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ABSTRACT 

A solution for achieving blind separation for underdeter- 
mined systems is to use an overcomplete basis function set 
that has the ability to span all possible inputs. Ideally, such a 
basis would be learned for each set of inputs but this is com- 
putationally expensive. A less processor intensive system 
is shown using a fixed dictionary of basis functions learned 
from existing sources and reduced using a correlation-based 
method. The relation between dictionary size and separa- 
tion performance for underdetermined scenarios is exam- 
ined and we demonstrate that a reduced dictionary can pro- 
duce comparable results using less computational power. 

1. INTRODUCTION 

The use of independent component analysis (ICA) ([1],[2]) 
for blind separation has been well documented. However, 
the use of traditional ICA is restricted to systems where 
there are at least as many sources as sensors, i.e. a deter- 
mined system. For the underdetermined case, a mare gen- 
eral approach must he found. An idea of this nature has 
been presented in ([3]) by learning an overcomplete basis 
set from the system outputs and has been used for blind 
separation ((41). However, the learning process is complex 
and may be unsuitable for real-time use. Here, we will de- 
scribe the use of an overcomplete solution using basis func- 
tions learned using the aforementioned method from exist- 
ing speech samples and then reduced by eliminating highly 
correlated elements. This reduced basis set can then be used 
for blind separation. 

A similar approach is used in vector quantization to build 
libraries for signal compression ( [5]) .  

The data model for blind separation we define is of a 
system where mixing of signals is linear and stationary. From 
N sources s~., . , ( t )  we get the M outputs ZI ...,,,( t ) .  This 
gives equation 1. 

~ ( t )  = A .  s( t )  (1) 

where A is an M by N mixing matrix. We therefore need 
to find the inverse of matrix A, For a determined system, 
M 2 N and A has full rank. The recovered sources y,(t) 
can then be obtained from y = Wx. For classical ICA, 
the condition of M 5 N must be satisfied; there must be at 
least as many outputs as inputs. 
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2. LEARNING AN OVERCOMPLETE BASIS 

In order to solve the underdetermined case we use an over- 
complete set of basis functions similar to to the Gabor set 
[ 5 ] .  However, whilst this set is mathematically derived, our 
basis function set is learned using the algorithm described 
in [31. The task is to find an optimum basis function set for 
a given signal based on the data model shown in equation 1 

It is assumed the sources si are mutually independent 
such that thejoint probability distribution has the form P ( s )  = 

U;=, P(s i )  and each source si has a sparse distribution (i.e. 
super-Gaussian). A probabilistic approach to inferring the 
sources is based on the maximum a posteriori value of s: 

S = maxP(slx,A) = maxP(xlA,s)P(s) (2) 

Given basis vectors A and observations x, equation 2 can 
be optimized using linear programming methods (see [3] for 
more detail). The objective for learning the basis vectors A 
is to maximize the probability of the data: 

T 

P(xi . . . XTIA) = P(z,\A) (3) 
i = l  

Computation of likelihood requires marginalizing over all 
possible sources as in (4) 

P(x1A) = 1 P(xIA,s)P(s)ds (4) 

For the special case of zero noise and A being invertible 
(a complete basis), this equation is solvable and leads to the 
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standard independent component analysis (ICA) algorithm. 
In [3], equation 4 is approximated by fitting a multivariate 
Gaussian around 1. The learning rule is: 

6 
6A 

AA = AAT- logP(x1A) r= -A(@IT + I )  ( 5 )  

where @(&) = 6logP(sk)/r%; and is the cost function. 
The matrix A is not restricted to be square and thus works 
as an overcomplete representation. 

3. BUILDING THE SIGNAL DICTIONARY 

To build the signal library, a selection of p speech signals 
from the same speaker were analyzed using the algorithm 
described in [3] and a basis function set of q was obtained 
from each. These sets were combined to produce a set of 
z = p x q functions * = ($1 . . . q%), where di repre- 
sents the i-th basis.function. A correlation table was built, 
whereby individual functions were compared with each other 
function. Each of the functions was then rated by the high- 
est 1 correlations found:with another function as shown in 
(6)  

A = max(corr;,j(8T, 1 . J  l .O) l ,p j )  (6)  

The array 1 represents a square matrix of 1s of size z by z 
and i = 1 . . . z and j = 1. .  . z. In the m a y  A, two types 
of values are stored; the absolute correlation value and the 
value of j where this value is found, thus creating a ref- 
erence between correlated elements 4; and 4i, Its structure 
can therefore be considered A = (correlations,,, Ipositions,,,). 

The complete dictionary is used to decompose a previ- 
ously unused speech extract by the same speaker. The error 
at the end of decomposition is recorded and the size of the 
library decremented by one. The function removed is de- 
cided by the following process; first the highest correlation 
value is found in the first column of A (7) and the row where 
this maximum occurred stored in k. We must consider that 
the highest correlation value may be held by two functions 
as a result of a correlation with each other. In this case, the 
values of the second highest correlations (in the second col- 
umn of A) are compared and the higher of this comparison 
removed. 

k = m a x A  (7) 
1,1 

If the correlation value from the corresponding element found 
in r = had not been eliminated it must also be re- 
moved. The elements in row T are shifted left in order to 
position the next highest correlation value in the first col- 
umn. (8). 

Finally, to remove the basis function from further analysis, 
the coefficients of row k are set to zero as shown in (9). 

