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TWO-STAGE ADAPTIVE FILTERING TECHNIQUES FOR NOISE CANCELLATION IN 
HEARING AIDS 

C. N. Canagarajah and P. J .  W. Rayner 

Signal Processing Laboratory 
Cambridge University Engineering Dept. 

Trumpington St., Cambridge CB2 lPZ, UK 

ABSTRACT 

Most of the existing adaptive noise cancelling 
techniques produce little improvement in the intel- 
ligibility of speech for the hearing impaired in re- 
verberant environments. In this paper we propose 
two-stage adaptive structures to improve speech in- 
telligibility in noise. The first stage removes the 
interference and produces a distorted version of the 
signal. The second stage then removes this distor- 
tion and the clean signal is obtained. We suggest 
two algorithms: an unconstrained and a constrained 
one for the first stage. In high Signal-to-Noise Ratios 
(SNR) both perform very well and more than 20dB 
noise reduction may be achieved. In low SNR the 
constrained algorithm performs better with a slight 
increase in the computational load. 

1 INTRODUCTION 

Hearing impaired listeners have difficulty in perceiv- 
ing sounds when there are other noise sources or 
competing speakers present in the same environ- 
ment (Cocktai l  par t y  effect). The loss of spatial 
cues and the reduced frequency selectivity of the ear 
contribute significantly to this impairment. Adap- 
tive Noise Cancellation [l] is one of the approaches 
widely used to increase the spatial selectivity of the 
hearing aids. 

Adaptive noise cancellation works extremely well 
when the reference input contains a signal that is 
highly correlated with the noise in the primary in- 
put but uncorrelated with the desired signal. When 
the microphones are not separated well enough the 
reference input contains a signal correlated with the 
desired signal and noise. In this case the primary 
input signal XI(%) is S(z) + N ( z )  and the reference 
input X q ( z )  is G(z)S(z) + H ( z ) N ( z ) ,  where S(z) is 
the desired signal and N ( z )  is the noise. G(z) rep- 
resents the effects of room reverberations and small 
deviations in the desired speaker’s position from the 

straight ahead look-direction and H ( z )  depends on 
the location of competing speakers or noise sources. 
Here we assume that the desired speaker is straight 
ahead of the hearing aid wearer ( i .e .  G ( z )  is close to 
unity). This situation is very common in multi mi- 
crophone hearing aids. Therefore the problem now 
becomes one of obtaining a signal that is correlated 
either with the desired signal or noise by manip- 
ulating the two signals XI(%) and Xz(z) .  Peter- 
son [2] has proposed an approach where, by sub- 
tracting the reference signal from the primary input 
a noise-only signal is obtained for straight ahead 
targets in an anechoic field (G(z )  = 1). A simi- 
lar technique was adopted by Farassopoulos 131 to 
cancel interfering speakers. Both systems produce 
good results when the desired signal is identical in 
both inputs. Frost [4] has proposed a constrained 
LMS filter to reduce noise when the desired direc- 
tion is known and the signal is identical in all the 
inputs. But real environments are not anechoic and 
as a result the signal is not identical in all the in- 
puts (G(z )  # 1). Hence performance of the above 
methods is degraded and signal cancellation or sig- 
nal distortion occurs [l]. Strube [5] has presented 
a frequency domain approach to obtain a noise ref- 
erence in reverberant environments. By taking the 
weighted sum of the inputs a reference signal corre- 
lated only with noise was derived. These optimum 
weights were estimated by minimising output power 
when the desired speaker was speaking alone. But 
the processed speech was observed to contain some 
disturbing artifacts. 

In this paper we present a simple two-stage filter- 
ing approach to suppress interference in reverberant 
environments. The purpose of the first stage is to 
obtain a signal that is highly correlated with S ( z )  
but uncorrelated with N ( z ) .  This is achieved by 
adjusting the first stage filters during quiet periods 
so that the interference is completely suppressed. 
Then the filter is locked to be used when the de- 
sired speaker is present. In subsequent processing 
the first stage removes the noise and produces a 
distorted version of the signal, I ( z ) S ( z )  where I ( z )  
represents the frequency dependent distortion. The 
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Figure 1: Unconstrained Adaptive Filtering 

second stage then tries to remove this distortion by 
minimising the mean squared error (MSE) between 
the primary input and filtered reference signal. 

2 UNCONSTRAINED ADAPTIVE 
FILTERING 

The block diagram of this structure is shown in 
Fig. 1. The z-transform of the microphone signals 
are: 

X , ( z )  = S ( r ) + N ( t )  
X ~ ( Z )  = G(z)S(z) + H ( z ) N ( z )  

In the first stage G 1 ( z )  is adjusted during quiet 
periods so that noise is completely removed. The 
optimum filter that  minimises E[IY ( ~ ) 1 ~ ]  is given by 

where G2,+, is the crosscorrelation power density be- 
tween inputs i and j. For the given signal model 

Therefore when signal is present 

= I ( z ) S ( 2 )  

a Now Y ( z )  is fed to the cas- where I ( % )  = 1- 
caded second stage filter and distortionless signal 

H ( z ) .  

is produced when F ( z )  is adjusted to the optimum 
Wiener solution given by 

(3) 

The noise and signal being uncorrelated we obtain 

In practice filters reach only a suboptimal value 
and this introduces errors in the system. Lets as- 
sume that Gl(z)  reaches a suboptimal value given 
by 

