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ABSTRACT

This paper presents a new statistical image segmentation al-
gorithm, in which the texture features are modeled by Sym-
metric Alpha-Stable (SaS) distributions. These features are
efficiently combined with the dominant color feature to per-
form automatic segmentation. First, the image is roughly seg-
mented into textured and nontextured regions using the Dual-
Tree Complex Wavelet Transform (DT-CWT) with the sub-
band coefficients modeled as SaS random variables. A mul-
tiscale segmentation is then applied to the resulting regions,
according to the local texture characteristics. Finally, a novel
statistical region merging algorithm is introduced by measur-
ing the Kullback-Leibler distance (KLD) between estimated
SaS models for the neighboring segments. Experiments show
that our algorithm achieves superior segmentation results in
comparison with existing state-of-the-art image segmentation
algorithms.

Index Terms— multiscale image segmentation, statistical
modeling, wavelet transform, SaS distributions, KLD

1. INTRODUCTION

Image segmentation is a fundamental problem in image pro-
cessing and analysis. It provides a partitioning of the image
in regions that should represent meaningful objects. In recent
years, many authors have applied statistical techniques com-
bined with wavelet transform for image segmentation [1][2].
These approaches have improved the segmentation results of
different image modalities. In previous work [3], we have
proposed a multiscale image segmentation algorithm based
on dominant color and homogeneous texture features that are
efficiently combined to perform the automatic segmentation.
This paper presents alternative approaches to the texture fea-
ture extraction and the region merging components of the al-
gorithm in [3]. The texture feature extraction is improved
through modeling of the marginal distribution of wavelet co-
efficients via symmetric alpha-stable distributions, while the
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region merging is based on the Kullback-Leibler distance as
similarity metric between two neighboring segments.

Recently, Achim et al.[4] have shown that successful sta-
tistical image processing algorithms can be developed if they
take into consideration the actual heavy-tailed behavior of
most real life signals. Specifically, they have shown that wave-
let decomposition coefficients of images are best modeled by
symmetric alpha-stable distributions, a family of heavy-tailed
densities. In our work, the texture segmentation process in-
tegrates the Dual-Tree Complex Wavelet Transform [5] and
alpha-stable statistical modeling [4] to characterize wavelet
coefficients of natural images. The former provides near shift
invariance and good directional selectivity compared to the
standard wavelet transform, while the later has been shown
to be a good approximation for the marginal density of the
coefficients at a particular subband. In the region merging
stage, the segment similarity is measured by the Kullback-
Leibler distance between two SaS models corresponding to
the adjacent segments. The key to the success of the proposed
algorithm is that the statistical modeling techniques and low-
level features of color and texture are integrated into a single
image segmentation framework to achieve precise and robust
segmentation.

The structure of the paper is as follows: the texture seg-
mentation using DT-CWT and SasS is described in Section 2.
The multiscale image segmentation algorithm is discussed in
Section 3. Our proposed statistical region merging approach
and experimental results are presented in Section 4 and Sec-
tion 5 respectively. Finally, conclusions are summarized in
Section 6.

2. TEXTURE SEGMENTATION USING DT-CWT
AND SaS

Statistical modeling is much easier to perform in a suitable
transform space where simple models with a small number of
parameters can describe the data, rather than on the original
image pixel values. Wavelets have emerged as an effective
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tool to analyze texture information as they provide a natural
partition of the image spectrum into multiscale and oriented
subbands. In this work,we use a three-scale DT-CWT [5] with
six orientations, which is able to provide approximate shift
invariance and directionally selective filters while preserving
the usual properties of perfect reconstruction and computa-
tional efficiency. The marginal distribution of the subband
coefficients is well represented by adaptively varying two pa-
rameters of SaS distributions. SaS distributions are best de-
fined by their characteristic functions due to lack of a compact
analytical expression for their probability density function:

@(w) = exp(jow — y|w|*) )

where a(0 < a < 2) is the characteristic exponent, §(—oo <
J < 00) is the location parameter, and y(y > 0) is the disper-
sion of the distribution, similar to the variance of the Gaussian
distribution. Since our further developments are in the frame-
work of wavelet analysis, in the following we will assume that
0 = 0. Parameters « and +y can be estimated through the ap-
proach proposed in [6]. In our work, the above estimation is
implemented in a square-shaped neighborhood of size 7 x 7
around each reference coefficient. Therefore, the texture fea-
ture value T'(z, y) at the pixel location (z, y) is defined as:

T(J,',y) = {az(x,y),%(a:,y)} i = 1a2737 tey 18 (2)

where i is the index of it" subband.

