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Abstract - Image fusion isfinding increasing application in areas
such as medical imaging, remote sensing or military surveillance us-
ing sensor networks. Many ofthese applications demand highly com-
pressed data combined with error resilient coding due to the charac-
teristics of the communication channeL In this respect, JPEG2000
has many advantages over previous image coding standards.

Thispaper evaluates and compares quality metricsfor lossy com-
pression using JPEG2000. Three representative image fusion algo-
rithms: simple averaging, contrast pyramid and dual-tree complex
wavelet transform basedfusion have been considered. Numerous in-
frared and visible test images have been used. We compare these
results with a psychophysical study where participants were asked to
perform specific tasks and assess imagefusion quality.

The results show that there is a correlation between most of the
metrics and the psychophysical evaluation. They also indicate that
selection of the correct fusion method has more impact on perfor-
mance than the presence ofcompression.
Keywords: Image fusion, JPEG2000, quality metrics.

1 Introduction
Image fusion can be defined as the process of combining mul-
tiple input images into a smaller collection of images, usually
a single one, which contains the relevant and important infor-
mation from the inputs.
The aim of image fusion, apart from reducing the amount

of data, is to create new images that are more suitable for
the purposes of human/machine perception, and for further
image-processing tasks such as segmentation, object detection
or target recognition in applications such as remote sensing
and medical imaging. Multi-sensor data often presents com-
plementary infornation about region surveyed, scene or ob-
ject, so image fusion provides an effective method to enable
comparison and analysis of such data.
The benefits of multi-sensor image fusion include [1]: ex-

tended range of operation, extended spatial and temporal cov-
erage, reduced uncertainty, increased reliability, robust system
performance and compact representation of information.
The fusion process can take place at different levels of in-

formation representation, ranging from the earliest pixel level
methods [2] to the more advanced region level algorithms [3].
Refer to [4] for a general review of fusion algorithms. Most
of current image fusion applications use pixel-based methods,
which are usually easy to implement and time efficient.

T. D. Dixon, J. M. Noyes and T. Troscianko
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Department of Experimental Psychology
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(a) Octec Sequence: visible image

(c) Trees Sequence: visible image

(e) UN Camp Sequence: visible image

(b) Octec Sequence: IR image

(d) Trees Sequence: IR image

(f) UN Camp Sequence: IR image

Fig. 1: Test image sequences

Image fusion applications such as remote sensing and mili-
tary surveillance demand highly compressed data combined
with error resilient coding due to the characteristics of the
communication channel. In this respect, the JPEG2000 image
compression standard [5] has many advantages over previous
standards. JPEG2000 provides low bit-rate operation with rate
distortion and subjective image quality performance superior
to existing standards, without sacrificing performance at other
points in the rate-distortion spectrum [6]. All these aspects
have been rigorously tested and compared to previous com-
pression standards [7, 8].

This paper studies the effects of compression on image fu-
sion performance for surveillance applications. It evaluates
and compares existing image quality metrics with psycho-
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Fig. 2: Compression and fusion scheme

visual tests, where participants were required to perform spe-
cific tasks and to assess the visual quality of the fused images.
In our experiments we use three representative image fusion
algorithms: simple averaging (AV), contrast pyramid (CP) [9]
fusion and dual-tree complex wavelet transform (DT-CWT)
[10, 11] fusion. The images used are visible and infrared im-
ages from surveillance scenes, publicly available at [12], see
Fig. 1.
The rest of the paper is organised as follows: Section 2 in-

cludes a short description of the test bed, Section 3 provides
an overview of the metrics used in this paper, Section 4 details
the psycho-visual experiments test bed. The results of both
objective and subjective tests and their correlation are shown
in Section 5. Finally, conclusions are drawn in Section 6.

2 Compression and Fusion

images was then fused with the three fusion methods selected
and the performance evaluated with the metrics described in
Section 3.
The multi-resolution fusion methods (DT-CWT and CP)

employed four levels of decomposition, maximum absolute
value selection for high frequency coefficients and simple av-
eraging for low frequency coefficients. Fig. 3 shows some
examples of the fused images.

