
 Zaidi, S. I. H., Nabina, A., Canagarajah, C. N., & Nunez-Yanez, J. L. (2008).
Power/area analysis of a FPGA-based open-source processor using partial
dynamic reconfiguration. In EUROMICRO Conference on Digital System
Design Architectures, Methods and Tools, 2008 (DSD '08), Parma. (pp. 592 -
598). Institute of Electrical and Electronics Engineers (IEEE).
10.1109/DSD.2008.92

Peer reviewed version

Link to published version (if available):
10.1109/DSD.2008.92

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29025815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/DSD.2008.92
http://research-information.bristol.ac.uk/en/publications/powerarea-analysis-of-a-fpgabased-opensource-processor-using-partial-dynamic-reconfiguration(7997729c-6394-454a-a709-909cec5936b4).html
http://research-information.bristol.ac.uk/en/publications/powerarea-analysis-of-a-fpgabased-opensource-processor-using-partial-dynamic-reconfiguration(7997729c-6394-454a-a709-909cec5936b4).html

 POWER/AREA ANALYSIS OF A FPGA-BASED OPEN-SOURCE PROCESSOR USING
PARTIAL DYNAMIC RECONFIGURATION

Izhar Zaidi, Atukem Nabina, Professor CN Canagarajah , Jose Nunez-Yanez

Department of Electrical and Electronic Engineering
 University of Bristol, UK

 Email: izhar.zaidi@bris.ac.uk , Atukem.Nabina@bristol.ac.uk, Nishan.Canagarajah@bristol.ac.uk,
j.l.nunez-yanez@bristol.ac.uk

ABSTRACT

This paper explores the utilization of run-time Partial
Dynamic Reconfiguration in the LEON3 open-source soft
core processor, which is a highly configurable SPARC
(Scalable Processor ARChitecture) V8 instruction set
processor. The work explores the possibilities of sharing
different arithmetic functions tightly coupled to the integer
pipeline and mapped to the same silicon area, saving
power consumption and area utilisation. The same strategy
can be used to extend the instruction set architecture of the
processor with new instructions that are optimized for DSP
applications. The logic necessary to support these
instructions could then be swapped as demanded by the
application.

1. INTRODUCTION

The increase in transistor density in FPGAs has enabled
the integration of complex systems in a single fabric at the
expense of high device costs and power consumption. The
introduction of Partial Dynamic Reconfiguration (PDR) in
some FPGAs allows the partitioning of a complex
application into modules which can be time multiplexed in
a smaller device with potential savings in power and area.
Partial Dynamic Reconfiguration is a technique in which
part of the design is reconfigured without interrupting the
rest of the system performing computation. Xilinx has
made this possible with the introduction of ICAP (Internal
Configuration Access Port) in the Virtex-II, IV and V
families enabling the user to modify the circuit without an
external controller. Traditionally, the configuration of a
Xilinx FPGA is controlled externally by writing byte-wide
data to the configuration memory through the selectMAP
utility. The ICAP, on the other hand, allows parallel
reading and writing of the configuration memory internally
i.e. from inside the FPGA.

A system without Partial Dynamic Reconfiguration
requires a configuration design fixed at compilation time.
In order to change the functionality of the system, its

operation must be interrupted or terminated and an external
controller is required to load the new design. In recent
years the requirement of flexibility in architecture demands
the system to be able to cope with changes in protocol
structure, data coding standards, enhanced algorithms and
functionalities etc drifting towards the use of adaptive and
reconfigurable hardware.

