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Tree-Based Reparameterization with
Distributional Approximations for

Reduced-Complexity MIMO Symbol Detection
C. M. Vithanage, J. Soler-Garrido, C. Andrieu, and R. J. Piechocki

Abstract—Detection of spatially multiplexed data transmis-
sions subject to frequency flat fading is considered. Optimal de-
coders require knowledge of the marginal posterior distributions
of the transmitted symbols, but their exact computation is not
feasible for practical systems. Hence sub-optimal approaches are
generally sought. By recasting this problem into the graphical
model framework, we investigate here a recently proposed sub-
optimal approach which relies on a tree-based reparameteri-
zation principle. For quasi-static fading channels, the resulting
decoder complexity has an order which is at most quadratic in the
number of transmit antennas. However, in its standard form, the
algorithm often fails to converge, severely restricting its practical
usability. We here develop a novel methodology to ensure
systematic convergence of the algorithm in this communication
scenario at the expense of the introduction of a minimal bias on
the computation of the symbol marginal posterior probabilities.
This bias is quantified theoretically and its innocuity for the
problem at hand is ultimately demonstrated through numerical
simulations. For a system using 16-QAM modulation with four
transmit and receive antennas, the proposed detector achieves a
bit-error rate of 10−4 requiring only 3dB greater SNR than the
optimal method.

Index Terms—Digital communication, decoding, fading chan-
nels, MIMO systems, signal detection.

I. INTRODUCTION

IT IS ANTICIPATED that multiple-input multiple-output
(MIMO) wireless channels are to be widely adopted in

future point-to-point wireless communications systems. Trans-
mission of spatially multiplexed independent data streams
from a transmitter with multiple antennas can lead to the
extraction of their capacity [1], in the presence of optimal
detection at the receiver. Unfortunately, optimal detection has
a complexity which is exponential in the number of transmit
antennas and hence is practically infeasible for large transmit
antenna numbers. Thus sub-optimal detection algorithms such
as the V-BLAST (vertical Bell laboratories layered space-
time) algorithm of [2] are needed to take advantage of the
capacity of MIMO systems. Presently, state of the art in sub-
optimal MIMO detectors are the sphere decoders [3], [4], [5],
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[6]. Although the decoding performance is near optimal, the
expected complexity of sphere decoders has been shown to
be exponential in the number of transmit antennas for a fixed
signal-to-noise ratio (SNR) [7]. Other successful approaches
include the successive moment matching to Gaussian distribu-
tions approach of [8], the iterative tree based search approach
of [9] and the Gibbs sampling based approach of [10].

We define optimal soft detection, or the optimal detection
considering a subsequent channel decoder, in a spatial multi-
plexing system as the computation of the a posteriori marginal
probability distributions of the symbols transmitted by each
antenna. These posterior marginals will be frequently referred
to as the APPs in this paper. Given perfect channel state
information at the receiver, the posterior joint distribution is
readily available up to a proportionality constant, as will be
illustrated later on. Thus optimal soft detection reduces to a
task of marginalization. Exact marginalization to compute the
APPs necessarily involves an enumeration over the domain
of the set of symbols transmitted by the antennas. As a
consequence, optimal soft detection has a complexity which
is exponential in the number of transmit antennas, preventing
its use in practical implementations.

In this work, since the problem of calculating the APPs is a
one of calculating the node beliefs on a graphical model [11],
we exploit recently developed sub-optimal algorithms which
avoid the combinatorial complexity described above. In this
paper, the probability distributions of concern are represented
by undirected graphical models (UGM) [12]. As will be
seen later, the joint distribution on which marginalization
needs to be performed in this case corresponds to an UGM
with cycles. Had the graphical model been cycle free, the
required marginal distributions could have been computed
with a complexity which is linear in the number of variables
using a message passing algorithm such as the sum-product
algorithm [13], [14] or the belief propagation algorithm [15].
Even in the presence of cycles, repeated message passing as if
there were no cycles, termed loopy belief propagation (LBP),
has been shown to produce good approximate marginals in
some applications [16], [17]. A reformulation of LBP that
has recently been introduced in the literature relies on a tree-
based reparameterization (TRP) [18]. This reparameterization
has been shown to improve the convergence properties of LBP
[18].

Direct application of the TRP principle to the case of
MIMO symbol detection leads to an algorithm which has
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the advantage of having an implementation complexity that
is at most quadratic in the number of transmit antennas.
This is an attractive prospect for practical implementations.
Performance of such applications is shown in [19], the work
we improve upon here. However, similar to the LBP, the TRP
based algorithms also face the problem that for distributions
with loopy graphs, the algorithm fails to converge in some
instances. In our setup, this sometimes results in an error floor
for the bit-error rate (BER) performance.

