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ABSTRACT

We present a novel image fusion algorithm based on ICA that
has an improved performance over sensor networks. It em-
ploys segmentation to determine the most important regions
in the input images and consequently fuses the ICA coeffi-
cients from the given regions. Sparse coding of the coeffi-
cients in ICA domain is used to minimize noise transferred
from input images into the fused output. Experimental results
confirm that the proposed method outperforms other state-of-
the-art methods in the sensor network environment, charac-
terized by JPEG 2000 compression and data packetisation.

Index Terms— image fusion, region-based fusion, inde-
pendent component analysis, sensor networks, JPEG 2000

1. INTRODUCTION

As the size and cost of sensors decrease, sensor networks are
increasingly becoming an attractive method to collect infor-
mation in a given area [1]. However, there are still many tech-
nical challenges, mainly related to fusing the individual sen-
sor data through an intelligent decision making process while
reducing errors and compression noise. The task of the fu-
sion algorithm is to combine the useful information from the
input sensors to form a composite that represents the observed
scene more adequately than using a single sensor [1].

Image and video fusion is a subarea of the more general
topic of data fusion, dealing with image and video data. In-
stead of using a standard basis system, such as the DFT, one
can train a set of bases that are suitable for a specific type of
images. A training set of image patches, which are acquired
randomly from images of similar content, can be used to train
a set of statistically independent bases. Independent Com-
ponent Analysis (ICA) is a widely used method that is able
to identify statistically independent basis vectors in a linear
generative model [2].

In this paper, we present a novel algorithm for fusion of
multimodal images based on the ICA. It was tested in a sen-
sors network environment and it has exhibited an improve-
ment in performance in fusion of infrared (IR) and visible
images over other state-of-the-art methods.

2. IMAGE ANALYSIS USING ICA

In order to obtain a set of statistically independent bases for
image fusion in the ICA domain, training is performed with a
predefined set of images. Training images are selected in such
a way that the statistical properties are similar for the training
images and the images to be fused. An input image i(x, y)
is randomly windowed using a rectangular window w of size
N × N , centered around the pixel (m0, n0)). The result of
windowing is an ”image patch” p:

p(m,n) = w(m, n) · i(m0 −N/2 + m,n0 −N/2 + n) (1)

where m and n take integer values from the interval [0, N −
1]. Each image patch p(m,n) can be represented by a linear
combination of a set of M basis patches bi(m,n) [3]:

p(m, n) =
M∑

i=1

vibi(m,n) (2)

where v1, v2, ..., vM stand for the projections of the original
image patch on the basis patch, i.e. vi = 〈p(m,n), bi(m,n)〉.
A 2D representation of the image patches can be simplified
to a 1D representation, using lexicographic ordering [3]. This
implies that an image patch p(m,n) is reshaped into a vector
p, mapping all the elements from the image patch matrix to
the vector in a row-wise fashion. Decomposition of image
patches into a linear combination of basis patches can the be
expressed as follows:

p(t) =

M∑

i=1

vi(t)bi
= [b

1
b
2
...b

M
] · [v1(t)v2(t)vM (t)]

T (3)

where t represents the image patch index. If we denote B =
[b1b2...bM ] and v(t) = [v1v2...vM ]T , then equation (3) re-
duces to:

p(t) = Bv(t) (4)

v(t) = B−1p(t) = Ap(t) (5)

Thus, B = [b1b2...bM ]T represents an unknown mixing ma-
trix (analysis kernel) and A = [a1a2...aM ]T the unmixing
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matrix (synthesis kernel) [2]. This transform projects the ob-
served signal p(t) on a set of basis vectors. The aim is to esti-
mate a finite set of K < N2 basis vectors that will be capable
of capturing most of the input image properties and structure.
In the first stage of basis estimation the Principal Component
Analysis (PCA) is used for dimensionality reduction [2]. Af-
ter the input image patches p(t) are transformed to their ICA
domain representations vk(t), we can perform image fusion
in the ICA domain in the same manner as it is performed in
e.g. the wavelet domain. After the composite image vf (t) is
constructed in the ICA domain, we can move back to the spa-
tial domain, using the synthesis kernel A, and synthesise the
image if (x, y).

3. PROPOSED FUSION METHOD

3.1. Separated Training Sets

In the proposed method, images used for training of the ICA
bases are separated in two groups prior to the training process.
Namely, all IR training images are grouped into a separate
training subset, whereas all the visible training images consti-
tute the second training subset. Introduction of separate train-
ing subsets provides us with two sets of ICA bases. The first
ICA basis set is used to decompose the IR input image patches
vi(t) = Aipi(t) and the second subset to transform the visible
input image patches to ICA domain vv(t) = Avpv(t).

