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ARSTRAC'I 

This lisper develops an efficient p " m c  multi-resolution region 
tracking algorithm wtuch is applied to the task of objcct rcplacc- 
men1 in video seguences. The tracker relics on gradient-based 
techniques to provide efticienr estiniation of thc target location and 
pose in each lranie. The tracking algorithm inqiroves upon similar 
elticienl parametric algorithms by increasing the distance an oh- 
ject can mnve from lranie to frame. Exfrrimental results provide 
clcar evidence or the improved perlorniance over existing region 
tracking. 

Tne parameters that estimate the pose and location of the tar- 
get are used to initialise the object replacement algorithm. The 
object replacenient uses the pose estimates with texture mapping 
techniques to perform image warping of an arbitrary sized replace- 
nieiif image. The location estimates are used to accurately insert 
the replacement image into the current frame. 

1. INTRODUCTION 

We introduce a method for the efficient (real-time) tracking 
and replacement of a planar surface in a video sequence. 
To enable the replacement of the surface it is necessary to 
use a parametric motion model for the tracking task. These 
parameters can theti be used to correctly introduce the new 
surface. 

The field of work referred to as augmented reality con- 
cerns the combining of computer generated images (CGI) 
with real world images. Work in this area tends to con- 
centrate on inserting CGI objects into real world video [l] 
whilst some look at both 2D and 3D object replacement [ 2 ] .  
This paper looks at the task of surface replacement. 

Common approaches to tracking include template match- 
ing in both spatial and frequency domains, differential tech- 
niques and energy based methods. In comparison gradient- 
based methods have been found to perform well [3]. 

Moving objects and/or a moving camera can cause 
changes to the apparent geomehy of objects throughout a 
video sequence. Methods for tracking these changes in- 
clude sum-of-squared difference (SSD) based approaches 
[41. These approaches work satisfactorily when the motion 

model is simple or of low diineiisioii such as pure trans- 
lation but heaime cotiiputationally complex with higher- 
dimensional models. Allemativcly. if frequency domain 
tcchiiques are used. they often fail to cope with higher di- 
tiicnsional models hecause vf a lack of scale invariance. To 
allow accurate object replacement it is necessary t v  have 
parametric estimates for the tnotioii. so scale iuvariauce is 
uot a viable solution here. 

Some efficient SSD-based methods makc use of eigen- 
space representation whilst other techniques tnakc use of 
gradient itifonnation. I n  151 an eigeiispace reprcseiitation 
is combined with Levenburg-Marquandt optimisation tech- 
niques whilst [6] uses the reference template gradients with 
a Newton-Kaphson style optimisation. Both of these algo- 
rithms are efficient but hoth approaches can only track the 
target over small displacements. 

The authors extend the work of [61 to provide the ability 
to track faster object motion through the introduction of a 
multi-resolution approach (7, 81. The multi-resolution rep- 
resentation used is the Gaussian pyramid . The output from 
the algorithm is then used for texture mapping to replace 
target regions in a video sequence. 

The paper first explains the efficient gradient-based ap- 
proach to region tracking in Section 2. Section 3 introduces 
the multi-resolution extension to the efficient gradient-based 
approach developed by the authors. Section 4 describes the 
process of the parameter estimation and the application of 
the parameters to the texture mapping of the replacement 
object. Results are presented in Section 5 and conclusions 
are presented in Section 6. 

2. EFFICIENT GRADIENT-RASED REGION 
TRACKING 

We can denote the intensity, I(x,  t ) ,  at the location x = 
(z,y)' in an image acquired at time t. We can then define 
the spatial gradient at that location and time as VJ(x,t). 
We can model the relative motion which occurs between 
the camera and the target object using a parametric mo- 
tion model f (x;  p)  where the motioii parameter vector p 

0-7803-8554-3/01/$20.00 02004 EEE. 1013 

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 12, 2009 at 09:37 from IEEE Xplore.  Restrictions apply.

http://paul.brasncttebristol.ac.uk


is given by p = ( p i , p P ,  p,,.) and f is dirierentiahle 
in both p and x.  The task of tracking an object invulves 
the computing of p at time t .  The parameters fur the mo- 
tion model in the reference kame are denoted pu. A mr- 
ycr reyiori is defined as the set of N image locations 'R = 
(q,z>, . . . , x ~ ) ~ .  The first lrainc in the sequence is de- 
fined as the refererice irrmge and the refererice terrip/afe can 
he described as I(p0, (0) if we define 

(1 )  

as the brightness values (if the target region at time t .  
If we make use 01- the itriaye ~OJISIOJIC?. O S S I I J J I ~ I ~ U J ~  191 

and assume that the inotion model cwnplctcly describes 
chaiges to the target region thcii tracking becomes the min- 
iinisatioii ol. the difference bctweeii the reference target a id  
the target region in the currelit frame. This is expressed i n  
the lullnwing least squares ohjective fuuctioii 

