
 Chen, X., Canagarajah, C. N., Nunez-Yanez, J. L., & Vitulli, R. (2007).
Hardware architecture for lossless image compression based on context-
based modeling and arithmetic coding. In IEEE International SOC
Conference, Hsin Chu, Taiwan. (pp. 251 - 254). Institute of Electrical and
Electronics Engineers (IEEE). 10.1109/SOCC.2007.4545469

Link to published version (if available):
10.1109/SOCC.2007.4545469

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29025835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/SOCC.2007.4545469
http://research-information.bristol.ac.uk/en/publications/hardware-architecture-for-lossless-image-compression-based-on-contextbased-modeling-and-arithmetic-coding(1802b269-78b9-466d-a98f-025872fd15f9).html
http://research-information.bristol.ac.uk/en/publications/hardware-architecture-for-lossless-image-compression-based-on-contextbased-modeling-and-arithmetic-coding(1802b269-78b9-466d-a98f-025872fd15f9).html

Hardware Architecture for Lossless Image Compression
Based on Context-based Modeling and Arithmetic Coding

Xiaolin Chen, Nishan Canagarajah, Jose L. Nunez-Yanez

Raffaele Vitulli

Department of Electrical and Electronic Engineering,
University of Bristol, UK

Email:{eezxxc, eecnc, eejlny}@bristol.ac.uk

On-Board Payload Data Processing Section
European Space Agency (ESA), Netherlands

Email: raffaele.vitulli@esa.int

ABSTRACT
In this paper we present a novel hardware

architecture for context-based statistical lossless
image compression, as part of a dynamically
reconfigurable architecture for universal lossless
compression. A gradient-adjusted prediction and
context modeling algorithm is adapted to a
pipelined scheme for low complexity and high
throughput. Our proposed system improves image
compression ratio while keeping low hardware
complexity. This system is designed for a Xilinx
Virtex4 FPGA core and optimized to achieve a 123
MHz clock frequency for real-time processing.

I. INTRODUCTION

Lossless compression has been successfully
used in reducing the bandwidth of communication
networks and the storage requirement of digital
data. Moreover, lossless image compression is
increasingly significant since it is required by many
upcoming applications, such as Tele-medicine,
space related research, professional visual data
studios [1], and next-generation lithography
systems [2]. A lot of effort has been made to
improve the compression methods both in software
[3], [4], and hardware [5], [6]. While software
implementation can often yield reasonably good
compression ratios at the price of low speed,
hardware implementation often suffers from
unsatisfactory compression ratios. Furthermore,

hardware compressions of general and visual data
are usually handled separately. This is not a very
efficient approach due to the current trend of
network convergence where visual and general
data are transmitted along the same physical
channel. This fact suggests a technology capable
of fast adaptation to the nature of the data and
delivering optimal compression ratios.

Given the above requirements, we propose an
original reconfigurable FPGA architecture, shown
in Fig. 1, to handle general and visual data using
context-based modeling and arithmetic coding. We
aim at producing an efficient combination of
compression schemes for different data types with
the final objective of achieving high compression
ratio, high throughput and low complexity.

As part of this project, this paper focuses on a
novel architecture for lossless gray-scale image
compression, which uses context-based modeling,
probability estimation and arithmetic coding.

II. LOSSLESS IMAGE MODELING ALGORITHM

The characteristics of images: large alphabet
size, two dimensions and big size potentially imply
high statistical model complexity and large memory
usage. State-of-the-art compression schemes, e.g.
CALIC [3], use complex edge detection technique
and arithmetic coder to obtain optimal compression
ratios. From the view of hardware implementation,
however, a higher priority should be given to

Uncompressed
 Data

Time
Multiplex Dynamic Modeling

Reconfiguration

Context
Modeling

Lossless Data Modeling

Lossless Image Modeling

Lossless Video Modeling

Context
Modeling

Context
Modeling

Probability
Estimator

Predictive
Coding

Motion
Estimator

Arithmetic
Coder

Compressed
Data

Figure 1: Architecture for the Universal Lossless Compression System.