3 Metrics

Several approaches to fused image quality evaluation exist.
These include qualitative tests with human participants and
quantitative or objective tests. A number of image qual-
ity metrics have been proposed including mean square error
(MSE), root mean square error (RMSE), peak signal to noise
ratio (PSNR), mean absolute error (MAE) and quality index.
All of these require a reference image, which is usually the
ideal fused image. However, in practice, such an ideal fused
image is rarely known. Hence other fused image metrics such
as mutual information (MI) [13], Petrovic and Xydeas met-
ric [14, 15] and Piella's Quality Index [16] have been recently
proposed. These estimate how and what information is trans-
ferred from the input images to the fused image.

3.1 Peak Signal to Noise Ratio
Peak signal to noise ratio is based on the root mean square
error between the reference image R and the fused image F:

F ZE E (R (i, j)- F (i, j))2
RMSE (R, F) M N (1)

(a) Simple averaging fusion (0.2 bpp) (b) Simple averaging fusion (0.3 bpp) where (i, j) denote pixel location. PSNR in decibels (dB) is
then computed by using:

PSNR (R, F) = 20 * log 5RMSE (R, F)) (2)

(c) Contrast pyramid fusion (0.2 bpp) (d) Contrast pyranid fusion (0.3 bpp)

Its main drawback is the assumption of knowledge of the
ground-truth data, which is not feasible most of the time.

3.2 Mutual Information
Mutual information has emerged as an alternative to RMSE
[13]. MI measures the degree of dependence of the two ran-
dom variables A and B. It is defined by Kullback-Leibler
measure:

IAB (a, b) = E PAB (a, b) log PAB (a, b)
.,b ~~PA(a) pB(b)

(3)

(e) DT-CWT' fusion (0.2 bpp) (f) DT-CWr fusion (0.3 bpp)

Fig. 3: Example of fused images

In order to measure the influence of compression on fu-
sion performance, we generated multiple pairs of compressed
images at different bit rates, from high compression ratios
(1: 100) to low compression ratios (1: 5). Each pair of

48'

where PAB (a, b) is the joint distribution and PA (a) PB (b) is
the distribution associated with the case of complete indepen-
dence.

Considering two input images A, B and a new fused image
F, the amount of information that F contains about A and B
can be calculated as:

IFA(f, a) = X, pFA(f,a) log pFA(f, a)
a,b PF(f).PA(a)

(4)
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IFB(f, b) = E PFB(f, b) log PFB(f, b) (S)
aab PF(f) PB(b)

and the image fusion performance measure can be defined as:

mAB IFA(f, a) + IFB (f, b)MF -2 (6)

3.3 Xydeas and Petrovic Metric
Recently, Petrovic and Xydeas [14, 15] proposed a metric,
which measures the amount of edge information 'transferred'
from the source image to the fused image to give an estimation
of the performance of the fusion algorithm.

It uses a Sobel edge operator to calculate the strength
g(n, m) and orientation ax(n, m) information of each pixel in
the input and output images.
The relative strength and orientation 'change' values,

GAF (n, m) and AAF (n, m) of an input image A with respect
to the fused image F, are defined as:

9A(n,m) if gA(n, m) > 9F(n, m)
G F m) (7)

gA(n,m) otherwise9F(n,m)'

AF IaA (n, m)-F(n, m)l- 7r/21 (8)A(ii,m) i~~~~~,r/2

These measures are then used to estimate the edge
strength and orientation preservation values, Qg (n, m) and

Qa (n,m):
QAF (AF

QAF (n,m)- Pg (9)Qg ( ' ) l1+ ekg(GAF(nnm)- cag)

AF ra (10
Q<, (nrm) + eka(AAF(n,m)-ac,) (lO)

where the constants rg, kg, JgF,r,k,k, determine the ex-
act shape of the sigmoid nonlinearities used to form the edge
strength and orientation. The overall edge information preser-
vation values are then defined as:

AF AF AF AF
(n,m ) Qg (n,m)a (n, m) I

< Q (n,m)<1 (11)

A normalised weighted performance metric of a given pro-
cess p that fuses A and B into F, is given as:

ABIF
Qp (n, m)

NM AFBF
N EQZ (n, m)WA (n, m) + Q (n, m)wB(n, m)71=1 m=1 N M (12)

WA (n, m)+ WB(n, m)
n=1 m=1

It can be observed that the edge preservation values
Q (n, m) and Q (n, m), are weighted by coefficients
WA(n, m) and wB(n, m), which reflect the perceptual impor-
tance of the corresponding edge elements within the input im-
ages.

