
 Paynter, M., & Koçak, T. (2008). Fully pipelined bloom filter architecture.
IEEE Communications Letters, 12(11), 855 - 857.
10.1109/LCOMM.2008.081176

Link to published version (if available):
10.1109/LCOMM.2008.081176

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29025785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/LCOMM.2008.081176
http://research-information.bristol.ac.uk/en/publications/fully-pipelined-bloom-filter-architecture(e7684304-20a9-4261-8345-9f2dba473d9e).html
http://research-information.bristol.ac.uk/en/publications/fully-pipelined-bloom-filter-architecture(e7684304-20a9-4261-8345-9f2dba473d9e).html

IEEE COMMUNICATIONS LETTERS, VOL. 12, NO. 11, NOVEMBER 2008 855

Fully Pipelined Bloom Filter Architecture
Michael Paynter and Taskin Kocak

Abstract—Recently, we proposed a two-stage pipelined Bloom
filter architecture to save power for network security applica-
tions. In this letter, we generalize the pipelined Bloom filter
architecture to k-stage and show that significant power savings
can be achieved by employing one hash function per stage.
We analytically show that the expected power consumption and
latency of the fully pipelined Bloom filter architecture will not
be greater than that of the two hash functions and two clock
cycles, respectively, however large the number of hash functions
is. Furthermore, we discuss the worst-case performance of the
proposed architecture.

Index Terms—Bloom filters, network intrusion detection, low-
power design.

I. INTRODUCTION

BLOOM filters have recently received considerable atten-
tion in the networking research community for many

applications such as network intrusion detection, peer-to-peer
networking, resource routing, traffic management [1]. Bloom
filters were first proposed by B. Bloom in 1970 [2] and
were originally popular in database applications. They trade
off a small, known false positive rate (FPR) for high space
efficiency and are suitable for string matching applications
where the effects of false positives can be mitigated.

A Bloom filter is a simple way of representing a set and
testing strings for membership of that set. For example, in
network intrusion detection systems this set will be the Snort
rules [6]. A Bloom filter represents the set of n signatures
in an m-bit array. The elements in this array are set to ‘0’
before programming. Each signature is hashed k times by the
independent hash functions, h1, h2, ..., hk. It is assumed that
each hash function maps uniformly to a random number in the
range {0, 1, ..., m − 1}. This number indicates a bit location
in the m-bit array which is then set to ‘1’. If a bit is set
to ‘1’ more than once there is no additional effect and the
bit remains set to ‘1’. To test a string for membership of the
programmed Bloom filter, the query string, y, is hashed k
times as before. If all of the hashes point to the bit locations
that are set to ‘1’ (i.e., match) then this indicates that the query
string is a member of the set. If any of the hashes point to a
bit location that is set to ‘0’ (i.e., mismatch) then the query
string is definitely not a member of the set.

There is a possibility that a non-member string might select
all ‘1’s from the programmed array. This scenario yields a
false positive. This might be acceptable if the probability
is small enough or if the effects of false positives can be

Manuscript received July 23, 2008. The associate editor coordinating the
review of this letter and approving it for publication was A. Shami.

The authors are with the Department of Electrical and Electronic Engi-
neering, University of Bristol, Bristol, BS8 1UB, United Kingdom (e-mail:
{mp3379, t.kocak}@bristol.ac.uk).

Digital Object Identifier 10.1109/LCOMM.2008.081176

Fig. 1. Hardware implementation of a regular Bloom filter.

mitigated. Following the analysis of [3], the probability of
a false positive, f , can be estimated from the Bloom filter
parameters:

f =
(
1 − e

−kn
m

)k

(1)

And the number of hash functions that minimizes f is given
by

k =
(m

n

)
ln 2 (2)

Regular Bloom filters are usually implemented in hardware,
as shown in Fig. 1, with multiple, single-ported lookup mem-
ories due to the lack of k-port memory devices [7]. The m-bit
array is split such that each hash function accesses its own
array of m/k bits, separate from the others to minimize the
access latency, which would otherwise increases to k times for
a single-port m-bit lookup memory. This architecture suffers
from a greater FPR than the regular architecture with m-bit
array; however, this is shown to be negligible in the asymptotic
case and in practice [1].

The number of hash functions required to minimize the
false positive probability of a Bloom filter is typically large,
for example k=35. In some applications, such as network
intrusion detection due to very low rate of malicious traffic
(e.g., 0.1% [8]), there is no need to compute all hash functions
to get a result of non-membership. Recently, we introduced
pipelined Bloom filters to exploit this [4]. Basically, a pipelined
Bloom filter consists of several groups of hash functions
that are utilized in different stages. The first stage always
computes the hash values. The second and further stages are
used only if there is a match in the previous stage(s). In [4],
we demonstrated that a two-stage pipelined Bloom filter can
yield significant power savings. In this paper, we generalize

1089-7798/08$25.00 c© 2008 IEEE

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on March 5, 2009 at 07:35 from IEEE Xplore. Restrictions apply.