Partial Dynamic Reconfiguration has been an extensive
topic of investigation in the last decade with applications
ranging from Satellite communication systems [1] and
Erlangen Slot Machine [2] to adaptive control system [3],
[4]. The advantages gained from reconfiguration have led
to the research and development of a virtual internal
configuration access port (JCAP) [5] in a Xilinx Spartan III
platform, which does not support internal re-configuration
by default. For Self-Reconfiguration, it is possible to make
use of an internal processor [1], [4], [5], [6] or a dedicated
controller [2], [3], which resides inside the fabric in order
to reprogram part of the system without interrupting the
current running processes. The internal processors that
have been extensively used to control Partial Dynamic
Reconfiguration in the Xilinx family of devices have been
the IBM PowerPC hard IP core and the MicroBlaze soft
core processor. MicroBlaze is a 32-bit, 3 stage integer
pipeline reduced instruction set computer (RISC)
optimized for implementation in Xilinx FPGAs. In
addition to its fixed features, the MicroBlaze processor is
parameterised to allow selective enabling of additional
functionality. The multiplier for the MicroBlaze processor
has a latency of 3 clock cycles when implemented in
hardware and the divider has a latency of 34 clock cycles.
MicroBlaze is distributed with the Xilinx Embedded
Development Kit (EDK) as an encrypted netlist and the
source code can be obtained from Xilinx at a higher cost.

For this work, we have selected LEON3 over MicroBlaze
core due to its open source nature and its flexibility, which
enables the modification of the internal micro-architecture
of the core. The experimental setup makes use of the
integer pipeline based hardware multiplier and divider
module from LEON3 core and utilises them as per need
basis with the help of Partial Dynamic Reconfiguration to

11th EUROMICRO CONFERENCE on DIGITAL SYSTEM DESIGN Architectures, Methods and Tools

978-0-7695-3277-6/08 $25.00 © 2008 IEEE

DOI 10.1109/DSD.2008.92

592

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 24, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

Fig. 1. LEON3 System and subsystems.

save area and power consumption. The paper is organised
as follows. In Section 2, we will describe the overall
system that allows Partial Dynamic Reconfiguration using
LEON3. Section 3 will discuss the implementation and the
related problems. Section 4 will discuss the results and
finally section 5 will discuss the future work.

2. DESCRIPTION OF SYSTEM

2.1 LEON3 System

LEON3 micro architecture is implemented using a 7-stage
pipeline with separate instruction and data cache buses. It
supports the full SPARC V8 instruction set [7]. The
LEON3 processor is described in synthesizable VDHL and
is available from Gaisler Research under the GNU license.
The benefit of having it as a synthesizable VHDL is that it
can be configured modified and adapted for specific
applications. It is a bus centric system using the AMBA-
2.0 AHB/APB allowing most of the modules to interact
through AMBA. Plug & Play functionality is an included
feature of the LEON3 system therefore allowing mapping
of peripherals to be implemented in software. The LEON3
system is provided with a number of generic modules
which can be used to test and debug the entire system. The
LEON3 system is shown in Fig. 1.

AMBA is the default bus system that comes with the
LEON3 system used to interconnect modules as show in
Fig. 1. There are 3 types of buses in the AMBA bus
hierarchy; AHB (Advanced High-performance Bus), ASB
(Advanced System Bus) and APB (Advanced Peripheral
Bus). Within the LEON3 soft-core processor only 2 out of
the 3 bus types are used; AHB and APB. AHB is mainly
used for interconnecting bus masters and slaves that
require some or most of the complexity of the AHB bus
interface system. Such complexities can be split
transaction capabilities, bus transfer definition and specific

Fig. 2. Mul/Div module in integer unit pipeline

transfer acknowledgements. The APB bus however is a
subset of the AHB and provides a less complex mechanism
of interaction between AHB masters and the slaves on the
APB bus. It is optimised for reduced consumption in
power and minimal interfacing complexity. It is mainly
designed for interfacing peripherals with smaller address
spaces [8].

2.2 Reconfigurable modules and systems

The Mul/Div unit is used to test the instruction set
extendibility of the micro architecture of the integer unit of
LEON3 as illustrated in Fig. 2. It must be enabled to
conform to the SPARC V8 specification. There are
different types of multipliers modules that can be selected
to be used within the LEON3 integer unit and these
modules are differentiated by latency, size of operands and
total logic area required for implementation. An example
of this is the 32x16 bit multiplier with 2 clock cycles of
latency and the 16x16 bit multiplier with 4 clock cycles of
latency. The implementation of the Mul/Div unit is made
configurable using Partial Dynamic Reconfiguration
allowing the choice of multiplier modules or divider
module to be selectable at runtime in order to maximise
efficiency of these operations in terms of latency, power
consumption and area utilisation. The multiplier module
selected for this work implements 32x32 bit multiplication.
It takes two signed or unsigned numbers as input and
produces a 64-bit result. The latency of this multiplier is
one clock cycle [9]. The selected divider module performs
signed/unsigned 64-bit by 32-bit division taking 36 clock
cycles and leaving no remainder. It implements the radix-2
non-restoring iterative division algorithm [9]. One of these

593

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 24, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

Fig. 3. ICAP Hardware modular systems.