Note that in this method the visual information is associ-
ated with the edge information while the region information
is ignored.

3.4 Image Fusion Quality Index
This image fusion quality index (IEFQI) [16] is based on an
image quality index recently introduced by Wang and Bovik
[17], which is defined as:

4o2yxy
Q+= 4a),Y +)

or<2x + o2) ((xt)2 + (y9)2)
(13)

where
N N

N N

Ni=1 (X, -x)2, 1= (yi _-Y)2
N

c7Y = NlE (xi )(y )

To understand the meaning of Q, it can be decomposed as
a product of three components:

Q rxy 2xy __2_r__
axy (X)2 + (y)2 (or2 + ar2)

(14)

The first component is the correlation coefficient between x
and y. The second component corresponds to the luminance
distortion and the third factor measures the contrast distortion.
The maximum value of Q = 1 is achieved when x and y are
identical.

In order to apply this metric for image fusion evaluation,
Piella and Heijmans [16] introduce salient information to the
metric.

Qt,,(A, B, F) = c(w) (A(w)Q(A, Flw) + (1-\(w))Q(B, Flw))
W

(15)

where A and B are the input images, F is the fused image,
A(w) s(Alw)s(B w) should reflect the relative importance
of image A compared to image B within the window w, and
c(w) is the overall saliency of a window.

Finally, to take into account some aspect of the human vi-
sual system (HVS) which is the relevance of edge information,
the same measure is computed with the 'edge images' (A', B'
and F') instead of the grey-scale images A, B and F.

QE(A, B, F) = Q(A, B, F)' a Qw(A B', F')t (16)

where a is a parameter that expresses the contribution of the
edge images compared to the original images.
As with the previous metrics, this metric does not require a

ground-truth or reference image.

4 Task Performance Evaluation
The impetus behind using task-based image assessment meth-
ods comes from the lack of correlation found between sub-
jective quality scores and computational metric performance
[18]. It is therefore necessary to find a more suitable task with
which to compare such metrics. The major benefit of fitting
a task to the process of image fusion assessment is that this
allows for accuracy ratings as well as response times to be
recorded, thus, measuring the participants success. These ob-
jective measures then allow for a more precise comparison
with the results of computational metrics.
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In choosing the most appropriate task for the current study,
it was necessary to consider in what ways the original image
sequences might have been used. It was initially decided that
a range of tasks would be required in order to test the robust-
ness of the metrics under varying conditions and constraints.
This section covers the first experiment planned, which used
the United Nations (UN) Camp Sequence (Figs. 1(e), (f)),
as used by Toet and colleagues [19] in two tasks to establish
objective and subjective ratings of the images. These images
comprise a sequence depicting a soldier moving around a UN
Camp, which was shot using a visible light camera as well as
an infrared camera.
The first part of the experiment used a backward masked

rapid visual presentation paradigm, which involved watching
a briefly presented image as in Fig. 3, with either the soldier
present or absent. Participants had to state whether or not they
thought the soldier had appeared in each frame viewed. In ad-
dition, subjective ratings were taken from participants in order
to assess whether these would be comparable with the objec-
tive results. Subjective ratings were attained by presenting
differing pairs of frames from the first part of the experiment,
and asking participants to rate each on a scale of one to five,
where one is thought to have 'very good' image quality, and
five has 'very bad' quality.