In this work, we build upon the tree-based reparame-
terization and develop a principled methodology to ensure
the reliable convergence of the detection algorithm for a
given system. The methodology builds on the knowledge
that convergence properties of TRP based algorithms are
intrinsically related to the dependence structure of the joint
distribution of interest. We hence introduce a slight modifica-
tion of the distributions involved, which is shown in practice
to dramatically improve the convergence properties of the
algorithm while still capturing the important features of the
exact distribution. Specifically, the true distribution of interest
is approximated by selecting the best, in a sense to be defined
later on, distribution out of a family of distributions. It is
shown theoretically that the bias introduced by the selection
of this alternative distribution is well controlled since the cost
function that is minimized in selection automatically enforces
that an upper bound on the distance between the actual and
possible alternative distributions is also minimized. Simulation
results show that excellent decoding performance is achieved
as the result of this ensured convergence. For example, in
the simulated system using 16-QAM modulation with four
transmit and receive antennas, the SNR required to achieve a
BER of 10−4 was only 3dB greater than that required by the
optimal method. This is a much better error rate performance
than, for example, the successive interference cancellation
based V-BLAST decoding algorithm with the MMSE criterion
[20], [21]. Also, this improved performance was achieved
while retaining the low complexity offered by the classical
TRP based detection method.

The system model and the method of optimal symbol
detection will be presented in the next Section. The tree-based
reparameterization principle and its application to MIMO sym-
bol detection will be described in Section III. Development
and analysis of the proposed method of ensuring convergence
of the decoding algorithm is given in Section IV. Section
V presents the complexity of the resulting algorithm while
Section VI presents numerical simulation results. Finally,
Section VII will give the conclusions.

II. SYSTEM MODEL AND OPTIMAL SYMBOL DETECTION

A. Notation

First, let us define some notation which will be used
throughout this paper. For a complex scalar s; s∗,�(s),�(s)
will denote its complex conjugate, real part and imaginary
part, respectively. Vectors are taken to be column vectors and
for a vector v, (v)i denotes its ith element and diag(v)
denotes the diagonal matrix with v as the diagonal. For a
matrix M; M†, M‡, M−1 and Tr(M) denotes its transpose,
conjugate transpose, inverse and trace, respectively. � (M)

and � (M) denote matrices of dimensions identical to M,
composing of the real and imaginary parts of the elements
of M, respectively. The (i, j)th element of M is denoted as
(M)i,j . In denotes the n× n identity matrix. The Frobenius
norm of M,

√
Tr(M‡M) is denoted by ‖M‖F and when

M is a positive semidefinite matrix, ‖M‖2 denotes its largest
eigenvalue. The set of n × n positive definite matrices will
be denoted by Sn

++. For an n × m real matrix N and a
real scalar r, min(N, r) denotes the n ×m matrix with the
(i, j)th element being minimum of (N)i,j and r. Notation
vec (M) is used to denote a vectorization of matrix M. For
an n×n positive definite matrix M, uT (M) refers to a vector
consisting of the n2−n

2 strictly upper triangular elements of
M and F(M) denotes the real vector of length n2 given by

F(M) =
[
vec (� (M))† uT (� (M))†

]†
.

B. System Model

Consider an nt-transmit antenna, nr-receive antenna MIMO
communication system operating in a channel subject to
frequency-flat quasi-static Rayleigh fading, as shown in Fig. 1.
For a complex baseband discrete time signal model, for each
time instant we have

y = Hx + w. (1)

Here, y = (y1, ..., ynr)† with yj being the received signal
on receiver antenna j and x = (x1, ..., xnt)† with xi being
the modulated symbol transmitted on transmit antenna i. The
nr × nt matrix H has hj,i, the channel fading coefficient
from transmit antenna i to receive antenna j, as the (j, i)th
element. A signal normalization is considered such that each
hj,i has a zero-mean circularly-symmetric complex Gaussian
distribution with a unit variance. Such probability distributions
will be denoted as CN (0, 1). Let the symbols on each antenna
be selected from a set B = {a1, ..., aN} with cardinality
|B| = N . Finally, w = (w1, ..., wnr )† where wj is the
spatially uncorrelated additive white noise manifesting at the
jth receive antenna with probability distribution CN (0, N0).

C. Optimal Symbol Detection

We can consider optimal detection suited for a subsequent
channel decoding operation as the computation of the marginal
distributions p(xi|y) for each i ∈ {1, · · · , nt}. Considering no
prior information at the decoder about x, the joint posterior
distribution of the vector of symbols is available up to a
proportionality constant as

p(x|y) ∝ exp

(
−‖y − Hx‖2

N0

)

∝ exp
(

2
N0

�(x‡H‡y) − 1
N0

x‡H‡Hx
)
. (2)

From this joint distribution, p(xi|y) for each i can be
computed by a brute force marginalization. Because of the
enumeration over the domain of x, which has a size Nnt ,
the complexity of the optimal algorithm is exponential in
the number of transmit antennas, nt. For large nt this rep-
resents a prohibitive complexity for practical implementation
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Fig. 1. The System Model.

and reduced-complexity symbol detection methods become
necessary.

In the following, we will consider undirected graphical
models for the representation of probability distributions [12].
It will be seen in the next Section that probability dis-
tributions of the form (2) are represented by UGMs with
loops. A reduced-complexity method of obtaining approximate
marginals in loopy UGMs, termed the tree-based reparame-
terization is introduced in [18]. This method is essentially a
reformulation of the more popular loopy belief propagation.
This TRP principle will be described via UGMs in the next
Section followed by a description of its direct application for
MIMO symbol detection.