AT,; = Ar,;+~l;=i. . .~ (8) 

Ak.1 ... zf = 0 (9)  

The results of this procedure were plotted as the number of 
basis function against the decomposition error. An example 
of such a plot can be seen in Figure 3. Using the graph, 
we are looking for a point where the trade-off between error 
and the number of dictionary elements. 

Figure 1: Plot showing error as a function of the number of 
basis functions used in the decomposition of a speech sam- 
ple using a learned library created from the same speaker. 

The example graph shows an appropriate 'knee' in the 
error at around 150 basis functions for all three sources and 
this is therefore the size of the dictionary we choose. The 
blind separation is performed by formulating the decom- 
position of the underdetermined mixtures as a linear pro- 
gramme that searches for the sparsest possible representa- 
tion of the data ( [ 6 ] ) ,  i.e. one that uses the least number of 
basis functions. 

4. PERFORMING BLIND SEPARATlON 

In the case of finite noise, f ,  there is a general method of 
optimizing the s, using the gradient of the log posterior in  
an optimization algorithm. An alternative can be used when 
the prior is the Laplacian, and noise F = 0 is to view the 
problem as a linear program ([3]), as in equation 10 

mincTIsl subject to As = x (10) 

Letting c = (1,. . . ,1), the objective function of the lin- 
earprogram becomes cTls = E, lsml, equivalentto max- 
imizing the log posterior under a Laplacian prior. Reformu- 
lating the problem as a standard linear program with only 
positive coefficients, it can be solved quickly and efficiently 
using interior point linear programming methods (such as 
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those in MATLAB's optimization toolbox) and quadratic 
programming methods. A similar approach is used in [7]. 

5. SIMULATION RESULTS 

To test the system, three underdetermined scenarios were 
used; the first, the extraction of four speakers from three 
mixtures, then the extraction of three speakers from two 
mixtures and finally two speakers from a single mixture. 
The mixtures consisted of two different male speakers, one 
female speaker and a piece of background music all sampled 
at 8 kHz. The signal dictionaries had been learned from 
each source type as described above. The matrix A was 
pre-determined but could be varied with minimal change in 
results. To determine the quality of separation, the signal- 
to-noise ratio was used. Comparison is made between the 
full dictionary, reduced dictionary and the learned basis of 
([3]) using signal to noise ratio. For visual analysis, close- 
up waveforms showing from a single source. Thirty samples 
are shown for the best trade off between signal length and 
clarity of separate method waveforms. 

9 

Figure 2: Separation of four sources from three mixtures. 
Close-up of source 1 over 30 samples together with sepa- 
rated sources. 

The first scenario is the best determined of the three and 
we can see in Figure 2 it yields the best results. For the 
fully determined dictionary, the SNR ranges from 28dB to 
30.2dB, falling to 26.5dB to 28dB for the reduced dictio- 
nary. The learned dictionary is a slight improvement on the 
full dictionary with results ranging from 26.8dB to 28.CdB. 
This demonstrates that the fixed dictionary can obtain re- 
sults comparable to a learned basis. 

Figure 3 shows a close-up of one of the the separated 
waveforms resulting from the separation of three sources 
from two mixtures. The SNR in this case ranges from 15. IdB- 
19.5dB for the sources using the reduced dictionary, whereas 
the learned dictionary shows SNR levels of 17.0dB to 21.ldB 
showing that the reduced representation is within 2dB of the 
learned one. 

(1 

, .. .' 
Figure 3: Separation of three sources from two mixtures. 
Close-up of source 1 over 30 samples together with sepa- 
rated sources. 

+ i  

Figure 4: Separation of two sources from one mixture. 
Close-up of source 1 over 30 samples together with sepa- 
rated sources. 
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The third scenario results are shown in Figure 4. The 
results are much poorer in  this instance for all three meth- 
ods. The learned basis shows the SNR is around 13. IdB 
to 16.2dU for the extracted signals. The reduced dictionary 
produces lower results of 11.5dB and 14.6dB but we can see 
that the results are now within 1.6dB of the learned method. 

Figure 5: Results of experiments with source separation and 
size of dictionary. The number of basis functions used is 
plotted against the average SNR of the separated sources. 

The graph in Figure 5 shows how reducing the size of 
the basis functions library effects separation SNR. We can 
see that using 300 basis functions rather than 150 only yields 
a 2.9dU improvement. Conversely, the effect of using 150 
basis functions rather than 100 is an almost doubling of 
SNR demonstrating that this would be a good compromise 
library size. 

In terms of perception, the recovered sources clearly 
have the source in question at the forefront although there 
are differing amounts of background noise. The first two 
scenarios have a very small amount of perceivable interfer- 
ence and the speaker dominates. In the third scenario, the 
background noise is much higher. Despite this, it is easy 
to distinguish the sentence from the other speakers and a 
definite degree of separation has occurred in relation to the 
original mixtures. 

6. CONCLUSIONS 

more appropriate for a practical blind separation system. 
This system can be extended to use any number of dif- 

ferent types of sources beyond speech and music. The ideal 
would be to compile a general purpose library for each type 
of source and use these sets for separation of an arbitrary 
source. This method could also be used as part of a feed- 
back system where the results of separation could be used 
to alter the choice of basis functions. 
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We can see that in  the underdetermined case for blind sep- 
aration, the use of a pre-learned signal dictionary produces 
comparable results to those of an optimally learned basis set 
using only a fraction of the processing power at run-time 
and a small effect on performance. This makes the system 
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