4.1 Design
This experiment manipulated two independent variables in a
related-measures design. The first variable was fusion type,
with three types used: a simple averaging algorithm, a con-
trast pyramid method, and a dual-tree complex wavelet trans-
form scheme. The second variable was JPEG 2000 compres-
sion level, also with three levels: clean (no compression), low
(0.3 bpp) and high (0.2 bpp). The dependent variables were
Hit rate (correctly identifying the soldier as present) and False
Alarm rate (stating that the soldier was present when he was
not). The trials were blocked by fusion type with compres-
sion type randomised within each block, and counterbalanced
to avoid order effects. In each condition there were three dif-
ferent soldier-present images used with the soldier positioned
approximately to the left of the image, in the centre of the im-
age or to the right. Additionally, three soldier-absent images
were used. Each image was displayed 10 times, thus creat-
ing a total of 540 trials, blocked into six blocks with 90 trials
per block. A backward masking paradigm was used in order
to stop ceiling effects by blocking potential afterimages when
the test image was displayed, thus, disrupting further process-
ing of the image [20].

In the second part of the experiment, image pairs were pre-
sented grouped by either fusion type (18 trials) or compres-
sion type (18 trials). Thus, one block showed pairs of images
that were of the same fusion method, but were differing on
compression level, whilst in the other block pairs were of the
same compression but differed on fusion type. In both blocks,
all combinations of fusion type and compression level were
shown twice, so that each image was shown on the left and
right of the screen equal numbers of times. The two blocks
were counterbalanced.

4.2 Participants
Twelve people participated in this experiment. These com-
prised of 10 females and two males, with a mean age of 20.25
years (range 18-26). Participants were required to have nor-
mal or corrected-to-normal vision to take part, and none of
them had prior knowledge of the study.

4.3 Apparatus
Both parts of the experiment were displayed on a 19" flat
screen CRT monitor. This was connected to a 2.8GHz Pen-
tium 4 PC with 512 Megabytes RAM, running Superlab Pro
v2.0 by Cedrus [21]. Responses were given using a regular
keyboard. Written instructions were displayed at font size 30
in Arial script, and all presentations were centrally aligned.
The test images were all monochrome, displayed at full size
(360x270 pixels) against a 50% grey background, used in or-
der to reduce harsh contrasting between the dark images and
a white background.
The backward masks were created individually for each

trial frame used by performing a Fourier transform on the im-
age and randomising the phase component of the image, and
then carrying out a reverse Fourier transform to create an im-
age with equal power as the original but randomly distributed
phase. A separate mask was created for each of the 540 trial
images to ensure that any artefacts of one mask did not carry
over to other masks.

In the second part of the experiment, the images were pre-
sented 70 pixels apart, with the full rating scale written out
below the images in Arial size 24. The background surround-
ing the images in this case was white, in order to allow for
a more absolute baseline assessment point. Each block used
two images from the three frames used in the first part, both
of which had the soldier present.

4.4 Procedure
After a consent form had been completed, participants were
first shown the video sequence from which the four test frames
were taken. This was shown once with the original visible
light and infrared footage side by side, and again as a fused se-
quence with a brief explanation as to what image fusion was.
It was made clear that the experiment would use frames from
this sequence, and how an experimental trial would look.

In the first part of the experiment, participants were initially
given 12 practice trials in which feedback was given as to
whether they were correct or incorrect. Each trial in the prac-
tice and the main experiment began with a '+' fixation point
appearing for 750ms in the centre of the screen, followed by
the test image which was displayed for 15ms. There was then
a i5ms Inter Stimulus Interval in which time the screen was
blanked before the backward mask was presented for 250ms.
The screen went blank, at which time the participants were
required to press 'C' if the soldier was present and 'N' if he
was absent. After every 90 trials there was a rest period.

In the second part of the experiment, it was explained that
two images would be presented. Participants were required
to give both images a rating from one to five, where one was
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deemed to have 'very good' image quality, and five has 'very
bad' quality. On completing the experiment participants were
thanked and debriefed.