III. UNDIRECTED GRAPHICAL MODELS, TREE-BASED

REPARAMETERIZATION AND THE TRP MIMO DETECTOR

Undirected graphical models are graphical representations
for probability distributions. They compose of nodes and edges
such that there are no multiple edges between any two nodes
and there are no edges going from a node to itself [22], [12].
The set of nodes (say V) of the graph denotes component
random variables of the joint distribution and the set of edges
(say E) indicate some structural relationship, in the joint
distribution, between the end nodes of each edge.

We restrict attention to distributions on sets of discrete
random variables. Also, let us consider instances where the
joint distribution is known at least up to a proportionality
constant as the product of a set of functions of subsets of
the set of variables. One example of such an UGM is shown
in Fig. 2, which is the graph corresponding to (2) for the case
of eight transmit antennas. For the particular case of (2), the
joint probability distribution factorizes according to

p (x) ∝
∏
s∈V

ψs (xs)
∏

(s,t)∈E

ψs,t

(
xs, xt

)
. (3)

Where

ψs (xs) =

exp
(

1
N0

[
− |xs|2 (H‡H

)
s,s

+ 2�
{
(xs)∗

(
H‡y

)
s

}])
,

(4)

and

ψs,t

(
xs, xt

)
= exp

(
− 2
N0

�
{
(xs)∗

(
H‡H

)
s,t
xt
})

. (5)

Functions such as ψs (xs) and ψs,t (xs, xt) will also be called
potentials in the following. Now, had the UGM been cycle
free, the posterior marginals of variables, p (xs|y) for s ∈ V
and pairs of variables p (xs, xt|y) for (s, t) ∈ E could have

x6

x5

x4

x3

x2

x1

x8

x7

Fig. 2. The undirected graphical model corresponding to nt = 8.

been found using a message passing scheme such as the
sum-product algorithm, with an O (|E|N2

)
complexity [13].

The readers are also referred to [12] and [22] for excellent
descriptions about UGMs and the sum-product algorithm.

For loopy graphs such as Fig. 2, one sub-optimal reduced-
complexity approach is to still apply the message updates
of the sum-product algorithm iteratively until coming to a
fixed point. This approach, which is termed loopy belief
propagation, has shown much empirical success [16], [17].
In the tree-based reparameterization method of [18], which is
the focus of this work, again the message updates of the sum-
product algorithm are iteratively applied, but in a different
manner as described next.

In UGMs such as Fig. 2, one can always identify a collec-
tion of edges of the graph which corresponds to a spanning
tree. A spanning tree refers to a tree which covers all the nodes
of the graph. Some examples are given in the subplots of Fig.
3. We will generically denote a spanning tree as Tk and its
constituent edges as Ek, with k being an index on a set of
spanning trees. Then, (3) can be decomposed as

p (x) ∝
∏
s∈V

ψs (xs)
∏

(s,t)∈Ek

ψs,t

(
xs, xt

)
︸ ︷︷ ︸

∝ pk(x)

·

∏
(s,t)∈E\Ek

ψs,t

(
xs, xt

)
︸ ︷︷ ︸

∝ p\k(x)

. (6)

Now, the sum-product algorithm could be executed to
marginalize the tree structured “distribution” pk (x) and find
its marginals efficiently. These marginals would be termed
beliefs in the following. Let the beliefs computed in this
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manner be given as qs(xs) and qs,t(xs, xt) for s ∈ V and
(s, t) ∈ Ek. Given these beliefs, it is known [12] that pk (x)
can be reparameterized 1 as

pk (x) =
∏
s∈V

qs (xs)
∏

(s,t)∈Ek

qs,t (xs, xt)
qs (xs) qt (xt)

. (7)

This reparameterization can be substituted back into (6) by
setting

ψnew
s (xs) = qs (xs) for s ∈ V (8)

ψnew
s,t

(
xs, xt

)
=

qs,t (xs, xt)
qs (xs) qt (xt)

for (s, t) ∈ Ek, (9)

which determines the new potentials for the tree that was
considered. In its execution, application of the tree-based
reparameterization consists of considering a series of spanning
trees. For each spanning tree, the sum-product algorithm is
executed to compute the beliefs of the constituent variables
and pairs of variables, which in turn keeps reparameterizing
parts of (3). After several iterations of the procedure outlined
above have been executed, the most recent beliefs qs(xs) are
output as the approximations to the marginal distributions
p (xs|y).