2 units is instantiated into the reconfigurable region of the

FPGA at runtime as required by the user application

ICAP is the primitive used to provide access to the fabric
of the FPGA and hence the configuration memory of the
device. It provides functionalities such as the ability to
read and write to its internal registers and also to read and
write to the configuration memory. The ICAP wrapper, as
shown in Fig. 3. is the module containing the hardware
controllers used to provide smooth interaction and useful
functionalities between the software and the ICAP.

The ICAP decoder module is the main controller of the
ICAP wrapper system. It filters the data received from the
APB Bus and differentiates between instructions and data
that is to be used for Partial Dynamic Reconfiguration and
asserts the right control signals to the rest of the modules in
the ICAP wrapper system. The Address controller and
ICAP controller are the modules used to control the flow
of data within the ICAP wrapper as data can both be sent
to the ICAP primitive in order to implement
reconfiguration of an area of the FPGA or read back from
ICAP. The read back data would represent the particular
implementation of a region of the FPGA stored in the
configuration memory of the device, or data from the
internal registers of ICAP. The Dual Port BRAM is used as
a buffer memory. Data to be written into ICAP and data
read back from ICAP is temporally stored into the BRAM
until it is used. Both the ICAP wrapper and ICAP are
contained within a module known as the ICAP hardware
system which is connected as a slave to APB.

2.3 Platform

The ML402 Virtex-4 VSX 35 device from Xilinx family of
devices is the FPGA platform used for implementation of
the LEON3 soft-core processor and the ICAP hardware
system. It is configured with the LEON3 system by
loading its configuration memory with the bitstream that
contains the implementation information. Partial Dynamic
Reconfiguration of the platform is implemented by only
modifying the frame regions of the FPGAs configuration
memory to which the partial bitstream refers to.

The configuration memory of Virtex-4 family of devices is
composed of frame regions which define the smallest
granules of fabric that can be reconfigured. When a portion
of a frame needs to be reconfigured, the partial bitstream
still contains the full frame information, including the
portion of the frame that is not modified. The ML402
contains 10410 configurable frames 660 non configurable
frames therefore a total of 11070 with each frame having
41 words (4 bytes). However it is important to note that
only configurable frames count towards the overall size of
the bitstream used for full and Partial Dynamic
Reconfiguration of the device [10].

2.4 PlanAhead

PlanAhead is an advance hierarchical floorplanning tool
provided by Xilinx to facilitate the design and analysis of
large FPGA devices and Partial Dynamic Reconfigurable
systems. This tool can partition the physical design into
smaller designs reducing the time to understand, verify,
and implement it on to the target FPGA. The software
allows the import of a netlist describing the system,
floorplanning for both static and partial reconfiguration
systems, design rule checks, timing analysis for different
implementations, bitstream generation, resource utilisation,
interconnect delay and routing connectivity for FPGA
configuration. As the design can be partitioned into
physical blocks known as PBlocks it allows constraining of
modules e.g. the reconfigurable modules, to a particular
area of the FPGA. If PBlocks are not constrained to a
particular region, their distribution on the floorplan is left
to the software allowing the unconstrained design to be
grouped during placement. In partial reconfiguration
design it is necessary to assign a PBlock to both static and
reconfigurable module and to constrain the reconfigurable
module PBlock to an area on the FPGA. This area is
known are the reconfigurable region and bus macros are
site constrained to interface signals between this region
and the static design.

