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Abstract: This paper preserits new adaptive integration technique in the spectral domain 
to speed up the impedance matrix calculation. This includes the adaptive truncation 
which limits the infinite integration into the finite computer resources and the adaptive 
integration step which is a function of the Fourier transform variables. 

1 Introduction 

Designers of microwave circuits have come depend heavily on computer-aided-techniques 
to predict the behaviour of planar microwave circuits and antennas. This is because most 
of the practical problems can be solved numerically but can not be solved analytically. 
The fundamental purpose of this paper is to develop an interactive design tool to predict 
the frequency response of open planar structures. 

The Spectral Domain Method (SDM), which is based on solving the coupled integral 
equations, has been chosen to meet these requirements. The main advantage of SDM is to 
reduce the coupled integral equation to a simpler set of algebraic equations by taking the 
Fourier transform. In addition for the planar circuits of interest in this paper, a convenient 
form of the Green’s function exists in the spectral domain. 

Analysis of complex planar circuits by the SDM requires the definition of the unknown 
current distribution on the metal part of the circuit. Therefore the first step of the analysis 
is to expand the unknown surface current as a set of known basis functions with unknown 
coefficients. The choice of the basis function is crucial to the efficiency of the technique 
and special care must be taken to approximate the unknown current distribution as closely 
as possible, otherwise a large number of basis functions are required for convergence. It 
has been shown and commonly used that a rooftop function [l, 21 as a current basis 
function allows the unknown surface current on an irregular shaped metalisation to be 
defined, but this approach results in a large numbers of basis functions for convergence. 
The use of pre-calculated basis functions reduces the number of basis functions required 
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and the impedance matrix to be calculated, but pre-calculated basis functions must be a 
combination of rooftop functions which must be identical apart from a shift in origin to 
exploit the benefits of the FFT [3]. Since the FFT is not available for open structures, 
Balik [4] has recently introduced sub-gridding in the spectral dom.ain and combination of 
the sub-gridding and the pre-calculated basis function to remedy this deficiency. 

Method of Moments [5, chapter51 is applied to find the unknown current coefficients. The 
Method of Moments requires two dimensional numerical integration over an infinite surface 
because of open structure. In addition this numerical integration must be repeated at each 
operating frequency point. The speed of the impedance matrix calculation is a function 
of the numerical integration, therefore any improvement in efficiency in the numerical 
integration will result in a significant reduction in the run-time required. 

In this paper, an efficient adaptive truncation for the numerical integration to find the 
impedance matrix elements is presented in order to limit the integration over an infinite 
surface to finite computer resources by using the features of the current basis function. 
The present implementation uses the asymptotic form of the Green’s function [3] to the 
calculation for the frequency independent part of the impedance matrix, resulting in a 
much smaller two dimensional numerical integration to be calcu1,ated for each spot fre- 
quency. It must be emphasised that the efficient truncation of the integration has already 
been employed, therefore special care must be taken to determine ithe integration range of 
the dyadic part of the impedance matrix. 

The accuracy of the numerical integration is also a function of th’e numerical integration 
step size. In this contribution these step sizes are defined as functions of the Fourier 
transform variables. The accuracy has been improved even though fewer steps are used 
compared to the case of using a uniform step size. 

2 Adaptive Integration 

To find the frequency response of the circuit, equation 1 must be repeated at each frequency 
point. This requires two dimensional numerical integration and special care must be taken, 
because the dyadic Green function [6, pages 335-3401 has several poles. These poles (in 
practical cases, only one [ a ] )  correspond to surface waves for an ‘open structure and are 
located in between ko and m k o .  The poles have no imaginar,y parts if the dielectric 
substrate is lossless. 

where G is the dyadic Green’s function in the spectral domain , J is the Fourier transform 
of the current basis function and w is the weighting function which is identical to the 
current basis function if the procedure is Galerkin’s. I t  must be noted that bold quantities 
are the Fourier transform of the functions. 