A. The TRP MIMO detector

The TRP principle described above is used to develop
a MIMO symbol detection algorithm in this Section. For
the execution of the TRP principle, a sequence of span-
ning trees T1, ...,Tk, ...,TK with corresponding edge sets
E1, ...,Ek, ...,EK needs to be selected. Instead of arbitrary
trees, we select a set of chains C1, ...,Ck, ...,CK with each
chain spanning all the variables. This standardizes the execu-
tion of the sum-product algorithm and will lead to a reduction
in implementation complexity. For even nt, the minimum
number of chains to cover all the edges of the graph is
K =

(
nt

2

)
/(nt − 1) = nt/2. A method to select nt/2 such

spanning chains will be presented in Section III-B.
For a given time instant, the decoder begins with the

joint distribution (3) with the potentials associated with the
singleton and pairwise variables given by (4) and (5). There-
after, the TRP MIMO detector at the kth iteration selects the
chain Ck and the corresponding edge set Ek. Let us assume
the chosen chain leads to an ordering of the indices of the
variables as {k1 → ... → ki−1 → ki → ki+1 → ... →
knt}. Now the sum-product algorithm is used to marginal-
ize this chain structured distribution. In its implementation,
the sum-product algorithm carries out a forward recursion
through the chain computing a set of forward messages
Mk

ki→ki+1

(
xki+1

)
for i = 1, ..., nt − 1, and a backward

recursion through the chain computing a set of backward
messages Mk

ki+1→ki

(
xki
)

for i = nt − 1, ..., 1. The formulae
for these forward-backward recursions are given below in
(10) and (11). Note that from here onwards, for brevity of
presentation, we usually choose not to indicate the arguments

1using the terminology of [18]

of functions such as the potentials, beliefs and messages.

Mk
ki→ki+1

∝
∑

xki∈B

(
ψk−1

ki,ki+1
ψk−1

ki
Mk

ki−1→ki

)
(10)

Mk
ki+1→ki

∝
∑

xki+1∈B

(
ψk−1

ki,ki+1
ψk−1

ki+1
Mk

ki+2→ki+1

)
.(11)

Here, the initializations Mk
k0→k1

(
xk1
)

= 1 for xk1 ∈ B and
Mk

knt+1→knt

(
xknt

)
= 1 for xknt ∈ B are assumed. After a

full forward and a backward recursion have been carried out,
the beliefs of the singleton and pairwise connected variables
of the selected chain are given by:

qki ∝ Mki−1→kiψ
k−1
ki

Mki+1→ki

qki,ki+1 ∝ Mki−1→kiψ
k−1
ki

ψk−1
ki,ki+1

ψk−1
ki+1

Mki+2→ki+1 .

From the reparameterization provided by (7), this enables the
computation of the new potentials associated with the vertices
and edges of the chain Ck as

ψk
ki

∝ ψk−1
ki

Mk
ki−1→ki

Mk
ki+1→ki

(12)

ψk
ki,ki+1

∝ ψk−1
ki,ki+1

Mk
ki+1→ki

Mk
ki→ki+1

. (13)

Note from (5), that initial edge potentials ψs,t need to be
computed only once for a given channel H. Thus, the TRP
MIMO detection algorithm is as given below.

1 Select the sequence of spanning chains C1, ...,Ck, ...,CK

with the corresponding edge sets E1, ...,Ek, ...,EK .
2 Initialize the edge potentials ψinit

s,t = ψs,t for (s, t) ∈ E
using (5).

3 For each received signal vector y
3.1 Set k = 1. Initialize ψ0

s = ψs for s ∈ V using (4)
and set ψ0

s,t = ψinit
s,t for (s, t) ∈ E.

3.2 Perform message passing along the chain Ck using
(10) and (11) and compute the new potentials of the
variables associated with the vertices V using (12)
and the new pairwise potentials associated with the
edges Ek using (13).

3.3 Increase k by one. If k > K go to Step 3.4,
otherwise go to Step 3.2.

3.4 Output the properly normalized ψK
s for s ∈ V as the

computed approximations to the marginals.

B. A sequence of spanning chains

It is easy to see that there are many possible sets of nt/2
spanning chains which will cover all the edges of graphs such
as that in Fig. 2. Here, we assume that nt is even. Otherwise,
the procedure can be easily extended to find a set of (nt+1)

2
spanning chains which cover all the edges of the graph. The
identification of one particular set of chains is as follows.

Define the modulo operation 〈r〉nt
acting on some r ∈

{−(nt − 1), · · · , 0, · · · , nt} as 〈r〉nt
= r if r > 0 and

〈r〉nt
= (r + nt) if r ≤ 0. Then the sequence of chains

C1, ...,Ck, ...,CK can be described by the kth chain containing
a sequence of variables with the indices ordered as {〈k〉nt

→
〈k + 1〉nt

→ 〈k − 1〉nt
→ 〈k + 2〉nt

→ · · · → 〈
k + nt

2

〉
nt
}.

The resulting selection of four spanning chains for the case
of nt = 8 is shown in Fig. 3.
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Fig. 3. A set of 4 chains to cover all the edges.

IV. DISTRIBUTIONAL APPROXIMATIONS FOR THE

TRP-BASED DETECTION

The straightforward application of the TRP principle does
not always perform well since, as with LBP itself, there exists
the issue that the decoding algorithm does not converge for
some joint distributions [18]. The result is that for some system
setups, such as when nt = nr = 4, the decoded error rate
floors out. This will be illustrated later in Fig. 4. We propose to
overcome this problem by selecting a suitable alternative joint
distribution on which the TRP based decoder will be executed.
Note that use of approximate models have been shown to
be specifically beneficial in computation limited situations, in
[23].