856 IEEE COMMUNICATIONS LETTERS, VOL. 12, NO. 11, NOVEMBER 2008

Fig. 2. Hardware implementation for the fully pipelined Bloom filter
architecture.

the pipelined Bloom filters and introduce the fully pipelined
architecture for Bloom filters.

II. FULLY PIPELINED BLOOM FILTER ARCHITECTURE

The architecture of the fully pipelined Bloom filter is shown
in Fig. 2. By fully pipelined, it is meant that each stage
has only one hash function unlike the two-stage version in
[4] where there are many hash functions per stage. The
fully pipelined Bloom filter has the same number of hash
functions as the regular Bloom filter. Hence, the false positive
probability is the same. In the query phase, the first hash
function, h1, is fed by a new query string every cycle. A
query string is progressed to the next stage only when the
previous hash function produces a match (i.e., lookup value,
LVi=1). The programming phase is the same as the regular
Bloom filter.

A. Power Consumption Analysis

The main benefit of pipelining the Bloom filter is saving
power. In [4], we showed that two-stage pipelining helps to
reduce power consumption up to 90 percent if there is a fixed
combination of, say, 5 hash functions in the first stage and
the rest of the hash functions in the second stage. However,
the power saving ratio diminishes when there are high number
of matches in the first stage and the second stage is utilized
more. Thus, the fully pipelined architecture is a remedy to this
problem. In the following, we will derive the power savings
achieved by the fully pipelined architecture. By using the same
notation in [4], the power consumption of a regular Bloom
filter is given by

Pregular =
k∑

i=1

(PHi + PL) = k.(PH + PL) (3)

where PH is the power dissipated by a hash function and
PL is the power required to perform lookup on the array.
Without loss of generality, the power consumption of each

hash function, PHi , is assumed to be equal. The power
dissipated by the AND gate is also considered to be negligible.

The average power dissipation of the fully pipelined Bloom
filter can be calculated as follows:

Ppipelined = P + P · s + ... + P · sk−1 (4)

where P = PH +PL is the power dissipated by a single stage
and s = 1−e

−kn
m is the probability of a hash function selecting

a ‘1’ in the lookup array [4]. Here it is assumed that the input
stage of the pipeline is continuously filled with another query
string. Eq. (4) can be rearranged to

Ppipelined = P ·
k∑

i=1

si−1 (5)

This can be expanded using the values for P and s

Ppipelined = (PH + PL) ·
k∑

i=1

[(
1 − e

−kn
m

)i−1
]

(6)

It is interesting to examine the average power dissipated by
an optimal Bloom filter (i.e., the FPR is minimized). This can
be shown by examining the series generated by the summation.
Following the analysis in [1], an optimal Bloom filter exists
when 1 − e

−kn
m = 0.5. The Eq. 6 becomes

Ppipelined = (PH + PL) ·
k∑

i=1

0.5i−1 = (PH + PL) ·
k−1∑
i=0

[
1
2i

]

(7)

Now, let us examine the behavior in the limit as k → ∞.

Ppipelined = (PH +PL)·
[
1 +

1
2

+
1
4

+
1
8

+ ... +
1

2k−1

]
(8)

By using the geometric series given in Eq. (9) [5]

1
1 − x

=
∞∑

j=0

xj = 1 + x + x2 + ... for |x| < 1 (9)

and setting x = s = 1
2 , the expected power dissipation of the

fully pipelined Bloom filter is at most

Ppipelined = (PH + PL) · 2 (10)

The exciting conclusion from this is that however large the
number of hash functions, k, there are in a fully pipelined
Bloom filter, the expected power dissipated will not be greater
than that of two hash functions.

B. Latency Analysis

A similar argument can be applied to calculate the average
latency of the fully pipelined Bloom filter architecture:

τpipelined = τ + τ · s + ... + τ · sk−1 = τ ·
k∑

i=1

si−1 (11)

where τ is the clock period.
As before if it is assumed that the Bloom filter is optimal

then

τpipelined = τ ·
k∑

i=1

0.5i−1 = τ ·
k−1∑
i=0

[
1
2i

]
(12)

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on March 5, 2009 at 07:35 from IEEE Xplore. Restrictions apply.

PAYNTER and KOCAK: FULLY PIPELINED BLOOM FILTER ARCHITECTURE 857

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of hash functions (k)

P
ow

er
 S

av
in

g
R

at
io

Snort
Random
TPR=0.1%
TPR=2.5%

Fig. 3. Power saving ratio for a fully pipelined Bloom filter.

