only.

When the thrust level T is increased, many of the features of the surface described above
persist, but there are some changes. Figure 4(b) shows the surface for T = 18%. Here
the forward velocity when δ = 0◦ has increased to Vx ≈ 74m/s. Another change is that
the CG-level at which the solution branches first intersect L has decreased to CG ≈ 12%.
However, the most significant difference is a qualitative change in the dynamics: a closed
curve of Hopf bifurcations now bounds a new region of unstable turning solutions on the
surface. This new region exists for small δ and CG ∈ (30%, 46%). Crossing H into this
region represents a change where the aircraft will attempt to follow a turning circle solution
that is unstable (too tight) and, therefore, it loses lateral stability. An example of this type
of solution was given in Figure 3(c) and (d); an extensive account of qualitatively different
types of laterally unstable solution can be found in Reference [10]. Note further that crossing
L at the left fold may now lead to the aircraft moving from a stable large-radius turn to
laterally unstable behaviour. However, for CG < 30% this bifurcation along L does not lead
to a loss of lateral stability.

Figure 4(c) shows that there is a further qualitative change when the thrust is increased
to T = 18%. Namely, the regions bounded by the curves L and H have increased in size: the
minimum point on L occurs now at CG ≈ 5%, andH exists over the range CG ∈ (20%, 49%).
As a consequence, the regions bounded by the curves L and H have increased in size so much
that the curve H is no longer closed but terminates at two intersection points with the curve
L. Mathematically, these intersection are known as Bogdanov-Takens bifurcation points [19].
Further details of the topological change associated with the emergence of Bogdanov-Takens
bifurcation points are given in Section 4.2. Another change is that the value of CG above
which the dynamics are uniformly stable is now reduced, from CG ≈ 55% in Figure 4(a) to
CG ≈ 50% in Figure 4(c) .

The properties of the solution surfaces in Figure 4 have physical interpretations in terms
of the dynamics of the aircraft. When CG is increased (the CG-position is moved aft) the
load on the nose gear is reduced and, thus, the turning force that it can generate is reduced.
When making high-velocity turns the aerodynamic forces have a greater effect. In fact,
at sufficiently high speeds the holding force generated by the tailplane, which attempts to
keep the aircraft traveling in a straight line, becomes more dominant than the turning force
generated by the nose gear. This explains that, for a greater value of CG, the left fold
of L moves to a larger value of δ because a greater steering angle is required to generate
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the necessary turning moment to overcome the aerodynamic holding force. Similarly, the
right fold along L is associated with the effect that a decreasing turning moment from the
nose gear (as δ is decreased) is being overcome by the aerodynamic forces. Overall, the
region bounded by L grows with thrust because at higher velocities the aerodynamic forces
are increased. The region H appears and grows with and increasing thrust level because, at
higher velocities, the aircraft attempts to make tighter turns to the point where they become
laterally unstable.

4.2 Light aircraft case

Figure 5 shows surfaces of turning solutions for the case of a light aircraft for three fixed
values of the thrust. They are represented in the same way as for the heavy case, except
that the range of CG has been extended to CG ∈ (−20%, 60%). The first result is that the
turning behaviour for both loading cases is qualitatively the same in the respective panels
for low, medium and high thrust; compare with Figure 4. Nevertheless, there are some
quantitative differences that are of importance from the operational point of view. First of
all, notice that the thrust levels identified for the light aircraft case are 4% less throughout
compared with the heavy case. More specifically, for a value of trust of T = 12%, as shown
in Figure 5(a), the initial velocity at δ = 0◦ on the individual solution branches is only
Vx ≈ 63m/s. Furthermore, the region bounded by the curve L for small δ does not extend as
far into the operational range of CG as for the heavy aircraft case; compare with Figure 4(a).
When the thrust is increased by 2% we again find a region of laterally unstable behaviour,
bounded by a closed curve of Hopf bifurcations H ; see Figure 5(b). However, the size of the
instability region bounded by H is dramatically larger when compared to the corresponding
heavy aircraft case in Figure 4(b). Namely, the minimal point on L has moved to CG ≈ 15%
and the region bounded by H extends over the range CG ∈ (1%, 42%), below the minimal
point on L. Therefore, in contrast to the heavy case, passing the bifurcation on the left fold
along L always results in the aircraft settling onto laterally unstable behaviour. Furthermore,
the region of laterally unstable behaviour in Figure 4(b) is accessible from the left without
passing a limit point bifurcation. This means that the region of laterally unstable behaviour
could be approached more suddenly at lower velocities. When the thrust in increased further
to T = 16%, as is shown in Figure 5(c), the regions bounded by L and H increase further
and we again find that H ends at two Bogdanov-Takens points on H . Furthermore, the
minimal point on L moves to a negative value of CG ≈ −1% and the range of H extends to
CG ∈ (−18%, 48%). Note that a negative value of CG represents a CG-position in front of
the leading edge of the mean aerodynamic chord.