In order to obtain a uniform characterization of texture,
median filtering is employed on T'(z, y) within each subband
to filter out the texture associated with transition between re-
gions. Finally, a two-cluster K-means algorithm is used to
classify the pixels to textured and non-textured regions with
the high values of T'(z,y) assigned to textured regions and
low values assigned to non-textured regions. A pixel is then
classified as textured if the proportion of the number of the
subbands belonging to the textured region is above a thresh-
old P. In our experiments, a suggested value for the thresh-
old is P = 0.5 for the color images. Compared with [3],
the threshold can be adjusted to the type of the images. This
property is useful for the proposed algorithm which can han-
dle not only natural images, but also multimodal images. In
Fig.1, we compare the proposed approach with simple meth-
ods that only use DT-CWT or Gabor coefficients as in [3].
From the figure it can be seen that the new approach provides
more accurate texture segmentation with smoother contours.

3. MULTISCALE IMAGE SEGMENTATION

The textured and nontextured regions are further segmented
into relatively small and homogeneous regions while retain-
ing the boundaries between the two regions. The dominant
colors are first extracted based on Peer Group Filtering (PGF)
[7] and the Generalized Lloyd Algorithm [8]. Then, the ISEG

=

- -
(© (d)

Fig. 1. Texture segmentation (a) Original image. (b) Texture

map using SasS. (c) Texture map using DT-CWT. (d) Texture

map using Gabor decomposition. White regions correspond

textured regions, and black regions correspond nontextured
regions.

algorithm proposed by Deng et al. in [7] is used to mini-
mize the cost associated with partitioning an image at dif-
ferent scales. A bigger window size is used for high scales,
which are useful for detecting texture boundaries, while lower
scales are employed in order to localize the intensity of color
edges. It is reasonable to apply the lower scales to the nontex-
tured region, which has a more or less homogeneous texture,
while higher scales are adopted for the textured region to find
the texture boundaries. In contrast with JSEG, which doesn’t
take into account the local texture difference between the im-
age regions, the strength of this approach is that we are able to
apply the multiscale segmentation simultaneously to the same
image according to the local texture characteristics.

However, the current boundary locations between textured
and nontextured regions are not the actual boundaries due to
the fact that K-means clustering can only segment the image
into rough regions. Moveover, multiscale segmentation pro-
vides accurate results only within the textured and nontex-
tured regions. Consequently, a boundary refinement step is
employed to adjust the boundaries between the two regions.
A pixel is assigned to the neighbor class that has the minimum
D value using the following function:

D = Dist(C°,C") + a(S: — D) + b(Si — D) (3)

Where Dist refers to the Euclidean distance measure, C° and
C' are the dominant color vectors of the current pixel and its
ith neighbor segment, S and S} are the numbers of 4- and
8-neighbor pixels belonging to the ith segment, while D% and
D} are the numbers of 4- and 8-neighbor pixels belonging to
the different classes of the i*" segment. a and b represent the
strength of the spatial constraint. Specifically, as @ and b in-
crease, a pixel is more likely to belong to the class to which
many of its neighbors belong. Thus region boundary smooth-
ness is achieved. The influence of a and b on the boundary
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(a) (b) (c)
Fig. 2. Boundary refinement results (a) a = 0.8, = 0.0. (b)
a=0.0,b=0.8.(c)a=1.0,b=0.8.

refinement procedure is shown in Fig.2. The result in Fig.2(c)
that uses higher values of a and b has smoother boundaries
compared with Fig.2(a) and 2(b).

4. STATISTICAL REGION MERGING

In general, the result of applying the algorithm described in
the previous sections leads to over-segmentation. A statisti-
cal region merging method is implemented by using SaS dis-
tributions to appropriately model wavelet coefficients within
the segmented regions. In this work, the regions are classi-
fied into two categories. The segments with more than 80%
of their pixels belonging to the nontextured areas are catego-
rized as nontextured segments, and the remaining segments
are classified as textured segments. Therefore, segmented re-
gions are considered individually rather than globally.