251

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 24, 2009 at 06:45 from IEEE Xplore. Restrictions apply.

controlling model complexity, which means that
memory usage should be minimized and complex
operations such as multiplication and division
should be avoided if possible. Following these
guidelines, we use a simple edge-detecting
predictor and a binary arithmetic coder to obtain
good compression ratio and hardware amenability.

Image modeling is divided into two phases:
prediction and context modeling. In this work, the
predictor is inspired by the GAP (Gradient-
Adjusted Prediction) from CALIC, a software-based
algorithm. However, our method is simplified as
fewer contexts (512 vs. 576 in CALIC), and hence
less memory, are used. It combines with the
probability estimator and binary arithmetic coder to
contribute in a new low-complexity scheme.

Fig. 2 shows the denotation of 7 neighboring
symbols of the current symbol X , according to their
geographical locations. They constitute the context
of the current symbol X . In the prediction phase,
we estimate the local edge feature by calculating
the vertical and horizontal gradients intensity dv,
dh, using the differences between context symbols
vertically and horizontally. The predicted symbol
value X̂ is a linear combination of its contexts,
according to the gradient direction and magnitude.
The predictor is designed to be suitable for
hardware, involving only addition/subtraction and
shifting. Thus we obtain the prediction error e ,
which is the difference between the original and
the predicted symbol value. The prediction error e

is also remapped from the range 12n−− to 12n− , to
the range 0 to 12n− to reduce the alphabet size.

 In the context modeling phase, context
selection is essential to reduce memory usage. We
use 6 context symbols to compare with the
predicted value X̂ to obtain a texture pattern t,
representing the local texture feature. Also, to
indicate the activity of errors in a context, a coding
context is generated with the local gradients dv, dh
and an previous prediction error e of W. The
coding context is quantized into 8 levels to form a
coding context index QE. Combining the texture
pattern and coding context, a set of 512 compound
contexts are formed by 6 bits texture pattern t and

XWW W

NW

NN

N NE

NNE

Figure 2: Neighbouring Pixels in Prediction and Modeling

3 bits coding context index QE. These contexts are
used to generate an error feedback to adjust the
bias of prediction, which will be discussed in the
next section. The 8 coding contexts are also used
to encode symbols in the probability estimator
presented in Section IV.

III. LOSSLESS IMAGE MODELING
ARCHITECTURE

We present our new hardware architecture of
the image modeling module in Fig. 3, where the
prediction part is illustrated in the solid-line box and
the context modeling part is the rest.

Implementation of the modeling can be done in
two pipelines running in parallel.
Line 1: a) Calculate prediction error e X X= − ,
where X is the adjusted predicted value;
 b) Update sum and number of prediction
errors in each compound context;
 c) Map prediction error e to e ;
 d) Update coding context index QE;
Line 2: a) Update context with new symbol;
 b) Calculate gradients dv, dh;
 c) Calculate primary prediction value X̂ and
quantized coding context QE;
 d) Calculate texture pattern and update
context index;
 e) Calculate the mean of errors e in context
for error feedback, and obtain an adjusted
predicted value ˆX X e= + .

Line 1, indicated by solid line in Fig.3, operates
on the current symbol and yields the prediction
error e and coding context index QE for the
probability estimator. Line 2, indicated by dash line,
calculates the prediction value and context index

X̂

X̂

X̂

X

e X X= −

e

Figure 3: Architecture of Image Modeling Module

252

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 24, 2009 at 06:45 from IEEE Xplore. Restrictions apply.

for next symbol. So the Line 1 operation for the
next symbol can utilize the result of Line 2 from
current symbol when the two lines work in parallel.
Consequently, pipelining can be achieved by
breaking the operation into small pieces and
executing them simultaneously, resulting in a
reduction of clock period. Managing the context
memory and the error feedback technique, which
calculates the mean of errors in a context, are the
most difficult parts. The details are given below.

In the compression process, we need to store
3 lines of image pixel values in memory as context
and use 3 pointers to indicate symbol locations in
each line. At the end of processing each line, the 3
pointers to each line have to be rotated in a certain
order so that the oldest line will be discarded and
the newly formed line will be saved.

