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ABSTRACT 
In practical Time-Frequency (T-F) analysis of nonsta- 

tionary signals associated with the use of the Smooth Pseudo 
Wigner-Ville distribution (SPWV) an important issue is a 
choice of the smoothing window. To address this prob- 
lem, a fast sub-optimal technique is proposed, relating the 
window length to the approximate slope of the frequency 
modulation. The results obtained by using this automated 
procedure are comparable to results given by supervised 
decompositions and are more (locally) adapted. The de- 
veloped method has been used in processing of radar re- 
turns. In order to objectively assess the performance of 
the transforms several measures can be used. For signals 
with unknown modulation laws cost functions are avail- 
able, including measures based on entropy function. Their 
application to evaluation of the obtained T-F distributions 
is demonstrated. 

1. INTRODUCTION 

Most of the Time-Frequency Representations (TFRs) em- 
ploy a smoothing kernel or a window to reduce cross-com- 
ponents. The choice of the smoothing window length sig- 
nificantly affects quality of the resulting T-F image. The 
smoothing parameters of the TFR need to be chosen care- 
fully, based on the visual investigation or a priori howl -  
edge of the signal contents. If the signal contains different 
components, it may be impossible to choose one value of 
the parameter, suitable for the whole series. This calls for 
a time adaptive approach. The purpose of the developed 
adaptive schema is to automatically choose an appropriate 
window (or at least sub-optimal one), matched locally to 
the signal components, based on local 1-D time and fre- 
quency moments of the signal. Unlike other signal adap- 
tive representations (see [l], [2] for example) that operate 
in 2-D domain of T-F distribution, our method chooses 
window width prior to computation of the SPWV. The 
technique does not guarantee optimality but can be used to 
produce an unsupervised sub-optimal smoothing kernel. 

2. BACKGROUND AND DEFINITIONS 

Cohen Class distributions can be written as the double con- 
volution of the Wigner Ville distribution (WV) of the sig- 
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nal and a two dimensional T-F smoothing function L [3], 

TFR,(t ,w;L) = WV,(t,w) * *L( t ,w) ,  

where WV,, is defined as 

WV,(t, w )  = 1 z(t + $“*(t t’ - -)t:--i%t’. t’ 
2 

Different TFRs can be obtained from the fundamental WV 
distribution by applying a different smoothing function L. 
In our experiments a Gaussian separable 2-D function has 
been used, with the time and frequency wildths as param- 
eters. A Gaussian function is used for its, optimum T-F 
localisation property [3]. Here, instead of defining each 
width separately, we first choose one of the lengths, QO, 

and adjust the volume of the kernel with parameter w, in 
the spirit of coupled smoothing, 

L ( t , w )  = g ( t ) H ( w )  = l / w 2  exp(- t2 /a2  - w2/02) ,  

where Q = wao, and 0 = w/ao. The positive distri- 
butions are obtained for U 2 1 [3] .  When U = 1 is 
used, the smoothed distribution LS equivalent to the Spec- 
trogram (SP). In such cases, L is the WV distribution of 
the SP smoothing window of width ~ Q O .  

As shown in [ 3 ] ,  for a chirp with a slope c, z( t )  = 

AezC(7--t)2/2, the frequency spread of the spectrogram with 
smoothing function h = attains ii minimum for 
aOpt = l/m. In our method we relax the optimal- 
ity constraint and approximate the slope of a modulation c 
of arbitrary signal with a diagonal of the T B  rectangular, 
computed on the segment of the signal: c == B,/T,. This 
idea is illustrated in Figure 1 (a). The developed algorithm 
operates in 1-D to estimate moments of the signal in time 
and frequency domains. Considering lz(t>l2 and IX(v)12 
as probability distributions we can computje moment esti- 
mates [3] (limits of integration are -03, +m): 

where E, = J(z( t )12dt  < +eo is the bounded signal 
energy and t ,  and v, are mean time and frequency po- 
sitions, respectively. Throughout this paper, IC and 2 will 
stand for appropriately discretised time and frequency co- 
ordinates. 

[CECS-2003 
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Figure 1. Approximating the slope c of the frequency modulation with use of time and frequency moments, T and B respectively. 
Graph (a): the plot of the T x B rectangle estimated on the 1-D data is superimposed on the T-F image of the signal. The time and 
frequency intervals used in the moments estimation are marked with red lines. Graph (b) depicts an example of the adaptive segmentation 
of the signal. 

3. ADAPTIVETFR 

The whole TFR computation procedure can be divided 
into three main stages: 

I. Segmentation of the signal: The data is divided into 
segments of variable length, depending on the signal struc- 
ture. Specifically, the segments are determined based on 
the local minima of the signal envelope. The envelope A, 
reflecting the shape of the instantaneous amplitude of the 
signal z is computed by computing local maxima, 

and then averaging them, 

In both steps, signal portions of M samples are taken, cen- 
tred around a sample k, and hence, in the equations above, 
j = -MI2 + 1,. . . M/2,  for even values of M .  Choice 
of A4 determines the smoothness, or ’sensitivity’ of the 
envelope and can be determined experimentally. Minima 
localized close to each other or corresponding to small 
fluctuations of the envelope are discarded. This segmen- 
tation also allows detection of negligible energy intervals 
that can be excluded from further analysis to reduce com- 
putation load. 