I ( P , t )  = (Uf(=l,P),t):.  . . , I ( f ( X N , P ) ,  t ) )T  

O(p)  = C ( I ( f ( x ; p ) , t )  - I (s , tu)) '  (2) 

This ca1 be reworked in to the task of minimising the objec- 
tive function 

(3) 

ILR 

= IlI(P(t) + ap, t + 7) - I ( ~ O D ~ t o ) 1 l 2  

Solving the set of equations VO = 0 yields the solution 

dp= - ( A f t M ) - ' M t [ l ( / l , t + T )  -I(po,tu)] (4) 

Where A f  is the Jacobian matrix of the target regioii to be 
tracked. This result holds provided that the matrix M T M  
evaluated at (p,  t )  has full rank. We can further define an 
ermr vector 

e ( t + T )  = I ( p ( t ) , t + ~ )  - I ( ~ , t o )  ( 5 )  

Combining Equations (4) and (5)  we obtain an expression 
for the change in motion parameters from the previous frame 

6p = - (MTM)-'MTe(t  + T )  (6) 

Equation (6) can he restated as the new motion parameters, 
as in Equation (7) 

p(t + T )  p(t) - (MTM)- 'MTe( t  + 7) (7) 

To implement an efficient algorithm the online. computation 
can be reduced with the following substitution 

Where Mu is the Jacobian matrix of the target region in 
the reference frame and is dependent upon the motion 
model, we describe the details for the affine motion model 
in Section 3.2. 

3. EFFICIENT MULTI-RESOLUTION REGION 
TRACKING 

It is desirable to combine the improved range o l  motion prw 
vidcd by the lower resolution processing with the higher ac- 
curacy of the higher resolution processing. These r equ in  
ments lead to the following proposal for a multi-resolution 
algorithm based on the efficient algorithm described above. 
The initial track occurs at a low resolution and then the re- 
sults are refined at highcr resolutions until the desired accu- 
racy is achieved. We make use of a G ~ I I S S ~ ~ J I  pyramid as 
the stmcrure fnr this coarse-to-line processing. 

3.1. Tracking Algorithm 

As part n I  the eilicient ii~iplciiicntatioii the algorithm is split 
into oflliuc eid iinline algorithms. both descrihcd below. 

Algorithm: Offline Sragc 
I Obtain target region froin the reference frame: 
z Consuuct the Gaussian pyramid for'thc reference 

frame. with the level in the pyramid defined by 1.  
where 1 <= L: 

J Compute  MU,^ and I = Af&M,,,i: 

foreach FrOnre t Seqirerice do 
1 Generate a Gaussiaii pyramid for the current 

frame; 
rooreach I <= L do 

2 

3 Compute e i ( t  + T ) ;  

4 

Rectify the current frame using the motion 
parameters p f ( t ) ;  

Solve CTAlCl = CThlo,[et( t  + T )  for 6pt 
where C[ is evaluated at p f ( t ) ;  

if 1 = 1 then 

else 

end 

5 P l ( t + T )  = P ? + s W ;  

6 Compute &(t + 7 ) ;  

7 Compute ( t ) ;  

end 
8 p(t + T )  = pi(t + 7); 

end 

During processing of the Gaussian pyramid in the on- 
line stage (steps 2-7) we proceed from the lowest level ( L )  
up to the highest level (1). In Step 6 each new frame is 
initialised with the scale corrected parameters from the pre- 
vious kame, &(t  + T ) ,  Step I scale corrects the motion 
parameters for propagation through the levels of the pyra- 
mid. 
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3.2. AKne Motion Model 

The implementation of the algorithm proposed here makes 
use of an affine transform for the motion modcl. 11 is pos- 
sible to implement other linear models such as pure transla- 
tion or translation, rotation and scale as well as some non- 
linear motion models that can be expressed as either 
y = j'(:c) or :c = g ( g ) [ 6 ] .  "he aifinc moiion model can be 
expressed as 

Wherc parameters of the motion model are given by 
( 1 1 1 ,  'til, a, b,  c, ~ 1 ) ~ .  From this wc ca~ i  obtain 

= 

1 0 0 A-' 1 
Since 
ear system as 

is invertible we can express the solutioii to the lul- 

bpi= -( ; ' ) T ( n ~ ~ l n i i , , , ) - ' n ~ ~ l e ( t  + T )  (12) 

We can therefore coinpute the factor ( M ~ l M o , l ) - ' M ~ l  
offline thereby reducing the online computation. This leaves 
the online computation at each level as n N-vector inner 
products and n n-vector inner products. The Gaussian pyra- 
mid representation means that the number of pixels in the 
target region, N (the number of pixels), is reduced by a fac- 
tor of four in each extra layer we introduce. So, for the 
multi-resolution tracking algorithm this tends to I i n  N- 
vector inner products and Ln Ti-vector inner pmducts. 

