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Performance Evaluation of Transcoding Algorithms for H.264 

 
Damien Lefol, Dave Bull, Nishan Canagarajah  

 
 

Abstract — The latest video coding standard H.264 has 
been recently approved and has already been adopted for 
numerous applications including HD-DVD and satellite 
broadcast. To allow interconnectivity between different 
applications using H.264, transcoding will be a key factor. 
This paper assesses the performance of existing requantization 
techniques developed when applied to H.264 together with a 
new technique. The proposed transcoding algorithm is based 
on a mixed requantization technique which gives a good 
compromise between complexity and quality1. 
 

Index Terms — Transcoding, Requantization, Bitrate 

reduction, H.264 

I. INTRODUCTION 

The development of multimedia systems has had a major 
influence in the area of image and video coding. This 
evolution and growth in video application has been concurrent 
with a massive growth in the communication industry. The 
wide range of networks available offer different characteristics 
including range, bitrate and error rate. Distributing new media 
on these channels, especially video due to its high bandwidth 
requirements, can be extremely challenging. 

Applications using H.264 [1] will range from multimedia 
content delivery on mobile handsets to High Definition (HD) 
television broadcasting. To allow such diversity, it will be 
necessary to have means of adapting the video to the 
distribution channel. This can be achieved using a transcoder 
to modify the properties of the encoded bitstream to match as 
closely as possible the properties of the distribution channel.  

Transcoding is required in various applications. For 
instance, in the case of companies producing video material, it 
is necessary to change the format depending on the country 
where the media is broadcast. Consumers also use transcoding 
in applications such as set top boxes with built in hard drives. 
Transcoding can also be required if a standard TV is to be 
used to view HDTV programs. The HD material must first be 
converted to SD to be displayed. 

The objective of bit-rate reduction is to reduce the bitrate 
while maintaining low complexity and achieving the highest 
quality possible. Ideally, the reduced rate bitstream should 
have the quality of a bitstream directly generated at the 
reduced rate. 

 
 

1 This work is funded by 3CRL ROAM4G 
D. Lefol, D. Bull and N. Canagarajah are with the University of Bristol 

U.K. (e-mail: Damien.lefol@bristol.ac.uk).  

Many algorithms have been developed for the 
requantization of video over the last decade. Some of these 
have been used successfully in practical applications [2, 3]. It 
is possible to adapt these algorithms to H.264 but their 
performances can be variable due to the influence of new 
features present in H.264. 

The most straightforward way to achieve requantization is to 
decode the video bitstream and re-encode the reconstructed 
signal at a new rate. Computing new motion vectors from the 
requantized picture allows a finer approximation for the 
motion estimation. However this Full Decode and Recode 
process (FDR) is time consuming and complex. Significant 
complexity savings can be achieved, while still maintaining 
acceptable quality, by reusing information contained in the 
original incoming bitstream [2, 4]. 

In current video encoders, the predictive encoding scheme is 
used to reduce the temporal redundancy between consecutive 
frames. To reconstruct the frame correctly at the decoder, the 
picture used as reference in the decoder should be exactly the 
same as that used for prediction at the encoder. Otherwise the 
mismatched reconstructed picture produces a distortion since 
the prediction becomes invalid. Since this new distorted 
reconstructed picture is also used for the future prediction, the 
distortion error propagates to future frames. Therefore, even a 
small mismatch can cause significant quality degradation. This 
error propagation is known as drift. 

Some requantization algorithms perform bit-rate reduction 
with no compensation of the errors introduced by 
requantization [4, 5], whereas others use a closed loop 
approach to correct those errors [4, 6-8]. The main 
disadvantage of open-loop algorithms is that they introduce 
drift in the video sequence. For this reason the two main 
algorithms used for bit-rate reduction in previous standards 
(MPEG-2, H.263) were based on a closed-loop algorithm. The 
first approach, the Cascaded Pixel Domain Transcoder 
(CPDT) [4], performs the error estimation using the 
reconstructed picture whereas the second, the Fast Pixel 
Domain Transcoder (FPDT) [7],uses the residual. 