4.5 Data Analysis

The scores for the first task were collated and Hit rates and
False Alarm rates were obtained for each participant in each
condition. These were used to calculate d' and beta values
as in signal detection theory (e.g. [22]), with d' representing
the distance between a signal and a noise response, and beta
showing a participant's criterion level for saying 'present' or
'absent'. The d' score is calculated by calculating the Hit and
False Alarm ratios for each condition. These are then con-

verted into z-scores, which measure performance of a score

in relation to the number of standard deviations it is below
or above the mean. The d' sensitivity equals the Hit ratio z-

score minus the False Alarm ratio z-score. The beta value is
calculated by finding the ratio of Hit and False Alarm rate dis-
tribution curves at a given criterion. These values were then
analysed using an Analysis of Variance (ANOVA) with the
log of the beta being used, as a beta distribution is not statisti-
cally normal. For more information on the ANOVA statistical
method see [23, 24].

5 Experimental Results

5.1 Psycho-Visual Results

The psycho-visual experiment was carried out in two parts,
with the substantially longer objective test taking place first,
followed by the subjective ratings task.

5. 1.1 Part One ofExperiment

The descriptive results for part one of the experiment showed
that percent of hits varied across fusion type, with the aver-

aging fusion method having a hit rate of 53%, whilst contrast
pyramid had 79% and DT-CWT had 89% Hit rates. These did
not seem to vary much across compression level with clean
(73%), low (73%) and high (72%) compression scores. The
False Alarm rates small differences between averaging (13%)
and DT-CWT (13%) with contrast pyramid (10%), whilst
clean (11%), low (13%) and high (11%) compression were
also similarly matched.

Signal detection analysis of participants' results showed
that responses were closer to noise across the averaging fu-
sion condition (d' = 1.59), less close with the contrast pyra-
mid method (2.26), and furthest from noise with the DT-CWT
(2.66). The results for the compression factor did not indi-
cate any large differences, with clean (2.17), low compression
(2.15) and high compression (2.20) being closely comparable.
Two factor repeated measure ANOVAs [24] carried out on

these results backed up the general pattern detailed above. It
was found that for d', there was a significant main effect of fu-
sion type (F(2, 22) = 6.45, p = 0.006), but not for compres-
sion level (F(2, 22) 0.18, p > 0.05), nor was there an inter-
action between the two factors (F(4, 44) = 1.62, p > 0.05),
as shown in Fig. 4.

2.5
b

1-

2

1.51

Clean Low
Compression

High

Fig. 4: ANOVA of d' comparing fusion and compression

Post hoc testing of the pairwise comparisons using the Bon-
ferroni test [23] showed that performance with the averag-
ing method was not significantly lower than that with contrast
pyramid (1.59 vs. 2.26, p - 0.075), although it is approach-
ing significance on a two-tailed test. There was a significant
difference between simple averaging and DT-CWT conditions
(1.59 vs. 2.66, p = 0.017), but not between contrast pyramid
and DT-CWT (2.26 vs. 2.66, p > 0.05). This indicates that
the contrast pyramid and DT-CWT conditions had similar per-
formance patterns to each other, both of which kept the signal
and noise responses significantly further apart than the aver-

aging condition.
Similarly, with the beta (bias) levels participants were much

more likely to answer 'no' than yes in averaging condition
(beta 1.37), less so with contrast pyramid fusion (1.02),
and unbiased either way with the DT-CWT (0.00). How-
ever, the compression levels again showed little difference
(clean = 0.82, low - 0.78, and high = 0.79), indicating
a regular, small bias towards giving a 'no' answer.

1.5

0.5

0

-0.5

Clean Low
Compression

High

Fig. 5: ANOVA of beta comparing fusion and compression

ANOVAs showed that there was a significant main effect
of fusion on beta (F(2, 22) = 11.79, p < 0.001), whilst
there was no main effect of compression (F(2, 22) = 0.073,
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p > 0.05). However, in this case there was also an in-
teraction found between the two factors (F(4, 44) = 3.15,
p = 0.023), as shown in Fig. 5. Bonferroni tests revealed sig-
nificant differences between averaging and DT-CWT (1.37 vs.