First, let us process the received signal as follows, which
is not going to affect the joint distribution on which the
marginalization is to take place:

ỹ =
(
H‡H

)−1
H‡y = x + ñ .

Here, it has been assumed that H‡H is invertible. Observing
that ñ ∼ CN (0, N0

(
H‡H

)−1), we can write the joint
distribution of (2) as

p (x |y ) ∝ exp
{
− (ỹ − x)‡ C (ỹ − x)

}
, (14)

where C = H‡H
N0

is almost surely a positive definite matrix.
Given this distribution, one can ask the following question:
What properties in this distribution are desired such that the
convergence of a TRP based detector can be guaranteed? Exact
derivation of necessary and sufficient conditions on the poten-
tials for the guaranteed convergence of TRP based detection, is
still an open problem. But, there exist sufficient conditions for
the guaranteed convergence of LBP based detectors. Examples
are [24] and [25]. These works suggest that a limitation on the
dynamic ranges of the edge potentials can ensure convergence

of the decoding algorithm. For the edge potentials pertaining
to (14), this correspond to a limitation on max

i�=j

∣∣∣(C)i,j

∣∣∣. Since

for a positive definite matrix C, max
i,j

∣∣∣(C)i,j

∣∣∣ ≤ ‖C‖2, and

since its principal minors are positive [26],

max
i�=j

∣∣∣(C)i,j

∣∣∣ < ‖C‖2 .

Therefore we expect that a suitable constraint on the largest
eigenvalue of C in (14) will ensure the convergence of TRP
based marginal computations.

Note that the set of all positive definite matrices parameter-
izes a family of distributions in that for any M ∈ Snt

++,

g (x;M) ∝ exp
{
− (ỹ − x)‡ M (ỹ − x)

}
is a valid distribution in the discrete random vector x. In
this work, for a given joint distribution p (x |y ) = g (x;C),
we propose to execute the TRP based detection algorithm
instead on a distribution g (x;Mopt). Mopt is the positive
definite matrix closest to g (x;C) in the Euclidean norm
‖C− Mopt‖F , such that its largest eigenvalue is below a
value σth. Here, σth is a parameter to be predetermined for
guaranteed convergence and the resulting improved perfor-
mance of TRP based detectors will be demonstrated in Section
VI.

A. Selection of the optimal distribution

Given the actual distribution p (x |y ) = g (x;C), we have
proposed the execution of the TRP based detection scheme on
an alternative distribution g (x,Mopt) such that the eigenval-
ues of Mopt are less than a parameter σth and the cost function
‖C− Mopt‖F is minimized. The following proposition finds
that optimal distribution which also happens to be unique.

Proposition 1: Let p (x |y ) = g (x;C) with C ∈ Snt
++.

Also let C = VΛV‡ where V is unitary and Λ =
diag(λ1, ..., λnt). The distributional approximation g (x;M)
to p (x |y ) such that M ∈ Snt

++, the eigenvalues of M are less
than a value σth (> 0) and the Frobenius norm ‖C − M‖F

is minimized, is given by

Mopt = V[min(Λ, σth)]V‡. (15)

Proof: Please see Appendix A.
Therefore, in this modified TRP based detection algorithm,

the marginalization will take place on the joint distribution
g (x;Mopt) ∝ exp{2�(x‡Ny) − x‡Moptx}, where

N = Mopt

(
H‡H

)−1
H‡. (16)

The initial potential functions given by this distribution are:

ψs (xs) = exp(− |xs|2 (Mopt)s,s +

2�
{
(xs)∗ (Ny)s

}
), (17)

and

ψs,t

(
xs, xt

)
= exp

(
−2�

{
(xs)∗ (Mopt)s,t x

t
})

. (18)

With the observation that the initial edge potential computa-
tions and the computation of the matrices Mopt and N need to
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be done only once for a given channel matrix H, the modified
TRP MIMO detection algorithm is as given below.

1 Select the sequence of spanning chains C1, ...,Ck, ...,CK

with the corresponding edge sets E1, ...,Ek, ...,EK .
2 Select the parameter σth and compute Mopt and N from

(15) and (16).
3 Initialize the edge potentials ψinit

s,t = ψs,t for (s, t) ∈ E
using (18).

4 For each received signal vector y
4.1 Set k = 1. Initialize ψ0

s = ψs for s ∈ V using (17)
and set ψ0

s,t = ψinit
s,t for (s, t) ∈ E.

4.2 Perform message passing along the chain Ck using
(10) and (11) and compute the new potentials of the
variables associated with the vertices V using (12)
and the new pairwise potentials associated with the
edges Ek using (13).

4.3 Increase k by one. If k > K go to Step 4.4,
otherwise go to Step 4.2.

4.4 Output the properly normalized ψK
s for s ∈ V as the

computed approximations to the marginals.

B. Effect on the distance between distributions by the Frobe-
nius norm reduction

In finding the Mopt with the desired eigenvalue constraints,
we are interested in introducing a controlled bias in the
marginal computations. This Section shows that the introduced
bias is well controlled since the minimization of the cost
function ‖C − M‖F in finding g (x;Mopt) also ensures that
an upper bound on the total variation norm between the
distributions g (x;C) and g (x;M),

TV =
∑

x∈Bnt

|g (x;C) − g (x;M)|,

is also minimized. Thus the alternative distribution
g (x;Mopt) is ensured not to be far away from the
actual distribution. Denoting g (E ;C) =

∑
x∈E

g (x;C), from

[27],

max
E⊆Bnt

{g (E ;C) − g (E ;M)} =
TV

2
.