Overall, we find in the light aircraft case that the size of the region of laterally unstable
behaviour increases much more dramatically when compared with the heavy aircraft case.
This is a quantitative observation that is of relevance in spite the fact that the respective
panels for the two loading cases are qualitatively the same. Note however that a higher
thrust level (of an extra 4% of maximal thrust) is required in the heavy case to achieve
similar velocities to the light case. As a result of this the aircraft is much more susceptible
to a loss of lateral stability in the light case, as is represented by substantially larger regions
of laterally unstable turning solutions.
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Figure 5: Surfaces of turning solutions in (δ, Vx, CG)-space for a heavy aircraft (as specified
in Table 1) and for three fixed values of the thrust; T = 12% in panel (a), T = 14% in panel
(b), and T = 16% in panel (c). Stable solutions are blue and unstable solutions are red; limit
point bifurcations occur along the thick blue curve L and Hopf bifurcations occur along the
thick red curve H ; the black dots in panel (c) are points of Bogdanov-Takens bifurcations.

4.3 Qualitative changes of the surfaces of solutions with thrust

The last section demonstrated that the aircraft shows considerable sensitivity to the thrust
level: qualitative changes in the overall solution surface occur within a range of 2% of
maximum thrust. We now discuss these qualitative changes in more detail. While the
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Figure 6: The bifurcation curves L and H for a light aircraft and for thrust levels of T =
14% in panels (a), T = 15.4% in panels (b), and T = 16% in panels (c) are shown in
projection onto the (δ, Vx)-plane (first column), onto the (δ, CG)-plane (second column),
and onto the (Vx, CG)-plane (third column). Note that the Vx-axis has been reversed in
the third column to remain consistent with the surfaces as plotted in Figure 5. The black
dots in panels (b) represent degenerate Bogdanov-Takens points and in panels (c) two non-
degenerate Bogdanov-Takens points. Compare panels (a) and (c) with Figure 5(b) and (c),
respectively.

nature of the transitions is the same for both loading cases, we consider here the case of a
light aircraft as presented in Figure 5 because it was seen to be more susceptible to a loss of
lateral stability when the thrust is increased.

First of all, the qualitative change between panels (a) and (b) of Figure 5 is due to the
fact that a closed curve, or isola, H of Hopf bifurcations appears at a specific thrust value in
the interval T ∈ (12%, 14%). Indeed, when the thrust is decreased from T = 14% then the
isola shrinks to a point and disappears. This type of qualitative change of the curve H is due
to a smooth transition through a minimum in the associated two-dimensional surface of Hopf
bifurcations in (δ, CG, T )-space. This happens at a single value of T in this three-dimensional
parameter space, which is why one says that this transition is of codimension-three.

The transition between panels (b) and (c) of Figure 5, on the other hand, is more compli-
cated. As Figure 6 shows by means of projections of the bifurcation curves L and H , it in-
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volves the introduction of two Bogdanov-Takens bifurcation points. The mechanism behind
this qualitative change is the passage through a codimension-three degenerate Bogdanov-
Takens bifurcation, which occurs at an isolated point in (δ, CG, T )-space. Figure 5 shows
all three two-dimensional projections of the three-dimensional plots in Figure 5 (b) and (c)
and of the intermediate transitional case at T = 15.4%. The (δ, CG)-plane represents the
bifurcation diagram in the two parameters, and the same data plotted in the (δ, Vx)-plane
and (Vx, CG)-plane reveals the relative positions of the bifurcation curves in terms of the
forward velocity Vx. Due to the way the solution surface is located in (δ, Vx, CG)-space, the
transition is actually seen most clearly in the third column of Figure 6, which shows the
projection onto the (Vx, CG)-plane. Before the degenerate Bogdanov-Takens bifurcation in
Figure 6(a) the curve H is indeed closed. At the moment of transition in Figure 6(b) the
curve H is still closed, but it now touches the limit point bifurcation curve L at a single point
of tangency. At this point there is a degenerate Bogdanov-Takens bifurcation, labelled DBT .
Mathematically, this point is characterized by a double zero eigenvalue of the linearization
around the respective solution with an additional degeneracy of the higher-order terms of the
normal form [19]. After the transition the degenerate Bogdanov-Takens bifurcation point
splits up into two non-degenerate Bogdanov-Takens bifurcation points, which are labelled
BT in Figure 6(c). These points are of codimension-two, which means that they are isolated
points in the two-dimensional (δ, CG)-plane. As a result, the curve H is no longer closed
but now ends at the curve L at the two BT points.

Apart from the nature of transitions between qualitatively different bifurcation diagrams
of L and H on the solution surface, the projections shown in Figure 6 also reveal quantitative
features that are not so evident from the surfaces shown in Figure 5. For example, panels
(a1), (b1), and (c1) of Figure 6 shows that there is a region to the left of the bifurcation
curves, for δ < 3.5◦, where no bifurcations occur. This stable region is independent of both
the CG position and the thrust level, so that it might be used to define an upper bound for
steering angles used during high velocity turns. A similar bound exists in the heavy case
but at a lower value of only δ ≈ 1.5◦.