0.00, p = 0.001), and between contrast pyramid andDT-CWT
(1.02 vs 0.00, p = 0.008), but not between the averaging and
contrast pyramid conditions (1.37 vs. 1.02, p > 0.05). This
indicates that there is significantly less bias to answering 'no'
in the DT-CWT condition than either of the other two condi-
tions.
A Tukey's Honestly Significant Difference test [24] was

carried out to investigate the direction of the interaction. As
seen in Fig. 5, there was a significant difference in the high
compression condition between CP and DT-CWT fusion types
(1.31 vs. -0.33, HSD = 0.84, p = 0.01). This indicates
that the high compression level was particularly affected by
the difference between DT-CWT and CP fusion types, with
participants much keener to answer 'no' when the high com-

pression level and CP fusion was used than when high com-

pression and DT-CWT fusion was used.

5.1.2 Discussion ofPart One ofthe Experiment

It is clear that whilst fusion type was a critical factor in how
the participants answered, compression type had little impact
on the way they performed, with the one exception of the
interaction covered above. What is of more interest is that
there were different patterns of results between d' and beta
within the fusion factor. Participants had significantly (or
close to significantly) lower d' than both CP and DT-CWT
fusion types, whilst these latter two fusion types did not differ
significantly. However, beta scores showed that participants
were significantly less biased with the DT-CWT fusion than
for either contrast pyramid or averaging, with these latter two
non-significant. Thus, it can be inferred that whilst the aver-

aging fusion scheme creates a target that is significantly more
confusable with noise than either CP or DT-CWT fusion, it is
the DT-CWT method that leads to significantly lowered bias
in participant answers, resulting in fewer 'misses' (saying 'no'
when target is present) in answering.

5.1.3 Part Two ofExperiment

The subjective scores of the participants were collated and the
mean scores were considered. These showed that compression
scores did vary somewhat, with clean (3.19) slightly higher
than low compression (2.87) and high compression (2.68).
Fusion scores appeared to vary more, although only for aver-

aging fusion type, which scored much lower (2.34) than both
contrast pyramid (3.16) and DT-CWT (3.25) methods.
A two-factor repeated measures ANOVA indicated a sig-

nificant main effect of fusion type (F(2, 22) = 22.87, p <

0.001), as well as for compression level (F(2, 22) = 11.80,
p = 0.002), but no interaction was found (F(4, 44) = 0.65,
p > 0.05), as shown in Fig. 6. It should be noted that
Mauchly's test of sphericity was significant for both main ef-
fects, therefore the Greenhouse-Geisser test of within-subjects
effects was used [23].

41

3.5

Clean Low
Compression

High

3

2.5 .
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2

Fig. 6: ANOVA of ratings comparing fusion and compression

Post hoc testing using Bonferroni revealed significant dif-
ferences between averaging and CP ratings (2.34 vs. 3.16,
p = 0.001) as well, as between averaging and DT-CWT (2.34
vs. 3.25, p = 0.001), but not between CP and DT-CWT fu-
sion methods (3.16 vs. 3.25, p > 0.05). This indicates that
participants rated the subjective quality of the averaging fused
images as lower than both the others, which were viewed as

having a similarly higher quality.
Post hoc testing on the compression results revealed signif-

icant differences between clean and low compression images
(3.19 vs. 2.87, p = 0.045), and between clean and high com-
pression (3.19 vs. 2.68, p = 0.008), as well as between the
low and high conditions (2.87 vs. 2.68, p = 0.32). These
results indicate that participants rated the quality of the un-

compressed image as the best of the three, followed by the less
compressed image, with the highly compressed image scoring
the lowest quality.

5.2 Discussion of Psycho-Visual Results

It is clear from the two psycho-visual sets of results that par-

ticipants' performance in objective tasks gives a similar pat-
tern of results to how participants perceive subjective quality,
although importantly, this is based on two factors not one. Per-
fonnance in part one of the experiment hinged around fusion
type, with the DT-CWT and CP fusion types leading to more
separated signal-to-noise distributions, whilst averaging and
CP fusion schemes were more likely to bias participants into
making a 'no' response.