Separate ICA basis sets for decomposition of input im-
ages are more specifically trained to capture statistical prop-
erties of the specific modality of the input images (IR/visual).
This enables the proposed method to outperform the standard
method [3], in which images of both IR and visible modal-
ity are used for training which results in an ”average” ICA
bases set that is not able to take the full advantage of ICA
decomposition. Fig. 1 confirms that when two separate train-

Fig. 1. Impact of the number of patches on the subjective
quality of the fused images, image 1812, UN Camp sequence

ing sets are used, the subjective quality of the fused image
is increased considerably; e.g. fence detail is far more visi-
ble and person walking is brighter and less blurred. In Table
I, subjective impression is confirmed by values obtained by
Petrovic image fusion metric [4]. The metric is one of the
most widespread tools for evaluation of image fusion algo-
rithms. It uses the amount of edge information transferred
from the source image to the fused image to give an estima-
tion of the performance of a fusion algorithm [4]. It is clear
that significantly higher metric values are obtained using sep-
arate training sets. Table I also shows that performance of the
ICA fusion algorithm does not improve significantly when the
number of training patches exceeds 103. Thus, the number
of training patches has been fixed to 103 in order to make a
trade-off between performance and computational complex-
ity of the algorithm.

Table 1. Fusion performance measured by Petrovic metric,
the figures represent the mean value of the metric over 25
images, Octec sequence.

Fusion Number of ICA training patches

method 100 200 10
3

10
4 4·10

4

Standard ICA 0.472 0.533 0.581 0.588 0.592

Proposed ICA 0.320 0.355 0.396 0.406 0.406

3.2. The segmentation algorithm

Our experiments showed that important objects in the IR input
images (e.g. a person or a smaller object) are often masked by
textured high-energy background in the visual image. In this
case the important objects from the IR image become blurred
or, in extreme cases, completely masked. Therefore, we per-
form segmentation in the spatial domain and then fuse patches
from separate regions separately. This differs from the meth-
ods in [3, 5] where the fusion was performed on a more gen-
eral, pixel level. The quality of the segmentation algorithm
is of vital importance to the fusion process. An adapted ver-
sion of the combined morphological−spectral unsupervised
image segmentation algorithm is used, which is described in
[6], enabling it to handle multi-modal images.

The algorithm works in two stages. The first stage pro-
duces an initial segmentation by using both textured and non-
textured regions. The detail coefficients of the DT-CWT are
used to process texture. The gradient function is applied to
all levels and orientations of the DT-CWT coefficients and
up-sampled to be combined with the gradient of the intensity
information to give a perceptual gradient. The larger gradi-
ents indicate possible edge locations. The watershed trans-
form of the perceptual gradient gives an initial segmentation.
The second stage uses these primitive regions to produce a
graph representation of the image which is processed using a
spectral clustering technique.
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The method can use either intensity information or tex-
tural information or both to obtain the segmentation map.
This flexibility is useful for multi-modal fusion where some a
priori information of the sensor types is known. For example,
IR images tend to lack textural information with most features
having a similar intensity value throughout the region. There-
fore, we used an intensity only segmentation map, as it gives
better results than a texture based segmentation.

The segmentation can be performed either separately or
jointly. For separate segmentation, each of the input images
generates an independent segmentation map for each image.

S1 = σ(i1, D1), . . . , SN = σ(iN , DN ) (6)

where Dn represent detail coefficients of the DT-CWT used
in segmentation. Alternatively, information from all images
could be used to produce a joint segmentation map.

Sjoint = σ(i1 · · · iN , D1 · · ·DN ) (7)

In general, jointly segmented images work better for fusion.
This is because the segmentation map will contain a mini-
mum number of regions to represent all the features in the
scene most efficiently. A problem can occur for separately
segmented images, where different images have different fea-
tures or features which appear as slightly different sizes in
different modalities. Where regions partially overlap, if the
overlapped region is incorrectly dealt with, artefacts will be
introduced and the extra regions created to deal with the over-
lap will increase the time taken to fuse the images. After the

Fig. 2. Segmentation and region selection prior to fusion.
Top: IR input image (left), visible input image (right). Bot-
tom: Regions obtained by joint segmentation of input images
(left), image mask: white from IR, grey from visible (right).

images are jointly segmented it is essential to determine the
importance of regions in each of the input images. We have
decided to use the normalized Shannon entropy of a region as

the priority. Thus, the priority P (rtn
) is given as:

P (rtn
) =

1

|rtn
|

∑

∀θ,∀l,(x,y)∈rtn

d2
n(θ,l)(x, y) log d2

n(θ,l)(x, y)

(8)
with the convention 0 log(0) = 0, where |rtn

| is the size of
the region rtn

in input image n and dn(θ,l)(x, y) ∈ Dn(θ,l)

detail coefficients of the DT-CWT used in segmentation. Fi-
nally, a mask M is generated that determines which image
each region should come from in the fused image. An exam-
ple of the IR input image, visual input image, performed joint
segmentation and the image fusion mask is given in Fig. 2.