(5) 

where A(%) is the frequency dependent fractional 
misadjustment. This misadjustment depends on the 
characteristics of the adaptation algorithm, filter 
length, etc. Then when signal is present 

This residual noise R ( z ) N ( z )  at the first stage 
output results in a suboptimal F ( z )  given by 

@ S S ( Z l  
and P p r i ( 4  = ann(%) I+- 

I+* 
where p ( z )  = 

is the SNR at the primary input. Then 

It  is clear from Eq. ( 6 )  that when the signal is 
severely attenuated by the first stage ( I ( r )  << 1) 
and R(z) is large, in very low SNR F ( z )  deviates 
significantly from the optimum filter response (i.e. 
-). This leads to signal distortion and some noise 

at the output S ( t ) ,  Furthermore Eq. (7) charac- 
terises the trade off between noise reduction and 
signal distortion. 

1 
I ( z )  

In the next section we present a constrained fil- 
tering approach that performs better even when a 
significant amount of residual noise is present. 
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Figure 2: Constrained Adaptive filtering 

Figure 3: Reconstructed signals 
3 CONSTRAINED ADAPTIVE 

FILTERING 

Fig. 2 shows the block diagram of this second 
approach. Here the second stage is identical to  the 
second stage in the first structure. But in the first 
stage we choose two filters Gl(z) and Gz(r) t o  min- 
imise the output power during quiet periods sub- 
ject to the constraint that they add up to unity ( L e  
Gl(r )  + Gz(z) = 1). This avoids the filters collaps- 
ing to zero and minimises the interference without 
drastically attenuating the desired signal. 

In the ideal case the optimum filters are given by 

1 
Gl( t )  = - 

1 - H ( z )  

But as mentioned earlier filters only attain a sub- 
optimql value. Given that fractional misadjustment 
in Gl(z) is A(%) we have 

1 + A(z) G ~ ( z )  = - 
1 - H ( z )  

then when signal is present 

to unity. Therefore we expect that in low SNRs 

RO would be significantly smaller in this set 
I(Z)Ppri (t) 
up than in the unconstrained approach. Hence de- 
viations in F ( z )  will be smaller and as a result there 
will be less signal distortion and noise in the prc- 
cessed signal. 

4 RESULTS 

These algorithms were tested in simulated acous- 
tic environments at different SNR and the results 
were compared to those obtained with other ap- 
proaches. The proposed configuration produced 
more than 20dB noise reduction when the signal was 
identical in both inputs (G(t)  = 1). Similar perfor- 
mance was obtained with Peterson’s approach. But 
at high SNR impressive results were obtained with 
two-stage filtering when the inputs contained sig- 
nals that are not identical. While other approaches 
produced significant signal distortion the proposed 
structure reconstructed the original signal very well 
with z). slight increase in the number of computations 
and complexity (see Fig. 3). This small increase 
in computational load was more than compensated 
for by the superior noise reduction achieved when 
G(z) # 1. 

Y ( z >  = (Gl(Z)G(Z) + G2(.)) S(z) + Performance of the unconstrained (Method 1) and 
constrained (Method 2) approach were compared at 
different SNR. In high SNR performance was simi- 
lar, but at very low SNR the secand approach sig- 
nificantly out performed the first as predicted. This 
is well illustrated in Fig. 4. Here error = 11 - p(z) l  
and represents the deviations in F ( z )  from the op- 
timum. For a given amount of error the operating 

+ A( t )  H ( z )  + A ( z ) )  N ( z )  (H(’)m - 1 - H ( z )  
= I ( . z )S (Z )  - A ( z ) N ( t )  

We find that R(r)  = -A(%) as in the previous 
method but now I ( z )  is constrained to be close 
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small. 

Further research is required to  assess the perfor- 
mance of this approach with real signals and the re- 
sulting improvement in intelligibility for the hearing 
impaired. 

- - - -__ 
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region of the second method was increased by 5-6dB 
compared to the first method. 

Furthermore, it was observed that the constrained 
method required twice as many taps as the first one 
to achieve similar noise reduction performance. This 
can be explained by considering the nature of the 
second algorithm in detail. In constrained adaptive 
filtering a processor having K inputs and J taps per 
input has IC J weights and requires J constraints to 
perform satisfactorily. Therefore, only the remain- 
ing (ICJ - J) degrees of freedom in choosing the 
weights may be used to minimise the noise power. 
In the unconstrained approach all ICJ degrees of 
freedom are utilised in minimising noise but signal 
distortion is not controlled. For the two input sys- 
tem (IC = 2) the number of degrees of freedom is 
reduced by a factor of two, hence the need for more 
taps in the second structure. 

5 CONCLUSIONS 

In this paper we have proposed two adaptive 
structures that produce good noise cancellation in 
reverberant environments. The results obtained in- 
dicate that two-stage filtering is superior to other 
existing methods in reverberant acoustic fields. Fur- 
thermore, this method eliminates the need for the 
signal to be identical in all the inputs and hence 
prior knowledge about signal direction and pre- 
filters. Performance of the first structure is slightly 
degraded in very low SNR when a significant amount 
of residual noise is present. We have shown that 
the second structure overcomes this problem by con- 
straining the signal distortion at the first stage to  be 
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