5 Conclusions

We presented derivation and implementation details of a fully parametrised mathematical
model of a typical mid-sized passenger aircraft. The new model has been validated against an
existing industry-tested SimMechanics model that was used in a previous study. Specifically,
a comparison between one-parameter bifurcation diagrams of the two models revealed a
consistent and accurate agreement over the full range of steering angle for a particular
configuration of the aircraft, both for turning solutions as well as a bifurcating branch of
periodic solutions (representing unstable turns).

The mathematical model was developed to improve functionality and computational
efficiency when used with continuation software. An extensive bifurcation analysis in several
operational parameters demonstrated that the new model indeed allows for much more wide-
ranging studies of turning as a function of a number of operational parameters. The results
of the computations were presented as surfaces of solutions, where the steering angle and
the centre of gravity position of the aircraft served as the main parameters. This provides
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an effective way of representing the possible dynamics over the complete range of these
two parameters in a single figure. Furthermore, it makes it possible to consider sensitivity
questions via a study of the influence of other parameters on the solutions surface. As we
demonstrated for a heavy and a light aircraft, there are qualitative changes of the solution
surface when the thrust level is changed. Corresponding solutions surfaces of the two cases
are related qualitatively via a thrust offset of 4% of maximal thrust. Importantly for the
practical point of view, the region of laterally unstable solutions was found to increase in
size more rapidly with increasing thrust for the light aircraft case.

The mathematical model presented here allows for the systematic investigation of aircraft
ground dynamics in dependence on both operational as well as design parameters. Ongoing
work focuses on how turning solutions are influenced by tyre properties, taxiway conditions,
and the track width of the main landing gears. For example, a preliminary investigation
revealed that the dynamics are affected in much the same way when either the thrust is
increased or the friction coefficient of the tyres is decreased. Another question under in-
vestigation is the study with numerical continuation tools of lateral loading conditions that
aircraft experience during ground manoeuvres. Finally, techniques are being developed that
allow one to follow specific conditions during a continuation run, such as a fixed radius turn
or the detection of the loss of contact between a tyre and the ground.
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List of Figure Captions

1. Figure 1: Schematic diagram showing relative positions of force elements F∗ acting on
the airframe with dimensions defined by l∗ in Table 1. Three projections are shown in
the aircraft’s body coordinate system: the (x, z)-plane in panel (a), the (x, y)-plane in
panel (b), and the (y, z)-plane in panel (c). The centre of gravity position is represented
by a checkered circle, the aerodynamic centre by a white circle and the thrust centre
of each engine by a white square.

2. Figure 2: Lateral force Fy plotted against slip angle α as calculated from Equation
(16). The maximum point Fymax that can be generated by the tyre occurs at the
‘optimal’ slip angle αopt.

3. Figure 3: Comparison between the mathematical model (1)–(6) (black curves) and
the SimMechanics model (grey curves). Panel (a) shows one-parameter bifurcation
diagrams for varying steering angle δ and fixed CG = 14% and T = 19%. There
is a single branch of turning solutions; stable parts are solid and unstable parts are
dashed. Changes in stability occur at the bifurcation points L1−4 and H2. The max-
imum and minimum forward velocity of a branch of periodic solutions originating at
H2 are also shown. Panel (b) shows the branch of periodic solutions plotted in the
(δ, Vy, Vx)-projection; the (grey) surface was computed from the mathematical model
and the individual orbits (black closed curves) on the surface were computed with the
SimMechanics model. Panel (c) shows a comparison of the individual periodic orbits
at δ = 10◦ in the (Wz, Vx)-projection. The corresponding CG-trace of the aircraft in
the (X, Y ) ground plane is shown in panel (d) with markers indicating the orientation
of the aircraft at regular time intervals.

4. Figure 4: Surfaces of turning solutions in (δ, Vx, CG)-space for a heavy aircraft (as
specified in Table 1) and for three fixed values of the thrust; T = 16% in panel (a),
T = 18% in panel (b), and T = 20% in panel (c). Stable solutions are blue and
unstable solutions are red; limit point bifurcations occur along the thick blue curve L
and Hopf bifurcations occur along the thick red curve H ; the black dots in panel (c)
are points of Bogdanov-Takens bifurcations.

5. Figure 5: Surfaces of turning solutions in (δ, Vx, CG)-space for a heavy aircraft (as
specified in Table 1) and for three fixed values of the thrust; T = 12% in panel (a),
T = 14% in panel (b), and T = 16% in panel (c). Stable solutions are blue and
unstable solutions are red; limit point bifurcations occur along the thick blue curve L
and Hopf bifurcations occur along the thick red curve H ; the black dots in panel (c)
are points of Bogdanov-Takens bifurcations.

6. Figure 6: The bifurcation curves L and H for a light aircraft and for thrust levels
of T = 14% in panels (a), T = 15.4% in panels (b), and T = 16% in panels (c)
are shown in projection onto the (δ, Vx)-plane (first column), onto the (δ, CG)-plane
(second column), and onto the (Vx, CG)-plane (third column). Note that the Vx-axis
has been reversed in the third column to remain consistent with the surfaces as plotted
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in Figure 5. The black dots in panels (b) represent degenerate Bogdanov-Takens points
and in panels (c) two non-degenerate Bogdanov-Takens points. Compare panels (a)
and (c) with Figure 5(b) and (c), respectively.
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