Instead of fully decoding the picture, motion estimation can 
be done in the transform domain [7]. The requantization error 
is then computed using only the residual. This FDPT technique 
is computationally less complex than CPDT as it requires only 
one frame buffer, one inverse transform and one motion 
compensation block. 

The rest of the paper is organised as follows. Section 2 
gives a brief overview of the main requantization algorithms 
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used with previous standards. The limitations of these 
algorithms are described and the proposed algorithm is 
explained in section 3, followed by simulation results in 
section 4. 

II. REQUANTIZATION ALGORITHMS  

A. Cascaded Pixel Domain Transcoder (CPDT) 

When adapting the CPDT to H.264 modifications must be 
made to the original algorithm. First of all the presence of 
spatial prediction in intra frames is not handled by the original 
version of CPDT. For this reason the motion compensation 
(MC) block needs to be modified so that it can work on a MB 
level instead of a frame level. Another necessary modification 
is to increase the frame buffer size so that it can handle the 
greater range of reference frames allowed by H.264. The frame 
buffer must be able to store at least as many frames as the 
number of reference frames used in the incoming bitstream. 
The DCT and inverse DCT blocks have to be replaced by 
Transform and inverse Transform block. The loop filter block 
must be added inside both the decoder and encoder part of the 
cascaded structure. Aside from these changes, the principles of 
the algorithm remain the same. Figure 1 shows the structure of 
a CPDT transcoder for H.264. 

 

 
 

 

Fig. 1 CPDT for H.264 

The relationship between the input and the output of the 
CPDT transcoder presented in figure 1 can be expressed by 
equation 1. The output bitstream Rout is obtained by 
requantization of the input bitstream Rin to a coarser 
quantization step Q2 plus the difference between the values at 
the output of the motion compensation and loop filter of the 
decoder and the encoder. This value corresponds to the drift 
compensation, and is necessary because the picture which will 
be used for prediction in the final decoder has been modified. 
Thus, the first part of equation 1 corresponds to an open loop 
requantization and the second part to the error correction 
performed by the closed loop system. 

 
[ ][ ]

[ ][ ] [ ][ ]
[ ][ ]in

nn

out

RQTRqand

ILFMCILFMCDriftwith

DriftRqTQR

1
1

1

2
1

1
1

2

:

:
−−

−−

=

−=

+=
    (1) 

 

B. Fast Pixel Domain Transcoder (FPDT)  

The Fast Pixel Domain Transcoder is one of the most 
popular requantization techniques used with MPEG-2. The 
modifications required to adapt the FPDT to H.264 are similar 
to those done for CPDT. The DCT is replaced by a transform, 
the motion compensation changed to accept the intra 
prediction and the frame buffer must be increased to cope with 
the extra reference frames. 

The FDPT technique is computationally less complex than 
CPDT as it requires only one frame buffer, one inverse 
transform and one motion compensation block. A fast 
transcoder algorithm can be derived from the CPDT providing 
that the clipping functions before the frame memory store are 
not considered, the motion compensation is a linear operation, 
motion vectors after transcoding are the same as those before 
transcoding and no frame-skipping or coding-mode changes 
are allowed [6, 8]. 

Using the FPDT with H.264 introduces two new 
assumptions. The linearity of the loop filter and the 
introduction of scaling coefficients computed so that T.T-1 = I. 

 

 
Fig. 2: FPDT for H.264 
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Equation 2 gives a relationship between the input and the 
output of the FPDT. It can be seen that the output is linked to 
the input by the requantization to a coarser quantization step 
Q2 and by adding an error correction term which is loop 
filtered and motion compensated. 
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If we consider the Motion Compensation (MC), the Loop 

Filter (LF), the Quantization, inverse Quantization (Q/Q-1) and 
the Transform, inverse Transform (T/T-1) as linear functions 
and if moreover we add scaling coefficients so that T.T-1 = I, 
equation 1 from the cascaded pixel domain transcoder can be 
re-written as follows: 
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This is the same as the general equation for the fast pixel 

domain transcoder as we have Rin = rin and In
1-In

2 = in
2.  