Thus a reduction in the total variation norm also leads to a
reduction in the variation between, for example, the marginal
distributions. Therefore the containment of the TV norm is
desirable for the purpose of soft detection considered here.

Consider a parameterization of our family of distributions
g (x;M) given by θM = F(M), where F(M) was introduced
in Section II-A. The range of F : Snt

++ → R
n2

t , denoted by
Θ, is given by {F(M)|M ∈ Snt

++}. It can be seen that F
defines a bijection from Snt

++ to Θ, and therefore there is an
inverse map F−1 : Θ → Snt

++. Thus, each θM refers to a
unique positive definite matrix M.

With the parameterization on θM, each member of the
family of distributions g (x;M), which also happens to be
an exponential family of distributions, can be expressed as

g (x;M) = g (x; θM) =
exp 〈θM, φ (x)〉

Z (θM)
.

Here, the partition function Z (θM) is given by Z (θM) =∑
x∈Bnt

exp 〈θM, φ (x)〉 and the set of sufficient statistics, φ (x)

is given in Appendix C. Now in selecting the distribution
g (x;Mopt), the criterion minimized is the Frobenius norm
‖C− M‖F , which is equivalent to the Euclidean distance
‖θC − θM‖2. We claim the following proposition.

Proposition 2: Let g (x;C) and g (x;M) be two members
of the exponential family with sufficient statistics φ (x),
parameterized by the exponential parameters θC and θM,
respectively. The total variation norm between these two dis-
tributions, TV =

∑
x
|g (x;C) − g (x;M)| is upper bounded

as

TV ≤ exp (2κnt ‖θC‖2) {exp (2κnt ‖θC − θM‖2) − 1},
where κ = sup

x,i
|(φ (x))i|.

Proof: Please see Appendix B.
Thus an upper bound on the total variation norm between the
two distributions monotonically decreases with the reduction
in the Euclidean distance between the parameters. Thus the
minimization of the Euclidean distance also minimizes this
upper bound, which justifies Frobenius norm reduction as the
selection criterion in this modified TRP MIMO detector. We
note that for small ‖θC − θM‖, this upper bound decreases
linearly with the reduction in ‖θC − θM‖ and that the TV →
0 as ‖θC − θM‖ → 0.

V. ORDERS OF COMPLEXITIES

The optimal method of obtaining the APPs with its enumer-
ation over all the possible configurations of x can be seen to
have a complexity per time instant on the order of O(Nntnt

2)
assuming nt = nr. For both TRP based algorithms, the
complexity of each algorithm is governed by the message
passing operation on each chain decoding, which is having
an O(KN2(nt − 1)) complexity. From simulation results,
the number of TRP iterations needed for convergence in the
algorithms is found to be O(nt), provided that the decoding
is actually going to converge to a fixed point. Usually nt

iterations sufficed in both the classical TRP based detection
algorithm as well as in the modified TRP based detection
algorithm.

It should be noted that computation of the eigenvalues
and eigenvectors, as required for the modified TRP algorithm
needs to be performed only once per a given channel matrix.
Thus, for quasi-static fading channels, the TRP principle based
decoders reduce the system complexity from O(Nntnt

2) to
O(N2nt(nt−1)) with a bit error rate performance as given in
the next Section. We note that the message passing involved
in each chain decoding is much similar to the application
of the BCJR algorithm of [28]. Therefore, for large symbol
constellations one can also apply reduced-complexity BCJR
variations (e.g. [29]) to accomplish this task at a reduced
complexity, thereby making the complexity less than quadratic
in N .

For fast fading channels, assuming the channels change
independently from one time instant to the next, the Mopt

and N need to be computed at each time instant. Again
assuming nt = nr, this leads to an order of complexity which
is cubic in the number of transmit antennas, and is still com-
parable with the complexity of low complexity decoders such
as the successive interference cancellation based V-BLAST
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Fig. 4. Bit error rate performance with BPSK transmissions. nt = nr = 4.
Modified TRP decoding is with σth = 10.

decoding algorithm with the MMSE criterion (fast version
of [21]). Obviously, when there are significant correlations
between the channels at each time instant, the required eigen
decompositions can be done only at suitable time lags when
the underlying channels have significantly changed. Also in
the case of symbol detection in orthogonal frequency division
multiplexed systems, the eigen decompositions in each subcar-
rier can be appropriately avoided in the presence of significant
correlations between the subcarriers.

VI. SIMULATION RESULTS

In the following simulations, each frame transmission con-
tained 1152 data bits which were encoded by a rate half turbo
encoder and passed through a random interleaver. The turbo
encoder consisted of two constituent (5, 7)8 convolutional
codes. The sequence of chains were selected as described in
Section III-B. The turbo decoder performed four iterations of
decoding. Each simulation point represents the simulation of
at least 104 frame transmissions.