3.3. Nonlinear shrinkage of coefficients in ICA domain

However, in the case when the images to be fused and set of
training images are corrupted with noise, it is crucial to deter-
mine the ICA coefficients to be used in the reconstruction of
the fused image so that the noise transferred from input im-
ages into the fused output is minimized. Thus, we decided to
use an approach similar to image denoising algorithms in the
ICA domain [7] to reduce noise in the fused image.

Assume that we observe an N−dimensional vector x as:
x = s + n, where s is the vector of the original signal and
n is Gaussian white noise. The goal of signal denoising is to
find s = g(x) such that n is close to n in some well-defined
sense. The ICA algorithms we have described in Section 2 do
not include the presence of noise. In principle one could ap-
ply the ICA method to noisy data and assume that the method
would work as before, but for noisy images it is optimal to use
advanced methods, such as [7]. We use the modified version
of the algorithm in [7], summarized as following:
1. Use database of noiseless data z for training process, dif-
ferent from the images to be fused, but with similar statistical
properties. Use FastICA to get ICA transformation matrix B.
2. For each component si = bT

i z, estimate a density model
(usually supergaussian) and a nonlinear function gi. Essen-
tially gi represent a shrinkage function that is commonly used
in wavelet image processing [7].
3. Transform noisy vector x, to a sparse basis c = Wx.
4. Perform componentwise nonlinear processing ŝi = gi(ci).
5. Inverse transform, v̂ = W−1ŝ to get denoised image.

The density model for si that we used is a mixture of a
normal and the Laplacian density, p(si) = Ce(−as2

i
/2−b|si|)

where C is a normalizing constant. Parameters b and a can
be estimated from statistics (i.e., the mean and variance) of si

[7]. The nonlinear function that we used in the experiments
was g(x) = 1

1+σ2asign(x)max(0, |x| − bσ2), where σ is the
noise variance.

4. EXPERIMENTAL RESULTS

The proposed image fusion method was tested in a surveil-
lance scenario with two input images: infrared and visible.
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The images used in experiments are surveillance images from
TNO Human Factors and Octec Ltd., publicly available at the
Image Fusion web site. We compared the proposed method
with a simple averaging method, the contrast pyramid (CP)
method, ratio pyramid (RP) method and the dual-tree com-
plex wavelet transform (DT-CWT)[1]. CP, RP and DT-CWT
methods have been chosen for comparison because they have
been previously reported to obtain excellent performance in
multimodal image fusion [1, 4]. Before performing image fu-

Table 2. Fusion performance measured by Petrovic metric,
mean value of the metric over 25 images, Octec sequence.

Fusion Packet length (bytes)

method 1000 500 200 100 50 Ppl

DT-CWT 0.506 0.507 0.503 0.441 0.413

Ratio 0.415 0.415 0.416 0.375 0.358

Contrast 0.465 0.466 0.463 0.416 0.378 10
−3

Average 0.349 0.348 0.348 0.319 0.311

ICA 0.588 0.589 0.587 0.490 0.476

DT-CWT 0.451 0.414 0.351 0.298 0.211

Ratio 0.378 0.351 0.317 0.284 0.230

Contrast 0.419 0.391 0.330 0.275 0.196 10
−2

Average 0.322 0.294 0.285 0.267 0.229

ICA 0.512 0.452 0.410 0.344 0.266

DT-CWT 0.437 0.351 0.256 0.216 0.169

Ratio 0.385 0.306 0.249 0.225 0.186

Contrast 0.414 0.335 0.242 0.200 0.155 10
−1

Average 0.319 0.262 0.243 0.221 0.200

ICA 0.458 0.370 0.260 0.257 0.210

sion using the proposed algorithm, the ICA bases were trained
using a set of images with content comparable to the test set.
The number of rectangular patches (N = 8) used for train-
ing was 1000, randomly selected from the training set. Ob-
tained ICA coefficients are combined using the principle de-
scribed in Section 3, while reconstruction of the fused image
was done using optimisation based on the Petrovic metric [4].

In order to evaluate performance of the image fusion algo-
rithms in the sensor network environment, input images were
first compressed using JPEG 2000. Sensor network transmis-
sion was simulated by dividing the image into data packets
which were transmitted at a given probability of packet loss
(Ppl). After the recovered packets at the receiver side were
recomposed into images, these images were used as inputs
for the fusion algorithms. The performance of methods was
measured using the Petrovic metric and the results are given
in Table 2 and Fig. 3. Results in Table 2 and subjective qual-
ity of the fused images in Fig. 3 show that the proposed al-
gorithms performs significantly better than the other state-of-
the-art methods in the sensor network environment, for all
data packet lengths and probabilities of packet loss.

Fig. 3. Subjective fusion results. Top: input IR image (left),
input visible image (right). Middle: fused image using aver-
aging (left) and ratio pyramid (right). Bottom: fused image
using DT-CWT (left) and the proposed ICA method (right)
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