33. Track Quality 

A measure of trackbig qua& is introduced to monitor the 
performance of the tracker. The quality is defined as the nor- 
malised SSD residual for the frame at the highest resolution 
in the Gaussian pyramid. If this residual is above a thresh- 
old, a further iteration is started with the output motion pa- 
rameters passed back into the lowest level of the pyramid. 
If the residual has not dropped below the threshold after 3 
iterations then the object is declared lost. 

4. SURFACE REPLACEMENT 

After tracking we replace the tracked object with the re- 
placement image (which is initially arbitrarily sized). The 
required result is exemplified by Figure 1. The offline stage 
here involves resizing the replacement region to the size of 

(b) Augmenled Frame 

Fig. 1. A frame Irom the Stefati sequence showing the fraine 
before and after the augmentation proceascs 

the target region in the reference i'rainc. This is done using 
hi-cubic inlcrpolalioii. 

Once the target region in the current frarnc is localcd we 
use texture mapping techniques to perfonn image warping 
011 the replaceinciit region using the pose parameters ob- 
tained lroin the tracking algorithm. A low-pass tilter ap- 
plied to the edge of the inserted region iinprovcs the visual 
appcaraicc. 

5. RESULTS 

, .  ....: . ! - .  . .. 
.-: . . 

(a) Frame 1 (b) Frame 20 

i / I  

(d) Frame 70 (c) Frame 50 

Fig. 2. A section from the Stefan sequence with the score 
board tracked and replaced 

The results of testing the tracker with various sequences 
shows promising performance. The general non-iterative 
scheme is able to track relative target motion between frames 
of up to about 8 pixels per frame. Whilst the iterating (Sec- 
tion 3.3) scheme is able to cope with relative target motion 
of around 10 pixels per frame. Results for tests of the com- 
bined tracking-replacement on the Stefan sequence can be 
seen in Figure 2. The target region m the last frame has 
undergone a motion of 10 pixels from the previous frame. 

The accuracy of the tracker is critical to the performance 
of the combined scheme so we investigate the tracking ac- 
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Pyramid Levels Target Region 
Sequence 1 I 2 I 3 1 4 Size 1 Tutal Pixels 

1 01 I 1 60 x 54 I 3240 
~ 

sequence 9 we can see that the performam is better with 
larger target regions. 

6. CONCLUSION 8i FUTURE WORK 

We have dcveloped here an efficient algorithm for tracking 
objects in video sequences a id  have then applied this to the 
task of surface replacctncnt using texture mapping. The re- 
sults in  Section 5 arc cvidencc h r  the impmvcments pro- 

xdk i l cd  Tracking. O=Partially Successlul Tracking 

mum. However. we also see that two. three and four levels 
give comparable perlonnance. W i h  five levels the perfor- 
marice again s t a m  to deteriorate because the target region 

Sequsnse 1 

.-.- SequenceP 

Fig. 3. Graph comparing the performance of the algorithm 
with &Berent numben of levels in the Gaussian pyramid 

curacy further. The results from nine different sequences 
of varying length between 144 frames and 220 frames are 
shown in Table 1.  The tests were carried out to investigate 
the tracker‘s behavior when a different iiuinber of levels are 
used in the Gaussian pyramid. The table shows when the 
algorithms fail to track the object (x), when the algorithm 
tracks successfully for pan of the sequence (0) and all oth- 
ers are successful uacks. Having one level in the pyramid is 
equivalent to the original single resolution algorithm [6]. It 
can be seen that without the multi-resolution approach the 
tracker fails to track through a complete sequence success- 
fully. Whereas with three levels in the pyramid the objects 
are tracked successfully in all hut one sequence. Sequences 
5-7 show that we can not indefinitely add more levels. The 
reason behind this is that down-sampling by a factor of two 
repetitively leads to a target region that is too small to pro- 
vide gradient information and the higher levels are unable 
to correct the error introduced at the lower resolution. 

We use the mean SSD residual to investigate the perfor- 
mance of the algorithm in more detail through sequences 
1.3 and 9, the residuals can be seen in Figure 3. We see that 
the residual for one pyramid level is very high, this is due 

vided by the authors’ multi-resolution approach compared 
IO similar algorilluns. 

Funher iuvestigalion could include thc benefits of dif- 
ferent motion models. occlusion haidling aid extractioii of 
illumination paramctcrs in order tu irnprove the appearance 
of the replaced object aid the benefit of dyxainically adapt- 
big the levels depending on the speed of object mution. 
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