In contrast to the task-based results, participants' subjective
ratings were tiered both by compression and fusion type. The
complex fusion method is preferred over the others, whilst a

clean image is also rated more highly than the compressed im-
ages, as might be expected. What is interesting to note is that
whilst compression level did not significantly affect the par-

ticipants' performances in the objective task at all, this was

deemed to be as critical a factor as fusion type when the sub-
jective quality was considered. Thus, compression is a factor
that might be considered more important than it actually is if
only subjective quality is considered. Dependent on what task
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is being carried out, this factor may only have minimal ef-
fect on performance. This general pattern of results shows the
importance of measuring performance in carefully controlled
experiments rather than relying on introspection or compu-
tational metrics alone, as these methods identify factors that
might not be relevant when a task is being performed.

5.3 Metrics Results
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Fig. 7: PSNR for UN Camp image sequence

The PSNR requires a reference or ideal image, which, in the
case of IR and visible image fusion, is unknown most of the
time. Therefore it is not really possible to assess the quality of
fusion with this metric. However, it is possible to assess the
influence of compression for each fusion method. In order to
do so, we have obtained an uncompressed fused version (Fr)
of the input images, where x represents the selected fusion
method. We used this clean image as a reference to compare
it with that obtained by fusing compressed images Fx (see
Fig. 2).

Fig. 7 shows the PSNR measures for the three studied fu-
sion methods at different compression rates. Examining this
plot, the simple averaging fusion method seems to cope with
compression better than the others. This is due to the low-pass
filter characteristic of the averaging fusion method and the fact
that the fusion rule in this case is linear. In the case of con-
trast pyramid and DT-CW*T however, the fusion rule used was
maximum absolute value, which is a non-linear operation. A
small change in a pixel value can affect a number of coeffi-
cients in the transform domain. This may cause a switch in a
number of coefficients selected by the fusion rule, which will
affect a region in the image where the pixel values will change
slightly.

Fig. 8 shows the results of mutual information measure-
ments. The solid line represents the mutual information of
uncompressed input images and the fused image obtained af-
ter compression (MA2B). The dashed line represents the val-
ues obtained from the compressed input images and the cor-
responding fused image (MAj B-).
The results obtained with this metric, contradict the ones

obtained in the objective and subjective tasks. According to
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Fig. 8: Mutual information for UN Camp image sequence

mutual information, averaging fusion method outperforms the
other two methods and DT-CWT seems to be the least affected
by compression.

1~~~~~~~~~~~~~~~~~~~~~o.sI II

0.8~

0.7 H

0.6

<M 0.5

0.4

0.3

0.2

0.1

~~~~~~-0 -< -'v V-- ff vi y--V s- V
-- -- -_

AV
CP

1 DT-CWT1

1:10 1:20 1:30 1:40 1:50 1:60 1:70 1:80 1:90 1:100
Compression ratio

Fig. 9: Petrovic's metric for UN Camp image sequence

The results obtained by Petrovic and Xydeas' metric are

presented in Fig. 9. It can be observed that the results correlate
with the psycho-visual experiment, where the DT-CWT was

the best fusion method. However, as compression increases
(compression ratio of 1:70 or 0.11 bpp) the performance is
very close to the contrast pyramid.

Similar results are obtained with Piella and Heijmans' met-
ric using a window of size 8X8 and a =0.2 (Fig. 10). DT-
CWT again performs best, with contrast pyramid in second
position and averaging being the worst fusion method as ex-

pected. According to this metric, compression affects simi-
larly the three fusion methods, with contrast pyramid having
a slightly better performance.

6 Conclusions
In this paper we have discussed the influence of compression
on image fusion. We reviewed commonly used quality met-
rics for image fusion and studied their performance with com-
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Fig. 10: Piella's metric for UN Camp image sequence

pressed images (JPEG2000). The results were compared with
a psycho-visual study.
The performance of widely used quality metrics, such as

mutual information, has been found to be poor. On the other
hand, metrics that take into consideration aspects of the HVS,
such as Petrovic and Xydeas' metric and Piella and Heij-
mans' metric seem to have a high correlation with subjective
tests. Furthermore, these metrics together with the psycho-
visual experiments show that the correct selection of the fu-
sion method has a greater impact on image fusion perfor-
mance than JPEG2000 compression itself.

Future work should include a study of the effects of trans-
mission losses on image fusion performance.
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