Even though the convergence properties of the classical TRP
based decoder improve with the number of transmit antennas
[19], we observe the simulations in systems with four transmit
antennas, which are practically more relevant. Fig. 4 shows
the decoding performance for BPSK modulated transmissions
with nr = 4. Here, SNR = Es/N0 and Es denotes the average
energy per transmitted vector symbol x. We can clearly ob-
serve the error floor behaviour due to the non convergence of
the classical TRP principle based decoding algorithm for some
distributions. With the modifications suggested in Section IV,
this error floor behaviour is removed and the decoded error
rates come close to the optimal performance. Fig. 5 shows the
bit error rate performance with σth for QPSK transmissions
operating at different signal to noise energy ratios. With these
results σth = 16 is selected for decoding QPSK transmissions
for nt = nr = 4 systems. Note that simulations indicate
optimal σth values for ensembles of distributions defined
by the number of transmit-receive antennas and the symbol
alphabet. But an analytical identification of such optimal
values require the exact knowledge of convergence of these
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Fig. 5. Bit error rate performance with σth for QPSK transmissions. nt =
nr = 4. Four modified TRP iterations.
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Fig. 6. Bit error rate performance with QPSK and 16-QAM transmissions,
where mTRP denotes the modified TRP based decoding algorithm. nt =
nr = 4. SIC-MMSE denotes the successive interference cancellation method
using the MMSE criterion. The QPSK system used σth = 16 and the 16-
QAM system used σth = 48.

decoding schemes, which is still an open problem. Thus σth

is selected for each system setup via numerical simulations.
Fig. 6 shows the resulting BER performance for QPSK and
16-QAM transmissions. The modified TRP algorithm in the
QPSK case was implemented with σth = 16, while that in
the 16-QAM case was with σth = 48. For the 16-QAM
systems, we have also plotted the performances of the hard
decision making successive interference cancellation method
for V-BLAST systems, which uses the minimum mean squared
error (MMSE) criterion [20] and the max-log sphere decoder
of [6]. The V-BLAST decoder was implemented along with its
optimal ordering for the successive interference cancellation.

Fig. 7 shows the results when nr = 6. The modified TRP
algorithm in the QPSK case was implemented with σth = 18,
while that in the 16-QAM case was with σth = 52. It
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Fig. 7. Bit error rate performance with QPSK and 16-QAM transmissions.
nt = 4, nr = 6. The QPSK system used σth = 18 and the 16-QAM system
used σth = 52.

can be observed that the proposed algorithm performs nearly
optimally for the QPSK system and within 0.5dB of the
optimal performance in the 16-QAM system.

VII. CONCLUSIONS

We have investigated the tree-based reparameterization
principle for reduced-complexity symbol detection in MIMO
spatial multiplexing systems. The resulting algorithm has an
O(N2nt(nt −1)) complexity, which is attractive for practical
implementations. Furthermore, a novel methodology has been
developed to improve the decoding performance of the clas-
sical TRP principle by the selection of a suitable alternative
joint distribution. It has been shown theoretically that the bias
introduced by the selection of this alternative distribution is
well controlled since the cost function that is minimized in
selection also minimizes an upper bound on the total variation
norm between the actual distribution and possible alternative
distributions. Simulation results show the excellent decoding
performance due to this ensured convergence while keeping
the low complexity offered by the TRP principle.

We also comment here that the proposed method of ensuring
the convergence of the TRP principle based algorithms can
also be used to improve the convergence properties of other
decoding strategies such as the use of loopy belief propagation.

In the developed algorithms, the task of marginalization is
broken down into a series of marginalizations on distributions
with chain structured undirected graphs. Marginalization on
such distributions takes a form similar to the BCJR algorithm.
Therefore, for large symbol alphabets, it is further possible to
apply reduced-complexity BCJR variations to perform these
marginalizations at a lower complexity.

APPENDIX A
SELECTION OF THE OPTIMAL g (x,M) SUBJECT TO THE

EIGENVALUE CONSTRAINTS ON M
Let M = UΔU‡, where U is a unitary matrix and Δ =

diag(δ1, ..., δnt). Without loss of generality, we will assume

that λ1 ≥ λ2 ≥ · · ·λnt > 0 and σth ≥ δ1 ≥ δ2 ≥ · · · δnt > 0.
Let R be the unitary matrix such that R = V‡U. Consider
the objective function

‖C− M‖2
F = Tr

[
(C − M)‡ (C − M)

]
= Tr

[
C‡C + M‡M − M‡C− C‡M

]
= Tr[VΛ2V‡ + UΔ2U‡

−VRΔR‡ΛV‡ − VΛRΔR‡V‡]

=
nt∑

i=1

δ2i +
nt∑
i=1

λ2
i − 2Tr

[
RΔR‡Λ

]
Now, we can minimize this squared norm in R and δi for
i = {1, ..., nt} to obtain the positive definite matrix closest to
C which satisfies the eigenvalue constraints.