594

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 24, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

Fig. 4. Floorplan of LEON3 with Dynamic PBlock

3. IMPLEMENTATION

To build an experimental setup for partial reconfiguration,
the hardware multiplier and divider structure from the
LEON3 core was moved to the top-level hierarchy of the
system. In order to do that the guidelines for partial
reconfiguration were followed and a new top-level file was
introduced which contains the static design, which was
LEON3 itself, and a dynamic design containing either
multiplier or a divider [11]. The pads from the previous
LEON3 top-file were also moved and connected on the
new top-level, as pads are not allowed in static design
according to the architecture flow of Xilinx tools.

For self-reconfiguration, the ICAP hardware source code
provided by Xilinx were modified and attached to LEON3
APB bus. The source code is written and supported for
Xilinx PowerPC 405, MicroBlaze processor and OPB bus
architecture and needs to be tailored accordingly for the
AMBA bus architecture. The work started with introducing
some address space for the ICAP as a slave on the APB
bus, the wrapper was created to bridge the signals of the
AMBA bus to the OPB bus inside the ICAP source code.
The ICAP hardware system requires 4 clock cycles to

Table 1. Source Meter Properties

Source range Measurement range
Lower Upper Lower Upper

Voltage 5μV 63V 1μV 63.3V
Current 500pA 3.15A 100pA 3.165A

Resistance - - 10μΩ 21.1MΩ

complete a read/write cycle so the delay was introduced in
APB to wait for the ICAP hardware system to finish its
task. Some problem were encountered while trying to
match the AMBA cycle with the ICAP hardware system
and also to constraint the ICAP itself as Virtex-4 has two
ICAP sites top and bottom. The top site should be location
constraint otherwise the tools will automatically place it in
the bottom site and will not work according to answer
record from the early access lounge on Xilinx website [12].
To allow communication between the processor and the
partial module, bus macros are used, as this is the
limitation of the tools. Bus macros are instantiated as black
boxes and are programmed with a predefined routing
macro.

The static design and the dynamic multiplier and divider
module were synthesized separately producing a netlist.
The modules were synthesized without the option of
inserting pads and the top level file was synthesized with
the insert pads option. These netlist files were then used as
inputs into the Xilinx PlanAhead software to produce a
partial reconfigurable design. In order to produce separate
bitstreams for both multiplier and divider, the multiplier
was selected first in the PlanAhead project along with the
top-level and static design. Then a separate PBlock for
static and dynamic areas were created, and an area was
defined where the dynamic block was planned to be placed
as shown in Fig. 4. The ICAP was then location
constrained and finally the bus macros were placed. After
the completion of initial setup outlined above, the static
design was implemented (placed and routed) and then the
dynamic part was implemented. After the design was
placed & routed then the last step assemble process was
performed. The assemble produces three bitstreams, first is
static-full bitstream which contains the complete design
which is a combination of static design and one of the
reconfigurable modules as the default start up
implementation, then dynamic bitstream and the last is the
blank bitstream. For generating the bitstreams with divider
module, the net list is updated replacing multiplier with the
divider and re-running the dynamic implementation and
bitstream generation.

595

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 24, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

Table 2. Resource Utilisation and power analysis

 Test case
1

Test case
2

Test case
3

Number of
slices utilised

8883 8883 +
452

8883 +
452

Size of
bitstream

1673 1673 + 28 1673 + 26

% FPGA
Utilisation

57 57 + 2 57 + 2

Static Power
Consumption
(mW)

624 627 627

Total Power
consumption at
runtime (mW)

795

760 685 653

4. IMPLEMENTATION RESULTS

4.1 Test environment

The ML402 board was modified to allow the FPGA core
voltage to be user controlled and to allow the measurement
of voltage and current. This modification only allows the
control of the internal core voltage and does not affect the
I/O port voltage. This was achieved by disconnecting the
voltage regulator providing power to the core of the FPGA
and making the voltage terminals of the FPGA core
accessible through unused pins on the GPIO port of the
board. The Keithley 2420 source meter was then used to
provide voltage to the FPGA internal core and current and
time information was measured to obtain the power used
by the internal core of the device. The source meter
characteristics are shown in Table 1.

