-

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by Explore Bristol Research

-% University of
OPEN (o) ACCESS BRISTOL

O'Callaghan, R. J., & Bull, D. R. (2002). A scale invariant distance measure
for texture retrieval. In 2002 International Conference on lmage Processing.
(Vol. 1, pp. 424 - 428). Institute of Electrical and Electronics Engineers
(IEEE). 10.1109/1CIP.2002.1038051

Peer reviewed version

Link to published version (if available):
10.1109/1CIP.2002.1038051

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research isadigital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

* Your contact details
* Bibliographic details for the item, including a URL
» An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.


https://core.ac.uk/display/29025744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ICIP.2002.1038051
http://research-information.bristol.ac.uk/en/publications/a-scale-invariant-distance-measure-for-texture-retrieval(0846b452-8837-497d-9e52-a9ce26cbf920).html
http://research-information.bristol.ac.uk/en/publications/a-scale-invariant-distance-measure-for-texture-retrieval(0846b452-8837-497d-9e52-a9ce26cbf920).html

A SCALE INVARIANT DISTANCE MEASURE FOR TEXTURE RETRIEVAL
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ABSTRACT

We propose & similarity measure between two textures
based on moments of the Fourier magnitude spectrum.
The resulting distance is robust to changes in scale as well
as to spatial shifts and grey-scale transforms of the texture
samples. This type of invariant distance has applications
to content-based image retrieval and classification tasks.
We test the performance of the algorithm in a retrieval
scenario using texture patches from the Brodatz album.
The results indicate that the distance measure emulates
human similarity perception in comparing textures.

1. INTRODUCTION

The problems of texture analysis and classification are
well-studied ones in the fields of computer vision and
image processing, This is not surprising, as there is a
wealth of evidence to show that the human visual system is
able to exploit textural information for a variety of tasks,
from pattern recognition to motion perception. As a result,
representations of texture have become, along with colour
statistics, almost ubiquitous content descriptors in image
and video retrieval systems.

Of course, analysis of natural textures is not a
straightforward task. Even if we restrict our set of textures
to two-dimensional intensity patterns (i.e. grey-scale
images of textured flat surfaces, viewed from a constant
angle) we must still contend with variations caused by
rotation, scaling and grey-scale transform. Much of the
work in the literature applies to rotationally invariant
texture analysis, but considerably less to scale invariance.
This is surprising, since all naturally imaged textures are
subject to scale transformation, due to distance from the
camera (or eye), as well as optical {or digital) zooming.
On the other hand, many such textures are either
intrinsically isotropic or are predominantly viewed in a
characteristic  orientation  (e.g.  brick  texture},
Additionally, recent experimental results have shown that
the human visual system can utilise scale information in

0-7803-7622-6/02/$17.00 ©2002 IEEE

1-425

the perception of visual expansion, without estimation of
optic flow [1]. This seems to imply that we have both
mechanisms that are sensitive and insensitive to texture
scaling (since obviously we recognise similar textures at
varying distances) and use both in impertant perceptual
functions. This provides further motivation for the
development of computer vision algorithms dealing with
texture scale.

Of the existing work dealing with scale
invariance, various theoretical approaches have included
Fourier-Mellin type transforms [2], wavelet based features
[3], random fields [4] and the use of fractal dimension [5].
In this work, we adopt a Fourier transform based
approach. It is widely accepted that the human visual
system performs some Fourier-type analysis on optical
input. It has also been observed that we are unable to
discriminate between textures that agree in their second-
order statistics [6]. For two-tone textures, this means we
cannot distinguish between patterns having identical
power spectra, Two computational conveniences are also
afforded by Fourier magnitude spectra: there is a relatively
simple relationship under scaling and there is no need for
resampling, as is the case with log-polar spectra.
Specifically given a  Fourier transform  pair,
f{x, ¥y} © F(u.@) we have:

flaxay) © L F.%) (1.1)

2. METHOD

A moment-based approach was used to describe the
magnitude spectra, inspired by previous work by Taubin
and Cooper [7] on geometric invariants for shape
recognition. This theory has already been successfully
applied for illumination-invariant colour object
recognition, by us and others [8], [9]. A similar, moment
based approach was used by Yoshida and Wu [10] for
rotation-scaling invariant texture classification. This work
differs from theirs, in that rather than develop scale-
invariant descriptors of a single texture, we define a scale-
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invariant distance measure between a pair of textures. In
doing so, we attempt to discard as little information as
possible about the frequency distributions. The problem is
posed as a texture matching/retrieval task, rather than as a
classification task, although the invariant distance could be
used for minimum-distance type classification, given a
suitable set of exemplars of each class.