This result is similar to the result for expected power
dissipation given by Eq. (7). It can be shown in the same way
that the expected latency of a fully pipelined Bloom filter will
tend towards 2 clock cycles in the limiting case, as k → ∞.
This is also exciting because it means that the expected latency
of a fully pipelined Bloom filter will never exceed 2 clock
cycles however large the number of hash functions, k, is.

III. DISCUSSION

The false positive rate is dependent on the number of ‘1’s
or ‘0’s in the lookup array after the programming. The number
of ‘1’s will be concentrated tightly around the mean (i.e. 50%
or s=0.5) with independent uniform hash functions and a large
programming input set [1]. This is the value used for random
programming and query, and follows the expected results
given in the previous section. We implemented three hash
functions, H3, XOR and Bit Extraction [9], and programmed
Snort signatures [6]. The number of ‘1’s as a percentage of the
lookup array escalates from 38% to 42%. Hence, we use an
average of s=0.4. Another important factor is the true positive
rate (TPR), which could be higher than FPR. The majority
of the network traffic is still very clean (i.e. malicious free),
hence the alert rate of a NIDS system is very low such as
0.1% [8]. We take this and another, but a higher value, say,
up to 2.5% malicious traffic to compare the power and latency
results for the fully pipelined architecture. The corresponding s
values are obtained by setting s35=0.001, which yields s=0.82
for TPR=0.1% and similarly s=0.9 for TPR=2.5%.

In order to assess the improvements in power consumption,
we calculate the power saving ratio (PSR)

PSR =
(Pregular − Ppipelined)

Pregular
(13)

Using Eqs. (3) and (5), and simplifying with P

PSR =

(
P · k − P ·

k∑
i=1

si−1

)

P · k = 1 − 1
k
·

k∑
i=1

si−1 (14)

As illustrated in Fig. 3, the PSR increases for increasing k.
For large values of k, over 95% power savings can be achieved

0 5 10 15 20 25 30 35
1

2

3

4

5

6

7

8

9

10

Number of hash functions (k)

La
te

nc
y

(c
lo

ck
 c

yc
le

s)

TPR=2.5%
TPR=0.1%
Random
Snort

Fig. 4. Latency of a fully pipelined Bloom filter.

by the fully pipelined version. In the worst case, the power
consumption of the fully pipelined architecture will be as high
as that of the regular Bloom filter.

Normally, due to the very low probability of hitting mali-
cious network traffic, the expected latency will be confined
within two clock cycles. However, in the case of high TPR,
the average latency will increase as shown in Fig. 4. And in
the worst case, the query latency could be k times longer than
that of the regular Bloom filter.

IV. CONCLUSIONS

In this letter, we proposed a fully pipelined Bloom filter
architecture. It is targeted for network security applications,
owing to the non-malicious input characteristics most of the
time; however, it could be used for other applications. Ana-
lytically, we demonstrated that on average the fully pipelined
Bloom filter will consume power no more than that of two
hash functions and its latency will never exceed two clock
cycles. Over 95% power savings can be achieved, though, the
query latency could be longer with high TPR.

REFERENCES

[1] A. Broder and M. Mitzenmacher, “Network applications of Bloom filters:
a survey,” Internet Mathematics, vol. 1, no. 4, pp. 485-509, 2005.

[2] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Commun. ACM, vol. 13, no. 7, pp. 422-426, 1970.

[3] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J. W. Lockwood,
“Deep packet inspection using parallel Bloom filters,” IEEE Micro, vol.
24, no. 1, pp. 52-61, 2004.

[4] T. Kocak and I. Kaya, “Low-power Bloom filter architecture for deep
packet inspection,” IEEE Commun. Lett., vol. 10, no. 3, pp. 210-212,
2006.

[5] E. Kreyszig, Advanced Engineering Mathematics, 8th Edition. New York:
John Wiley & Sons, Inc., 1999.

[6] Sourcefire, Inc., “Official Snort ruleset,” Columbia, MD (web:
http://www.snort.ort/pub-bin/downloads.cgi).

[7] D. Sanchez, L. Yen, M. Hill, and K. Sankaralingam, “Implementing
signatures for transactional memory,” in Proc. 40th IEEE/ACM Int’l
Symp. on Microarchitecture, Chicago, IL, 2007.

[8] K. Hwang, Y. Chen, and H. Liu, “Defending distributed systems against
malicious intrusions and network anomalies,” in Proc. IEEE Parallel and
Distributed Processing Symp., Denver, CO, 2005.

[9] I. Kaya and T. Kocak, “A low power lookup technique for multi-hashing
network applications,” in Proc. IEEE Annual Symp. on VLSI (ISVLSI),
Karlsruhe, Germany, 2006.

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on March 5, 2009 at 07:35 from IEEE Xplore. Restrictions apply.