4.2 The Keithley control program

A program referred to as the “Keithley source meter
control program” was written to allow control of the
settings of the Keithley source meter as well as data
extraction from the source meter to a host computer.
Useful parameters such as voltage, number of samples and
sampling period was configured with the help of the
program and data was extracted and returned to the
program as defined by the parameters. The data that was
extracted was voltage, current and time interval between
measurements. This information was automatically stored
in a spreadsheet. From these results power and energy
information was computed.

Table 3. Power and Energy Analysis of Reconfiguration

4.3 Test conditions

As outlined in Table 2, there were 3 test cases that were
used for testing. Test case 1 was the complete LEON3
system with the ICAP hardware system and a partial
reconfiguration region. However the reconfigurable region
which is the Mul/Div unit in the integer pipeline contained
no module. Test case 2 was a replica of Test case 1 with
the multiplier instantiated in the configurable region. Test
case 3 was also a replica of Test case 1 with the divider
instead of the multiplier.

The Keithley source meter control program, with the aid of
a computer was then used to control the voltage applied to
the core of the FPGA from the Keithley source meter with
each of the test cases being evaluated. Enough time was
allowed for the current to stabilise then 500 sequential
measurements of voltage, current and time were taken for
each case. The voltage and current information was
averaged and used to calculate the static power
consumption of the device as presented in Table 2. row
titled Static Power consumption. For these tests, no
application program was run on the LEON3 processor and
the operational frequency of the system for all test cases
was 50 MHz.

4.4 LEON3 program application

Another test was also carried out in order to measure
power consumption of the system at runtime and the
duration of partial reconfiguration. This test was carried
out by designing an application program to be run on the
LEON3 processor. The bitstreams used for partial
reconfiguration were appended to the application program
and the ensemble was loaded into the DDR memory of the
LEON3 system where it could be accessed and used as
required.

The application program starts with the initialisation
process of ICAP and the timer module. The initialisation
process consisted of read/write sequences of data transfers
to the control registers and status registers of the ICAP
hardware system, ICAP, and the timer module in order to
configure these modules for use. Then, assuming that the
reconfigurable module is initially blank, the application
starts the timer and runs the partial reconfiguration

 Clock
cycles to

PDR

Average
Power during
PDR (mW)

PDR
duration
(mSec)

PDR
Energy

(mJ)
Mul 821440 730 16.4 12
Div 780544 730 15.5 11.3

596

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 24, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

function which transfers the divider bitstream from the
memory to the ICAP hardware system. The presence of the
divider is then validated by running a division instruction
in assembly language and the number of clock cycles that
was taken for the partial reconfiguration to be completed is
noted. In the next step the timer is reset and the partial
reconfiguration function for the multiplier is executed. The
number of clock cycles taken for the partial
reconfiguration is noted and the structure is validated by
performing a multiplication in assembly language. The
power consumption of the LEON3 system during
reconfiguration is estimated by implementing a repetitive
reconfiguration of either the multiplier or the divider in the
application program and by taking 500 readings during this
process. These 500 readings are then analysed and
averaged in order to obtain an estimate of the power
consumption of the system. It is important to note that the
power level of the system during the repetitive
reconfiguration process gradually increases until it reaches
a point of stability. It is at this point that the 500 sequential
measurements are taken and averaged to estimate the
power consumption of the reconfiguration process. This
method of power measurement provides the worst case
values for this particular implementation. Therefore, at
runtime, the power consumption would be less than the
measurements outlined in by the results.

4.5 Analysis of results

Table 2 and 3 depicts the result from the experiments.
Table 2 shows that 57% of slices are occupied by the static
module and 2% of the area is utilised by dynamic
multiplier/divider which supports our initial statement of
saving area utilisation by time multiplexing modules.
Table 2 also shows the power estimate of our experiment,
the static design with no module in the reconfiguration
region dissipates about 624mW without any program
running and compared to one with multiplier or divider
module instantiated, it saves approximately 3mW. The run-
time power readings for soft multiplication and division
were also noted in table 2 test case 1 for comparing the
difference between the power saving by having a hardware
multiplier or a divider unit instead of having a software
algorithm implemented.