Simulation using FPDT adapted to H.264 shows that it can 
introduce a severe drift in intra frames. The reason for this 
drift is that FPDT is based on a mathematical assumption 
concerning the linearity of functions. Those assumptions have 
already been proved to be incorrect for MPEG-2 [6, 8] but the 
drift introduced was negligible. In the case of H.264, the intra 
prediction process can propagate and accumulate these errors 
up to 480 times (HD can have 1920 pixels and thus 480 4x4 
macroblocks). Moreover, H.264 encoding introduces other 
sources of errors such as the loop filter and the scaling 
coefficient used in the transform and quantization [9]. This 
drift in intra frame can then accumulate in inter frames due to 
temporal prediction. 

The following part discusses the mathematical assumptions 
made to obtain equation 3. All notation used refers to the one 
of figure 1 and figure 2. 

III. LIMITATIONS  

A. Non linearity of the motion compensation 

To assess the amount of error introduced by the non 
linearity of motion compensation, we use the following 
procedure. The first time the CPDT algorithm is activated, the 
predicted image from the decoder loop of the algorithm is 
saved along with the one from the encoder loop. The mixed 
requantization algorithm (MRA) is then activated and the 
values at the output of the motion compensation are saved.  
The loop filter is disabled so its non linearity effect is not 
taken into account. Considering only the second picture of the 
bitstream (a P frame) we will have access only to one 

reference frame (the first I frame). As the MRA and CPDT use 
the same algorithm for intra frames, the values at the input of 
the motion compensation will be the same except that, for the 
MRA case, it will be the difference of two frames which is 
motion compensated instead of two frames (in

2 = In
2 – In

1). We 
can then compare the result of MC(in

2) and MC(In
2) – MC(In

1). 
If the MC is linear we should have equality. Any difference at 
the output is due to the non linearity of the motion 
compensation process. Figure 3 shows the results obtained in 
the case of a transcoding from QP10 to QP36. 
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Fig. 3 Occurrence of the error introduced by the motion compensation 

(QP2 = 36) 

 
Figure 3 highlights that errors introduced by motion 

compensation are small, as the maximum error is 2 pixels, and 
occurs infrequently. An error of one pixel occurs in nearly 
20% of the cases, but these errors, even if they tend to 
accumulate over the GOP are still small and can be neglected. 
Simulations also show that error occurrence or error values do 
not change significantly with the quantization parameter. This 
is logical as errors in motion compensation are introduced by 
the clipping functions used and thus do not depend on the 
quantization parameter. 

 
B. Non linearity of the loop filter 
To obtain equation 3 from 1 we considered that applying the 

loop filter to the difference of two pictures was the same as 
making the difference of two loop filtered pictures. The loop 
filter is designed to work on the reconstructed values but in the 
FPDT the values passed to it are residuals. This difference can 
introduce a severe drift as the behaviour of the filter will be 
different in the transcoder and in the final decoder. This 
mismatch is due to the non linearity of the loop filter. There 
are two main reasons for this non linearity. Firstly, the decision 
to filter a MB is based on a threshold. It uses values dependent 
on the macroblock properties, such as the difference between 
pixels at the border of the macroblock, and the macroblock 
coding mode decision, such as MB type and motion vectors 
[10]. The second reason is due to the rounding errors caused 
by the clipping function used in the loop filter. This clipping 
was modified in the FPDT algorithm to take into account the 
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fact that residual values are included in a [-128, +128] range 
whereas reconstructed one are in a [0, 255] range. 

To show the non linearity of the loop filter we compare ln
2 

and Ln
1-Ln

2 using a procedure similar to the one previously 
defined for motion compensation. Before passing in the loop 
filter we have in

2 = In
1 – In

2 without any errors. This means that 
any error after the loop filter is due to the non linearity or poor 
adaptation of the loop filter to the filtering of residuals. The 
results obtained when transcoding a CIF picture from QP 10 to 
QP 25 and 36 are shown in figure 4 and 5. 