There are two possible ways to include such effects described in the literature. The first way 
is to determine the exact pole location by using one of the numerical. root finding techniques 
such as the Newton-Rhapson procedure, which is well-explained in any numerical analysis 
book, then to skip the poles and to include the effect of poles as explained in [7]. The 
main disadvantage of this technique is to calculate the location of the poles for each 
spot frequency. A second and more efficient technique is introduced in [S] for the polar 
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coordinate system and therefore enhanced to fit the Cartesian coordinate system used in 
this implementation as illustrated in figure 1. 

j0.5kot f--\ 

Figure 1: Complex integration path 

In a line integration, the result is independent of the chosen path [9, page 4091. The 
technique used here is based on changing the integration path to a new path on which 
no poles exist. The poles are located between lkol and l m k o l  as shown in figure 1. 
The contour integration path which skip the region where poles are located by shifting 
integration path 5% of ko as shown in figure 1. 5% has been found by the author experience 
and therefore the effects of poles are included in the analysis. 

In the numerical integration procedure, there are two parameters which are most effective. 
These parameters are given in the following sections and described with their enhance- 
ments. 

2.1 Adaptive Integration Range 

To find the unknown current distribution on the complex metalisation of the circuit, 
the unknown coefficients must be known and hence the Method of Moments (MOM) is 
commonly used to calculate these coefficients and requires an integration over an infinite 
surface due to the open structure [a]. A suitable place for termination of the integration 
must be defined to limit the infinite integration to finite computer resources. Although 
some truncations were mentioned in 171, the exact position of the truncation was not 
given. In this contribution the location of the truncation is defined using the feature of 
the rooftop basis function which is a rooftop function. 

A rooftop function is defined as two separable functions, a triangle function in the direction 
of current flow and a step function in the direction perpendicular to flow [l]. As shown 
in figure 2 the Fourier transform of the components of the rooftop function become very 
small after just a few cycles. The integration over a just a few cycles has been found and 
proved to give accurate results instead of the integration over an infinite surface. 

2.2 Adaptive Integration Step 

The maximum value of each cycle decays exponentially as seen in figure 2, therefore to  
define an adaptive integration step as a function of the transform variables ( ,kx,kz) is 
meaningful. To integrate the impedance matrix elements efficiently the following idea is 
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Figure 2: Fourier transform of a rooftop function components 

used. Use a fine step in the large amplitude variation areas and a coarse step in small 
amplitude variations. The accuracy of this method is comparab1.e to that of using only 
fine steps. 

4 Integration Step 

Figure 3: Adaptive integration step 

In figure 3, maz is the truncation position which is defined in section 2.1 and the integration 
step as a function of transform variables is defined as, 

As seen in equation 2 and figure 3, fine integration steps are usecl for the small values of 
the Fourier transform variables and coarse steps are used for large values of the Fourier 
transform variables. This allows the user to define hmax and h,,,, the integration steps 
are then automatically calculated. 

3 Numerical Results 

To illustrate the convergence pattern, results are presented for the example two dimen- 
sional open microstrip structure quoted by Itoh in [lo]. In figure 4(a) the effective per- 
mitivity versus the number of cycles of the Fourier transform of the rooftop function is 
plotted. It is evident that relative convergence for this example has been reached when 
N, 2 1 (N ,  is the number of cycles), that is only a small percentage error compared to 
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Figure 4: Effective permitivity of open microstrip line 

large values of N,. The exact value of N, required for convergence is problem defendant 
but is usually of the order of 1 even more complicated three dimensional structures. 

The convergence pattern for adaptive integration step size is shown in figure 4(b). In this 
case the numbers of integration steps are kept constant. Even though identical numbers 
of integration step are used, the accuracy is improved by using the adaptive integration 
technique. 
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Figure 5: S-parameters IS211 for edge coupled filter 

The present implementation is applied to the edge-coupled filter which is analysed by 
various techniques. The results for this filter are available from measurements performed 
by Shibita et al [ll]. It is also analysed using FDTD [12] and SDM [3] for shielded circuits. 

In fig. 3, the problems caused by box modes using the method of [3] have been eliminated. 
Using the adaptive integration makes the calculation at least 2.5 times faster. The run 
time on HP workstations is approximately 10 min for the first spot frequency and 5 min 
for the rest of the each frequency. 
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