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ABSTRACT 
In this paper we present a novel hardware 

architecture for context-based statistical lossless 
image compression, as part of a dynamically 
reconfigurable architecture for universal lossless 
compression. A gradient-adjusted prediction and 
context modeling algorithm is adapted to a 
pipelined scheme for low complexity and high 
throughput. Our proposed system improves image 
compression ratio while keeping low hardware 
complexity. This system is designed for a Xilinx 
Virtex4 FPGA core and optimized to achieve a 123 
MHz clock frequency for real-time processing.   
 
I. INTRODUCTION 

Lossless compression has been successfully 
used in reducing the bandwidth of communication 
networks and the storage requirement of digital 
data. Moreover, lossless image compression is 
increasingly significant since it is required by many 
upcoming applications, such as Tele-medicine, 
space related research, professional visual data 
studios [1], and next-generation lithography 
systems [2]. A lot of effort has been made to 
improve the compression methods both in software 
[3], [4], and hardware [5], [6]. While software 
implementation can often yield reasonably good 
compression ratios at the price of low speed, 
hardware implementation often suffers from 
unsatisfactory compression ratios. Furthermore, 

hardware compressions of general and visual data 
are usually handled separately. This is not a very 
efficient approach due to the current trend of 
network convergence where visual and general 
data are transmitted along the same physical 
channel.  This fact suggests a technology capable 
of fast adaptation to the nature of the data and 
delivering optimal compression ratios.  

Given the above requirements, we propose an 
original reconfigurable FPGA architecture, shown 
in Fig. 1, to handle general and visual data using 
context-based modeling and arithmetic coding. We 
aim at producing an efficient combination of 
compression schemes for different data types with 
the final objective of achieving high compression 
ratio, high throughput and low complexity. 

As part of this project, this paper focuses on a 
novel architecture for lossless gray-scale image 
compression, which uses context-based modeling, 
probability estimation and arithmetic coding.  

 
II. LOSSLESS IMAGE MODELING ALGORITHM 

The characteristics of images: large alphabet 
size, two dimensions and big size potentially imply 
high statistical model complexity and large memory 
usage. State-of-the-art compression schemes, e.g. 
CALIC [3], use complex edge detection technique 
and arithmetic coder to obtain optimal compression 
ratios. From the view of hardware implementation, 
however, a higher priority should be given to
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Figure 1: Architecture for the Universal Lossless Compression System. 
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controlling model complexity, which means that 
memory usage should be minimized and complex 
operations such as multiplication and division 
should be avoided if possible. Following these 
guidelines, we use a simple edge-detecting 
predictor and a binary arithmetic coder to obtain 
good compression ratio and hardware amenability. 

Image modeling is divided into two phases: 
prediction and context modeling. In this work, the 
predictor is inspired by the GAP (Gradient-
Adjusted Prediction) from CALIC, a software-based 
algorithm. However, our method is simplified as 
fewer contexts (512 vs. 576 in CALIC), and hence 
less memory, are used. It combines with the 
probability estimator and binary arithmetic coder to 
contribute in a new low-complexity scheme. 

Fig. 2 shows the denotation of 7 neighboring 
symbols of the current symbol X , according to their 
geographical locations. They constitute the context 
of the current symbol X . In the prediction phase, 
we estimate the local edge feature by calculating 
the vertical and horizontal gradients intensity dv, 
dh, using the differences between context symbols 
vertically and horizontally. The predicted symbol 
value X̂ is a linear combination of its contexts, 
according to the gradient direction and magnitude. 
The predictor is designed to be suitable for 
hardware, involving only addition/subtraction and 
shifting. Thus we obtain the prediction error e , 
which is the difference between the original and 
the predicted symbol value. The prediction error e   

is also remapped from the range 12n−−  to 12n− , to 
the range 0 to 12n−  to reduce the alphabet size.  

 In the context modeling phase, context 
selection is essential to reduce memory usage. We 
use 6 context symbols to compare with the 
predicted value X̂  to obtain a texture pattern t, 
representing the local texture feature. Also, to 
indicate the activity of errors in a context, a coding 
context is generated with the local gradients dv, dh 
and an previous prediction error e  of W. The 
coding context is quantized into 8 levels to form a 
coding context index QE. Combining the texture 
pattern and coding context, a set of 512 compound 
contexts are formed by 6 bits texture pattern t and 

 

XWW W

NW

NN

N NE

NNE

 
Figure 2: Neighbouring Pixels in Prediction and Modeling 

3 bits coding context index QE. These contexts are 
used to generate an error feedback to adjust the 
bias of prediction, which will be discussed in the 
next section. The 8 coding contexts are also used 
to encode symbols in the probability estimator 
presented in Section IV. 
 