An error feedback technique is used in the
prediction schemes to adjust the prediction in a
certain context, because the mean of errors e is
the most probable prediction error in each context.
This error feedback can help with reducing the bias
of the primary prediction. The mean of errors e in
a context is simply given by
 /e sum count= (1)

where sum and count are the sum and occurrence
of errors in the context, respectively. In order to
calculate the mean, sum and count in each context
are stored in memory, as shown in Fig. 3. For
memory efficiency, we only use 5 bits to store the
error occurrence. When the count reaches its
maximal value 31, it is halved by right-shifting one
bit; meanwhile sum is halved so as to maintain the
mean e . Thus we only need 13 bits (5 8 132 2 2× =)
plus one sign bit to store the sum of errors safely.
This rescaling function is completed by the block of
Overflow Guard. Experimental results prove that
this rescaling technique slightly improves the
compression ratio by “aging” the observed data.
However, division is always a difficult problem in
hardware, especially when the dividend can be as
large as 13 bits. To make this division practical, we
bound the dividend sum by 10 bits for two reasons:
firstly experiments on our image test set show that
the chance of the sum being larger than 1023 is
less than 0.001%; secondly, extraordinary large
errors tend not to reflect the true behavior of the
context because prediction errors should be
moderately small given an adequate predictor. We

use the most significant bits of the divisor count in
the division, with the dividend being rescaled
accordingly to maintain the same result.
Consequently, we only need a lookup table of
1KByte (2 512 1024× =) to complete fast division.
Although the result of division is only an
approximation, it does not affect the compression
performance in our experiments.

The outputs of the modeling module are the
mapped error e and the coding context index QE
which are sent to the probability estimator.

IV. PROBABILITY ESTIMATOR AND BINARY
ARITHMETIC CODER
 The probability estimator adaptively calculates
the probability of symbol occurrence in each
context in a SRAM. It enables the application of a
simple and fast binary arithmetic coder and the
decomposition of the coding procedure into bit
level operations, and hence full pipelining and high
throughput.
 Each context is represented by a balanced
binary tree with 2n (n is the bits per pixel) nodes
associated with each symbol in the alphabet. A
number of bits are used to store the symbol
frequency count in each node. Initially, all the
symbols in the alphabet are assigned an equal
probability, e.g. 1/256 in an alphabet of 256
symbols. When one symbol is received, the value
of the corresponding tree node increases to reflect
the probability distribution of symbol occurrence.
There are 8 coding contexts for image
compression, corresponding to 8 “dynamic” trees
and one “static” tree for coding the escape symbols.
Escape happens when a valid probability of a
symbol cannot be found, e.g. when its probability is
0, in which case the symbol is “escaped” to the
“static” tree and is sent as it is. Escape is
undesirable as it does not achieve any
compression. It takes place when some symbol
counts reach the maximal frequency count, e.g. 14
bits for (142 1−), in which case all the symbol
counts in the tree will be halved. Consequently, the
counts of symbols that have not been seen before
will be rescaled from 1 to 0, resulting in escape
when those symbols occur later for the first time.
Therefore, the frequency count bits have to be
carefully chosen. Experimental results of average
compression bit rates under different frequency
count bits are shown in Fig. 4. Note that when too

253

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 24, 2009 at 06:45 from IEEE Xplore. Restrictions apply.

4.48
4.5

4.52
4.54
4.56
4.58
4.6

4.62
4.64
4.66
4.68
4.7

10 12 14 16

Frequency Count Bits

B
it

R
at

e
(B

it
pe

r P
ix

el
)

Figure 4: Average Bit Rates under Different Probability
Precision
few bits are used, more escapes happen; when too
many bits are used, fewer escapes happen but the
probability distribution is so skewed that more bits
are needed to encode the symbols with small
probability. Therefore we choose 14 bits for the
symbol counts.

As tree node value increment works from the
root down to the leaves through the tree, a symbol
can be fully encoded by the binary decision (left or
right) taking place in each level of the tree.