From [30], Tr
[
RΔR‡Λ

] ≤ nt∑
i=1

δiλi. Here the equality is

achieved for R = Jnt , where Jnt is a diagonal matrix with
each of the diagonal elements being some complex square
root of 1. This means that for any Δ, R = Jnt minimizes
the objective function, and due to the commutativity in the
multiplication of diagonal matrices, the objective function
reduces to

‖C − M‖2
F =

nt∑
i=1

(δi − λi)
2.

With the constraints on each δi for every i, the solution is
simply δi = min(λi, σth), and noting that JntJ

‡
nt

= Int , the
unique optimal Mopt satisfying the constraints is

Mopt = V[min(Λ, σth)]V‡.

APPENDIX B
UPPER BOUND ON THE TOTAL VARIATION NORM

Assuming θγ = γθM + (1 − γ)θC and fθγ (x) =
exp〈θγ ,φ(x)〉

Z(θγ) ,

TV =
∑

x∈Bnt

∣∣∣∣∣∣
1∫

0

d

dγ
fθγ (x) dγ

∣∣∣∣∣∣
=

∑
x∈Bnt

∣∣∣∣∣∣
1∫

0

ξfθγ (x) dγ −
1∫

0

ζfθγ (x) dγ

∣∣∣∣∣∣,
where ξ = 〈θM − θC, φ (x)〉 and ζ = 1

Z(θγ)
d
dγZ (θγ). Thus

TV ≤
∑

x∈Bnt

∣∣∣∣∣∣
1∫

0

〈θM − θC, φ (x)〉 fθγ (x) dγ

∣∣∣∣∣∣︸ ︷︷ ︸
V

+
∑

x∈Bnt

∣∣∣∣∣∣
1∫

0

fθγ (x)
1

Z (θγ)
d

dγ
Z (θγ) dγ

∣∣∣∣∣∣︸ ︷︷ ︸
W

. (19)
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Now, using the Cauchy-Schwarz inequality,

V ≤ ‖θC − θM‖2

∑
x∈Bnt

1∫
0

‖φ (x)‖2 fθγ (x) dγ

= ‖θC − θM‖2

1∫
0

Efθγ {‖φ (x)‖2} dγ.

Since d
dγZ (θγ) =

∑
x∈Bnt

exp 〈θγ , φ (x)〉 〈θM − θC, φ (x)〉 ,

W =
∑
y

∣∣∣∣∣∣
1∫

0

fθγ (y)

[∑
x

fθγ (x) 〈θM − θC, φ (x)〉
]
dγ

∣∣∣∣∣∣
≤

∑
y

1∫
0

fθγ (y)

[∑
x

fθγ (x) |〈θM − θC, φ (x)〉 |
]
dγ

≤ ‖θC − θM‖2

1∫
0

Efθγ {‖φ (x)‖2} dγ

Therefore from (19),

TV ≤ 2 ‖θC − θM‖2

1∫
0

Efθγ {‖φ (x)‖2} dγ. (20)

Let κ = sup
x,i

|(φ (x))i|. We will also denote the l∞ norm by

‖ • ‖∞ and noting that ‖φ (x) ‖2 ≤ nt‖φ (x) ‖∞ ≤ κnt [26],
note the inequalities: −κnt ‖θ‖2 ≤ 〈θ, φ (x)〉 ≤ κnt ‖θ‖2.
For γ ∈ [0, 1],

Z (θγ) =
∑
x

exp 〈γ (θM − θC) + θC, φ (x)〉

=
∑
x

exp 〈θC, φ (x)〉 exp 〈γ (θM − θC) , φ (x)〉

≥ Nnt exp (−κnt ‖θC‖2) exp (−κntγ ‖θC − θM‖2) .

Efθγ {‖φ (x)‖2}
=
∑
x

‖φ (x)‖2

exp 〈γ (θM − θC) , φ (x)〉
Z (θγ)

exp 〈θC, φ (x)〉

≤ κnt
exp (κntγ ‖θC − θM‖2)

Z (θγ)
exp (κnt ‖θC‖2)N

nt .

This results in the inequality

Efθγ {‖φ (x)‖2} ≤ κnt exp (2κntγ ‖θC − θM‖2) ·
exp (2κnt ‖θC‖2) .

Thus, from (20), the following upper bound on the total
variation norm results:

TV ≤ exp (2κnt ‖θC‖2) {exp (2κnt ‖θC − θM‖2) − 1} .

APPENDIX C
SUFFICIENT STATISTICS OF g (x; θM)

Consider the distribution g (x;M) ∝
exp
{
ỹ‡Mx + x‡Mỹ − x‡Mx

}
. With the parameterization

θM = F(M), the term (ỹ‡Mx + x‡Mỹ − x‡Mx) can
be expressed as a real valued inner product of the form

〈θM, φ (x)〉 by defining the vector φ (x) of length n2
t to be

given in (21), where l = n2
t−nt

2 , and we have made use of
the two l length vectors

κ =

⎛
⎝ nt−1︷ ︸︸ ︷

1 1 · · · 1
nt−2︷ ︸︸ ︷

2 2 · · · 2 · · · (nt − 1)

⎞
⎠

ς = (2 3 · · · (nt − 1) 3 4 · · · (nt − 2) · · · (nt − 1)) .
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