III. LOSSLESS IMAGE MODELING 
ARCHITECTURE 

We present our new hardware architecture of 
the image modeling module in Fig. 3, where the 
prediction part is illustrated in the solid-line box and 
the context modeling part is the rest. 

Implementation of the modeling can be done in 
two pipelines running in parallel. 
Line 1: a) Calculate prediction error e X X= − , 
where X is the adjusted predicted value; 
         b) Update sum and number of prediction 
errors in each compound context; 
         c) Map prediction error e  to e ; 
            d) Update coding context index QE; 
Line 2: a) Update context with new symbol; 
         b) Calculate gradients dv, dh; 
            c) Calculate primary prediction value X̂ and 
quantized coding context QE; 
            d) Calculate texture pattern and update 
context index; 
            e) Calculate the mean of errors e in context 
for error feedback, and obtain an adjusted 
predicted value ˆX X e= + . 

Line 1, indicated by solid line in Fig.3, operates 
on the current symbol and yields the prediction 
error e  and coding context index QE for the 
probability estimator. Line 2, indicated by dash line, 
calculates the prediction value and context index  

X̂

X̂

X̂

X

e X X= −

e

 
Figure 3: Architecture of Image Modeling Module 
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for next symbol. So the Line 1 operation for the 
next symbol can utilize the result of Line 2 from 
current symbol when the two lines work in parallel. 
Consequently, pipelining can be achieved by 
breaking the operation into small pieces and 
executing them simultaneously, resulting in a 
reduction of clock period. Managing the context 
memory and the error feedback technique, which 
calculates the mean of errors in a context, are the 
most difficult parts. The details are given below. 

In the compression process, we need to store 
3 lines of image pixel values in memory as context 
and use 3 pointers to indicate symbol locations in 
each line. At the end of processing each line, the 3 
pointers to each line have to be rotated in a certain 
order so that the oldest line will be discarded and 
the newly formed line will be saved.  

An error feedback technique is used in the 
prediction schemes to adjust the prediction in a 
certain context, because the mean of errors e  is 
the most probable prediction error in each context. 
This error feedback can help with reducing the bias 
of the primary prediction. The mean of errors e  in 
a context is simply given by 
                          /e sum count=                      (1) 

where sum and count are the sum and occurrence 
of errors in the context, respectively. In order to 
calculate the mean, sum and count in each context 
are stored in memory, as shown in Fig. 3. For 
memory efficiency, we only use 5 bits to store the 
error occurrence. When the count reaches its 
maximal value 31, it is halved by right-shifting one 
bit; meanwhile sum is halved so as to maintain the 
mean e . Thus we only need 13 bits ( 5 8 132 2 2× = ) 
plus one sign bit to store the sum of errors safely. 
This rescaling function is completed by the block of 
Overflow Guard. Experimental results prove that 
this rescaling technique slightly improves the 
compression ratio by “aging” the observed data. 
However, division is always a difficult problem in 
hardware, especially when the dividend can be as 
large as 13 bits. To make this division practical, we 
bound the dividend sum by 10 bits for two reasons: 
firstly experiments on our image test set show that 
the chance of the sum being larger than 1023 is 
less than 0.001%; secondly, extraordinary large 
errors tend not to reflect the true behavior of the 
context because prediction errors should be 
moderately small given an adequate predictor. We 

use the most significant bits of the divisor count in 
the division, with the dividend being rescaled 
accordingly to maintain the same result. 
Consequently, we only need a lookup table of 
1KByte ( 2 512 1024× = ) to complete fast division. 
Although the result of division is only an 
approximation, it does not affect the compression 
performance in our experiments. 

The outputs of the modeling module are the 
mapped error e  and the coding context index QE 
which are sent to the probability estimator. 