Firstly we will introduce, without discussion, the
Taubin and Cooper moment matrices [7]. In the theory,
centred moments were developed. However, since we do
not require invariance to translation of the spectrum {only
scaling), our moments are not centred. The two matrices
used in the algorithm are defined on the Fourier magnitude
spectrum, F, as follows:

i IF(; o) [[ Xoa0.0) Fo.o) dvde (21)

where |F(v,w)| = J F(v, @) dvda

Xy @)

v a)z

vF va)] @.2)

uy vsy uzmy
X[Z.Z] (U,m) = v y v &)2 vw/r— (23)
vzcvy va® /5 @ /

The eigenvalues of the matrices My, , are Euclidean

invariants {7]. which will allow straightforward
computation of rotation invariant texture features. Within
the scope of this paper, however, we will deal purely with
scaling. Under a scalar transformation, &, these matrices
are related by

MEn,nI = anM[n,n] {24)

Our strategy is to estimate & as follows, where m is the
vector formed from the elements of M:

2.5)

The moment matrices will be adjusted by this value, a,
giving features that are invariant to the particular scaling
transformation.

3. ALGORITHM

In the current algorithmic implementation, the mean is
removed from each texture sample at the outset, followed
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Figure 1. Addition of detail: the upper FFT is zoomed out
relative to the lower by a factor of two.

by multiplication with a Gaussian window. The former
operation provides invariance to grey-scale shifts, while
the latter minimises distortion in the spectrum due to the
finite image size. Treating the resulting frequency spectra
as sampled versions of continuous functions, the integrals
of equatien 2.1 are thus calculated as discrete summations.

A vparticular problem arises with the frequency
spectra resulting from real zooming operations. As
illustrated in figure 1, compression of the spectrum for the
“close-up” texture results in new high-frequency
components. This corresponds to the introduction of
added detail in the zoomed image, not present in the larger
scale original. In comparing the spectra of the two texture
images, the simple alpha transformation that we have
assumed applies only to that segment of the spectrum
present in both cases. We need to discount the influence
of the detail, since it acts as a confounding factor, by
changing the region of integration of equation 2.1 in the
case of the zoomed image. This is critical in the context of
the moment matrices, which are more sensitive to noise at
higher frequencies (increasingly so for higher order
moments).

To this end, we propose to truncate the “lower
frequency” spectrum based on an estimate of the scaling
factor. We assume that the new components at higher
frequencies are small in magnitude compared to the
“common” section of the spectrum. If this were untrue, it
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Figure 2, Example retrieval result: relevant results labelied “1".

would mean that a zoomed version of the image would
have a significantly different frequency distribution - and
would therefore likely be perceived as a dissimitar texture
by the human visual system. Thus even when the
assumption breaks down, it still captures the spirit of
human texture similarity perception. To determine which
of the textures is the “lower frequency”, or “zoomed in"
image, we examine those frequency components above a
given magnitude-threshold, as follows:

zF(v,w) Joi+at

= 2@l Pw)>T (3.1

ZF(v,w)

vo| Flu.e)>T

Where the threshold, T, is specified as a percentage of the
peak spectral magnitude. The texture with the smaller

value of f is identified as the lower-frequency image and
the truncation ratio is set as:

ratio = f‘% (3.2)
f, high

Equation (3.2) can be interpreted as the ratio of the
average radial frequencies. Having estimated this ratio,
the lower-frequency distribution is truncated and the
moment matrices, My, |, and M, ;, calculated for each

texture. By truncating the spectrum of the zoomed-in
texture image, all frequency components common to both
textures are retained. In the current implementation,
truncation is radial - i.e. we retain a disk in the frequency
plane in each case. Additionally, moments are calculated
separately for the two unique quadrants of the FFT, to
increase discrimination.
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In order to generate the invariant features, the
moments of the lower-frequency texture are corrected
according to equations (2.4) and (2.5). The Euclidean
distance between the moment vectors, mpz. is the

distance measure used in our experiment.