A corresponding merging criterion is provided for each
category. The main difference lies in the way of feature ex-
traction in the regions. Nontextured segments are merged
based on their dominant color similarity. To achieve this,
the Euclidean distance of the color histograms extracted from
the neighboring nontextured segments is calculated. For tex-
tured segments, region similarity is measured using statisti-
cal model parameters followed by computing the Kullback-
Leibler distance (KLD).

In [9], the authors introduced a statistical framework for
texture image retrieval where the marginal density of coeffi-
cients is approximated by symmetric a-stable distributions,
and texture similarity is measured by means of the Kullback-
Leibler distance between model parameters. Inspired by their
work, we model subband complex wavelet coefficients in the
textured regions independently using SaS densities, where
model parameters can be obtained through the method ad-
dressed in [6]. Therefore, the characteristics of the region can
be completely defined via two parameters « and . There
is no closed-form expression for the KLD between two gen-
eral SasS distributions, which are not Cauchy or Gaussian. By
applying the KLD on the normalized version of the SaS char-
acteristic function, we expect to obtain good similarity mea-
surement. The KLD between two adjacent textured segments

(d) (e)
Fig. 3. Region merging results (a) Result of the multiscale
segmentation step. (b) Region merging using KLD. (c) Re-
gion merging using Fuclidean distance. (d) Final merging
result using KLD. (e) Final merging result using Euclidean
distance.

is given by:
. ] aj+1
KED(srs) = L3 (e - L 2
$1,82) = — n(—=)—- — :
1,92 18 4 cj aj a32+1
j=1 2 1 .
oy
4)
20 (5)
ci = 1/; 1=1,2 ®))
;T

where I'(+) is the Gamma function, s; and s are the adjoin-
ing textured segments, and j denotes the index of the wavelet
subband. The pair of regions with the minimum distance is
merged until a maximum threshold of the distance is reached.
Compared to the previous work [3] in which the segments are
classed into three categories, our two-category method offers
comparable results with reduction in computational complex-
ity. Fig.3(b) and 3(c) show the merging results after few iter-
ations of the region merging algorithm using both KLLD and
Euclidean distance. Both images contain the same number
of segmented regions. In addition, Fig.3(d) and 3(e) show
the final segmentation at the end of the region merging pro-
cess obtained using KLLD and Euclidean distance respectively.
Clearly, the KLD provides better results than Euclidean dis-
tance due to the fact that the statistical measures of similar-
ity are more accurate than typically norm-based distances in
terms of human visual perception.

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

The segmentation algorithm has been evaluated on a variety
of natural images. Fig.4 shows the segmentation results ob-
tained using four different methods, including the multiscale
color-texture segmentation [3], JISEG [7], the watershed algo-
rithm [10] and our proposed algorithm. In addition, the figure
also includes the ground truth images from Berkeley dataset
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Fig. 4. Segmentation results using “tiger” and “starfish” images. From left to right: statistical multiscale segmentation, multi-
scale color-texture segmentation [3], JSEG [7], watershed algorithm [10], and hand-labeled ground truth image segmentation

form Berkeley dataset [11].

[11]. On inspecting our results (Fig. 4 (a) and (f)), it is clear
that the tiger and the starfish, which are salient objects in the
two images, are better segmented than by JSEG. The water-
shed is also able to accurately detect contours but still exhibits
an over-segmentation problem within salient objects. Exper-
iments also indicate that our approach provides superior seg-
mentation results with more accurate and smoother bound-
aries in comparing with our previous method [3] shown in
Fig.4(b) and 4(g). The improvements lie in the better texture
feature extraction, as well as the similarity measurement via
the Kullback-Leibler distance. The former helps in obtaining
more accurate initial texture segmentation results, while the
later enhances the statistical region merging procedure.

6. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated that robust and meaningful im-
age segmentation can be achieved by integrating SaS mod-
eling with color-texture features that are widely used in im-
age processing. The local statistical characteristics have been
taken into account in the texture segmentation process with
the adaptive threshold. Consequently, this approach can be
interesting for the segmentation of multimodal images. The
main contribution of this work is that it provides an accurate
automatic image segmentation through a single framework
which efficiently combines the statistical techniques, multi-
scale analysis and low level features of color and texture. Fu-
ture work will concentrate on combining the segmentation re-
sults obtained to image fusion applications, and extending the
method to content-based video analysis.
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