The binary arithmetic coder is driven by the
binary decision bits and the probability data from
probability estimator. More details regarding the
arithmetic coder can be found in [7].

V. IMPLEMENTATION AND PERFORMANCE
COMPARISON
 In this section we present the experiment
results of the proposed lossless image compressor.
We compared the performance of different image
compressors in Table. 1, using a set of grey-scale
test images of size 512*512 pixels. JPEG-LS
(LOCO-I) [4] and SLP (Switched Linear Prediction)
are low complexity compression schemes using
Golomb-Rice coder. Clearly, the proposed scheme
outperforms JPEG-LS and SLP in terms of
compression ratio with comparable low complexity,
though yields slightly bigger compression ratio
compared to software CALIC since fewer contexts
and simpler hardware-amenable modeling
techniques are used in our system.
 Table 2 is the device utilization summary of the
hardware implementation on a Xilinx Virtex4 FPGA

Table 1. Bit Rates Comparison of a few Selected Schemes
Image JPEG-LS SLP(M0) CALIC proposed
barb 4.86 4.79 4.59 4.68
boat 4.25 4.28 4.12 4.18
goldhill 4.71 4.74 4.61 4.65
lena 4.24 4.17 4.09 4.14
mandrill 6.04 5.99 5.9 5.93
peppers 4.49 4.49 4.35 4.39
zelda 4.01 3.97 3.84 3.90
average 4.66 4.63 4.50 4.55

Table 2: Device Utilization Summary
 Modelling Probability

Estimator
Arithmetic

Coder
No. of Slices 508 297 1123
No. of Slice Flip-flop 224 124 283
No. of 4 input LUT 912 561 2131
No. of bonded IOBs 31 60 53
No. of GCLK 1 1 1

chip. Memory usage for modeling is 3.7KBytes, for
probability estimator is 4KBytes. The design was
synthesized and optimized using Xilinx ISE 8.1 and
achieved a clock frequency of 123 MHz, and a
throughput of 123Mbits/sec. The low complexity
means that a multi-core solution could be used to
scale up the performance.

VI. CONCLUSIONS
 A novel hardware architecture for context-based
lossless image compression is proposed in this
paper. As a result, lossless compression is
achieved efficiently with low complexity hardware
design. Our experiments show improvement in
terms of compression ratio when comparing to
other low complexity schemes. The combination of
different modeling modules optimized for various
data types, has the potential of achieving a high
efficient universal lossless compressor.

REFERENCES

1. N. Memon and X. Wu, “Recent developments in context-

based predictive techniques for lossless image
compression,” The Computer Journal, vol. 40, no. 2/3, pp.
127-136, 1997.

2. V. Dai and A. Zakhor, “Lossless compression of VLSI layout
image data,” IEEE Trans. Image Processing, vol. 15, no. 9,
pp. 2522-2530, Sept. 2006.

3. X. Wu and N. Memon, “Context-based, adaptive, lossless
image coding,” IEEE Trans. Commun., vol. 45, no. 4, pp.
437-444, Apr. 1997.

4. G. S. M. Weinberger and G. Shapiro, “The LOCO-I lossless
image compression algorithm: Principles and
standardization into JPEG-LS,” IEEE Trans. Image
Processing, vol. 9, no. 8, pp. 1309-1324, Aug. 2000.

5. V. S. M. Klimesh and D. Watola, “Hardware implementation
of a lossless image compression algorithm using a field
programmable gate array,” TMO Progress Report 42-144,
Jet Propulsion Laboratory, California, US, 2001.

6. R. Vitulli, “PRDC: An ASIC device for lossless datsa
compression implementing the RICE algorithm,” in Proc.
2004 IEEE Int. Geoscience and Remote Sensing
Symposium, vol. 1, 2004, pp. 317-320.

7. J. L. Nunez-Yanez and V. A. Chouliaras, “A configurable
statistical lossless compression core based on variable
order Markov modelling and arithmetic coding,” IEEE Trans.
Comput., vol. 54, no. 11, pp. 1345-1359, Nov. 2005.

254

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 24, 2009 at 06:45 from IEEE Xplore. Restrictions apply.