Note that, while additional frequency components
exist in the spectrum of the zoomed image, the converse
effect (from the uncertainty principle and symmetry of the
Fourier Transform) is that the zoomed-out image contains
extra components spatially. This is perhaps the more
obvious effect, since zooming in, by definition, eliminates
the periphery. In any case, the effect on the spectrum of
the zoomed-out image is to sharpen the peaks (i.e. the
frequency resolution is increased). This occurs in figure 1
where, contrary to equation 1.1, the peaks of the upper
FFT are not twice as wide as those of the lower.

For equation 1.1 to be satisfied precisely. we
should truncate the zoomed-out image in the spatial
domain, just as we have truncated the zoomed image in the
frequency domain. In practice however, there is little to
be gained from this enhancement to the algorithm, as the
moment-based approach is inherently robust to some
“peak-spreading” in the FFT.

4. EXPERIMENTAL RESULTS

We have tested the distance measure on a set of 112
textures from the Brodatz catalogue [11]. For each of the
textures, two non-overlapping regions were used to
generate patches at three different scales, giving a total of
6 examples of each texture, or 672 test images in all. The
scaled patches were all generated by “zooming out™ from a
region of the original texture, so as to correctly mimic the
effects of zooming in the real world. Starting with a
square region of size I/, we resize by a factor of «,
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where @<1. By allowing only these decimation
operations, rather than interpolation (zocming-in, or
a >1) we ensure that the "detail” frequency components
are indeed present in the zoomed images. The need for
this restriction is clear from figure 1: the upper FFT may
be deduced from the lower (assuming the texture is
spatially homogenous), but not vice versa. Artificial
zoom-in cannot generate the detail information.

Tests were conducted using the first 100 of the
672 images as queries to evaluate the accuracy of the scale
invariant distance. For each query image, the other 671
images were ranked according to the distance. The
average precision vs. recall characteristic, over 100
queries, is given in table 1.

hes (&
recall = #relevant matches (k) 33)
total relevant images
precision = #relevantr:atches 3] (3.4)
where k is the rank index,

This is a very demanding test of the algorithm’s
performance.  Although many of the 112 textures are
perceptually similar, a “relevant” image, in terms of the
precision statistics, is defined as one of the 5 other samples
of the query texture. Therefore, no credit is given for
finding what may be, to the human eye, very closely
matching textures. Since such “credible matches” are a
subjective matter, it is difficult to account for them
statistically. Figure 2 shows a representative test result.
The query image is in the upper left, with the retrieved
samples ranked left to right, top to bottorn. It can be seen
that a number of credibly similar textures have been
ranked above relevant patches, degrading the final
precision value (to ¥;=0.45). In light of this, perhaps

table 1 is an unfair representation. Nonetheless, the final
precision value of 0.28 indicates that, on average, all five
target-samples are found within the top 18 ranks - that is,
within the top 3% of the full set.

For comparison, the experiment was repeated
using the exact value of the scaling as the truncation ratio
in each case. The corresponding results, also given in
table 1, demonstrate the potential to improve accuracy if
better truncation estimates can be generated.

5. CONCLUSION

We have defined a scale-invariant distance measure for
texture recognition applications. This is achieved without
the need for log-polar resampling and is based on a
general theory of moment invariants. Thus it will lend
itself to the calculation of other invariants (e.g. rotation).
To increase discrimination, it is possible to include higher-
order moments in the calculation. Further work will also
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include the extension of the techniques described here to
texture classification as well as the investigation of more
reliable methods to estimate the truncation ratic of
equation (3.2) or to eliminate dependency on this
parameter altogether. In its current form, the distance
measure is also invariant to spatial shifts and grey-scale
transform of the texture samples.

Recall 02 |04 |06 108 [10
Precision 0.78 10.63 |0.44 |0.36 |0.28
Prec. (Perfect Truncation) |0.82 [0.72 |0.56 [0.48 [0.41

Table 1. Precision vs. recall statistics averaged over 100 tests.
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