  
IV. PROBABILITY ESTIMATOR AND BINARY 
ARITHMETIC CODER 
 The probability estimator adaptively calculates 
the probability of symbol occurrence in each 
context in a SRAM. It enables the application of a 
simple and fast binary arithmetic coder and the 
decomposition of the coding procedure into bit 
level operations, and hence full pipelining and high 
throughput. 
 Each context is represented by a balanced 
binary tree with 2n  (n is the bits per pixel) nodes 
associated with each symbol in the alphabet. A 
number of bits are used to store the symbol 
frequency count in each node. Initially, all the 
symbols in the alphabet are assigned an equal 
probability, e.g. 1/256 in an alphabet of 256 
symbols. When one symbol is received, the value 
of the corresponding tree node increases to reflect 
the probability distribution of symbol occurrence. 
There are 8 coding contexts for image 
compression, corresponding to 8 “dynamic” trees 
and one “static” tree for coding the escape symbols. 
Escape happens when a valid probability of a 
symbol cannot be found, e.g. when its probability is 
0, in which case the symbol is “escaped” to the 
“static” tree and is sent as it is. Escape is 
undesirable as it does not achieve any 
compression. It takes place when some symbol 
counts reach the maximal frequency count, e.g. 14 
bits for ( 142 1− ), in which case all the symbol 
counts in the tree will be halved. Consequently, the 
counts of symbols that have not been seen before 
will be rescaled from 1 to 0, resulting in escape 
when those symbols occur later for the first time. 
Therefore, the frequency count bits have to be 
carefully chosen. Experimental results of average 
compression bit rates under different frequency 
count bits are shown in Fig. 4. Note that when too 
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Figure 4: Average Bit Rates under Different Probability 
Precision 
few bits are used, more escapes happen; when too 
many bits are used, fewer escapes happen but the 
probability distribution is so skewed that more bits 
are needed to encode the symbols with small 
probability. Therefore we choose 14 bits for the 
symbol counts. 

As tree node value increment works from the 
root down to the leaves through the tree, a symbol 
can be fully encoded by the binary decision (left or 
right) taking place in each level of the tree. 

The binary arithmetic coder is driven by the 
binary decision bits and the probability data from 
probability estimator. More details regarding the 
arithmetic coder can be found in [7]. 
 
V. IMPLEMENTATION AND PERFORMANCE 
COMPARISON 
 In this section we present the experiment 
results of the proposed lossless image compressor. 
We compared the performance of different image 
compressors in Table. 1, using a set of grey-scale 
test images of size 512*512 pixels. JPEG-LS 
(LOCO-I) [4] and SLP (Switched Linear Prediction) 
are low complexity compression schemes using 
Golomb-Rice coder. Clearly, the proposed scheme 
outperforms JPEG-LS and SLP in terms of 
compression ratio with comparable low complexity, 
though yields slightly bigger compression ratio 
compared to software CALIC since fewer contexts 
and simpler hardware-amenable modeling 
techniques are used in our system. 
 Table 2 is the device utilization summary of the 
hardware implementation on a Xilinx Virtex4 FPGA  
 

Table 1. Bit Rates Comparison of a few Selected Schemes 
Image JPEG-LS SLP(M0) CALIC proposed 
barb 4.86 4.79 4.59 4.68 
boat 4.25 4.28 4.12 4.18 
goldhill 4.71 4.74 4.61 4.65 
lena 4.24 4.17 4.09 4.14 
mandrill 6.04 5.99 5.9 5.93 
peppers 4.49 4.49 4.35 4.39 
zelda 4.01 3.97 3.84 3.90 
average 4.66 4.63 4.50 4.55 

Table 2: Device Utilization Summary 
 Modelling Probability 

Estimator 
Arithmetic 

Coder 
No. of Slices 508 297 1123 
No. of Slice Flip-flop 224 124 283 
No. of 4 input LUT 912 561 2131 
No. of bonded IOBs 31 60 53 
No. of GCLK 1 1 1 

 

chip. Memory usage for modeling is 3.7KBytes, for 
probability estimator is 4KBytes. The design was 
synthesized and optimized using Xilinx ISE 8.1 and 
achieved a clock frequency of 123 MHz, and a 
throughput of 123Mbits/sec. The low complexity 
means that a multi-core solution could be used to 
scale up the performance. 
 
VI. CONCLUSIONS 
 A novel hardware architecture for context-based 
lossless image compression is proposed in this 
paper. As a result, lossless compression is 
achieved efficiently with low complexity hardware 
design. Our experiments show improvement in 
terms of compression ratio when comparing to 
other low complexity schemes. The combination of 
different modeling modules optimized for various 
data types, has the potential of achieving a high 
efficient universal lossless compressor. 
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