Table-3 shows the number of clock cycles required to
reconfigure a specific module. As an example the
reconfiguration of the divider module consumes an average
power of 730mW and takes approximately 15.5mSec to
reprogram a 26kb of bitstream which comes out to be a
total of 11.3mJ.

5. CONCLUSION AND FUTURE WORK:

In this paper we have shown the feasibility of using open-
source LEON3 processor with Partial Dynamic
Reconfiguration in Xilinx FPGAs. We have also shown
that power can be saved whilst using Partial Dynamic
Reconfiguration by replacing a blank bitstream with an
idle module. There is a trade-off between the time and
energy required for reconfiguring that module and how
often it is used as compared to the energy utilised using
software algorithm. The results presented can be used as a
baseline while analysing a specific application in order to
determine the best approach to obtain a power and area
efficient system.

The future work will include further investigation of power
saving using a procedure like dynamic voltage scaling [13]
along with partial reconfiguration and the feasibility of
configuration overhead for significantly large
reconfigurable modules. The other area to explore is the
possibility of having an extended set of instructions which
load the required hardware modules dynamically.

REFERENCES

[1] Xiaofeng Wu and Tanya Vladimirova “A Self-
reconfigurable System-on-Chip Architecture for Satellite
On-Board Computer Maintenance” C. Jesshope and C. Egan
(Eds.): ACSAC 2006, LNCS 4186, pp. 552 --- 558, 2006. Springer-
Verlag Berlin Heidelberg 2006.

[2] Mateusz Majer “An FPGA based Dynamically
Reconfigurable Platform: From Concept to Realization”
10.1109/FPL.2006.311364.

[3] Stehhen Toscher, Thomas Reinemaan, Roland Kasper “An
adaptive FPGA-Based Mechatronic Control System
Supporting Partial Reconfiguration of Controller
Functionalities” First NASA/ESA Conference on Adaptive
Hardware and Systems (AHS'06) 0-7695-2614-4/06 .

[4] Michael Hubnre, Christian Schck, Matthias Kuhnle, Jurgen
Becker “New 2-Dimensional Partial Dynamic
Reconfiguration Techniques for Real-time adaptive
Microelectronic Circuits” Emerging VLSI Technologies and
Architectures (ISVLSI’06) 0-7695-2533-4/06.

[5] K.Paulsson, M.Hubner, G. Auer, M. Dreschmann, L. Chen,
J. Becker “Implementation of a Virtual Internal
Configuration Access Port (JCAP) for Enabling Partial Self-
Reconfiguration on Xilinx Spartan III FPGA’s”
10.1109/FPL.2007.4380671.

[6] P. Sedcole, B. Blodget, T.Becker, J. Anderson and P.
Lysaght “Modular Dynamic Reconfiguration in Virtex
FPGAs” IEE Proc.-Comput. Digit. Tech. Vol 153, No. 3,
May 2006.

[7] GAISLER RESEARCH GR LEON3 processor description.
[8] AMBA Specification (Rev 2.0), 13th May 1999

597

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 24, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

[9] GRLIB IP Library User’s Manual Version 1.0.14 Jiri
Gaisler, Sandi Habinc, Edvin Catovic, Gaisler Research,
2006.

[10] Xilinx; “Virtex-4 Configuration Guide, ug071” January 12,
2007..

[11] PlanAhead as Platform for Partial Reconfiguration
http://www.xilinx.com/publications/xcellonline/xcell_55/xc_
pdf/xc_prmethod55.pdf

[12] AR#25018 - Partial Reconfiguration - PlanAhead Flow FAQ
/ Know Issues for the Early Access Partial PlanAhead
Program http://www.xilinx.com/support/answers/25018.htm

[13] Jose Luis Nunez-Yanez, Vassilios Chouliaras. Jiri Gaisler
“Dynamic Voltage Scaling in a FPGA-Based System-On-
Chip” 10.1109/FPL.2007.4380689.

598

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 24, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