II. Finding the suitable window lengths: Moments are 
computed in subbands of the frequency plane of a seg- 
ment of the signal. Subbands are obtained by dividing 
the frequency axis into two or four parts. Overlapping fre- 
quency moments are merged and non-overlapping ones are 
energy-weighted (e.g. B = (El& + E2B2)/(E1 + Ez) 
where E, and B, correspond to energy and width of n- 
th subband) and then a final estimate for the segment is 
computed. Values of time and frequency moments of the 

signal were converted to window lengths using relations 
shown in Section 2. 

IIZ. Computing of the TFR: In order to avoid border 
distortions caused by signal segmentation, overlap between 
segments is introduced. The TFR decomposition of each 
segment is then computed with the use of calculated pa- 
rameters and the central part of the output (i.e. after dis- 
carding the overlap) is used. 

The developed schema was applied to the SP and the 
SPWV decompositions by varying parameter w in smooth- 
ing function. Extension to other types of windows is pos- 
sible, after relation between window time spread and the 
window length is established. 

4. RESULTS 

For presentation purposes, a signal with a high frequency 
modulation rate of components was chosen. The signal 
with a high modulation rate was considered to be difficult 
to analyse because of overlapping transients and frequency 
modulated signals. The standard method used in the com- 
parison is a decomposition performed on the whole signal 
with one window chosen by a visual inspection. Addition- 
ally, the Adaptive Optimal Kernel (AOK) [ 11 procedure 
was used with parameters: analysing window of length 
64 samples, kernel volume parameter 1.5. The results are 
shown in Figure 2. 

By comparing the plots it can be concluded that adapt- 
ing smoothing window lengths in some TFRs yields im- 
proved results compared to supervised experiments. The 
ridges of the TFR image becomes thinner without increas- 
ing the level of cross-components. The algorithm also dis- 
tinguishes between radically different components such as 
impulses and chirps within one signal. Although the AOK 
preformed well, there seem to be some artifacts and loss 
of information when using this distribution. 
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Figurn 2. The comparison of standard and adaptive SFWV decompositions : (a)standard methods (b) the AOK, (c) the developed 
method. Plots superimposed on TFR image: squares show the window lengths; dashed vertical lines show segments boundaries. 

5. ASSESSMENT OF THE TFRS 

5.1. Information cost functions 

The performance of the T-F distributions of signals with 
unknown properties can he assessed by using appropriate 
cost functions. Here, the evaluation will he performed with 
the use of simulated radar data. Several performance mea- 
sures can he used in the field of the T-F analysis (see [4] for 
examples). Generally, signal independent non-parametric 
cost functions are desired. However, parametric measures, 
such as the number of samples above a threshold N(t), can 
give reliable results, providing that an appropriate thresh- 
old can he estimated, based on the dynamic characteristic 
of the signal. In this study, following cost functions are 
considered: 
Number of samples above the thrzshold [5],  

where @(TFR,(k,L)) = 1 if ITFR,(k,l)( > t. Thresh- 
oldbasedonthemaximumamplitude, t = &rnax(lTFR,I), 
E = 0.001 was used. 
Generalized entropy ofRPnyi [4], 

It is a measure of signal complexity (proportional to a 
number of signal components). Rbnyi entropy becomes 
equivalent to Shannon entropy as a 4 1, hut the nega- 
tive values of most Cohen Class representations prohibit 
the use of this measure, due to the logarithm in the equa- 
tion. However, for evaluation purposes, it was decided to 
only use the positive values of the distributions when com- 
puting Shannon entropy. For a > 1, Rbnyi measure, un- 
like Shannon entropy, is immune to negative values of the 
Time-Frequency Representation (TFR). Odd order Rbnyi 
entropy (e.g. a = 3) measures auto-component concentra- 
tion and even order Rbnyi entropy (e.g. a = 2) measures 
cross-component suppression. Thus, by minimization the 

differential entropy R3z7 = R3 - yR,, 0 2 y 5 1, 
the distribution can he evaluated with respect to the trade- 
off between resolution and cross-components presence. In 
practice, the values of y close to I are used, more appro- 
priate for well-smoothed representations. 

5.2. Evaluation examples 

It is understood that the best performance measure is the 
one that is linked to desired features. In this study, we 
search for good T-F resolution and concentration, the ahil- 
ity to resolve close or overlapping components and low 
amount of cross-components. It is difficult to find a single 
function satisfying all of the above and thus three mea- 
sures were used: Shannon entropy, differential Rbnyi en- 
tropy and number of samples above the threshold. 

Several well-performing TFRs were chosen for com- 
parison: the WV, the SP, the Zao-Atlas-Marks distribu- 
tion (ZAM) [6],  the SPWV with li = 0.75 and U = 0.5, 
and the adaptive SPWV (referred to as “ASPWV”). For 
visualization purposes the output of the assessment proce- 
dure was normalized cost values were scaled so that they 
are within the same range and they decrease for TFRs hav- 
ing good properties. Results are presented in Figure 3 

Based on the plots it was concluded that most of the 
cost functions yield results that confirm visual evaluation 
of the images. However, for TFRs with very good prop- 
erties and small differences the cost functions yield very 
similar values which make it difficult to compare them. 
Both Shannon entropy and differential Rbnyi entropy mea- 
sure concentration and are sensitive to cross-components; 
however, the influence of the concentration seems to be 
prevailing. This explains the low cost values of the under- 
smoothed SPWV in Figure 3. For most of the measure- 
ments, adaptive transform seems to produce lower cost 
values than the SP. Some degree of inconsistency is due to 
the complex strnchue of the multiple-component signals 
and the fact that the distribution properties are handled in 
a global way. 
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