-8 -6 -4 -2 0 2 4 6 8
0

5

10

15

20

25

30

35

40

45

50

Errors (in pixel values)

O
cc

ur
en

ce
 (

in
 %

)

Non linearity of the loop filter

QP = 25

 
Fig. 4 Repartition of the errors due to the loop filter (QP2 25) 
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Fig. 5 Repartition of the errors due to the loop filter (QP2 36) 

 
It can be noticed that the probability and importance of 

errors increase with QP. This is logical as the filtering decision 
and strength is QP dependent. At low QP the loop filter 
introduces little errors, whereas the amount of error at high QP 
is large and can be problematic. The larger errors (greater than 
2 pixels) are due to the different filtering decision. For 
instance, the macroblock in the decoder will exceed the 
threshold and thus be filtered whereas the one in the FPDT 
will stay below the threshold level and remain unchanged. The 
small errors are mainly due to the rounding happening in the 
clipping function. 

 

C. Linearity of the transform process 

As the transform is a matrix operation, it is linear and thus it 
does not introduce errors. Moreover the transform is defined 
as an integer arithmetic operation so there is no rounding in 
this process and thus no risk of non linearity. However to 
obtain the same pixel values after a transform and inverse 
transform it is necessary to apply a quantization and inverse 
quantization to the transform coefficients. This is due to the 
design of the transform and quantization process of H.264 
which are not supposed to be performed independently [9, 11]. 
In FPDT, the transform and quantization need to be performed 
independently. It is thus necessary to introduce scaling 
coefficients in the process to take into account the lack of 
transform or inverse transform. These scaling coefficients have 
the main inconvenient of being non integer. This means that 
the transform is no longer an integer arithmetic process and 
thus the values are prone to rounding errors. 

In the transcoder the following scaling coefficients are 
applied during the quantization and inverse quantization to 
balance the absence of transform and inverse transform in the 
fast pixel domain algorithm: 
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Where scale_uq represents the scaling coefficient applied 
when performing an inverse quantization, scale_q the one for 
quantization and where 0=r  for position inside the 

macroblock ( ) ( ) ( ) ( ){ }2,2,0,2,2,0,0,0),( ∈ji  and 1=r  for 

( ) ( ) ( ) ( ){ }3,3,1,3,3,1,1,1),( ∈ji  and 2=r  otherwise. Thus for 

the complete operation the scaling is: 
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A scaling by 64 is also introduced in the process because the 
inverse quantization includes a multiplication by 26 in its 
coefficients to reduce the rounding errors [12]. To compensate 
for this in the fast pixel domain transcoder we need to divide 
by 64 on top of the division by the scale_uq given above to 
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compensate for the lack of inverse transform. It is important to 
note that the division by 64 is done only in the case of the lack 
of inverse transform and not for the lack of transform. 
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Fig. 6 Error at the quantize level due to the rounding errors 
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Fig. 7 Error at the pixel level due to the rounding errors 

 
Figures 6 and 7 show the maximum, minimum and average 

rounding error in the case of a requantization from a QP1 of 5 
to a QP2 ranging from 5 to 45. It illustrates the influence that 
rounding errors can have on the final result in the pixel 
domain. Errors, as they are due to rounding, are very small in 
the transform domain (maximum of 1 most of the time) but as 
this error is unquantized, the resulting pixel error can be as 
high as 100 for large values of QP2. The average error stays 
very small but some pixel will have large errors and those 
errors will propagate and accumulate through drift. 

D. Mixed Requantization Algorithm (MRA) 

The study of linearity shows we can have large mismatches 
between the transcoder and the decoder. The simulations 
performed in section III A, B and C did not take drift into 
account. When adding the effect of drift, the degradation of 
quality can be very high. Simulations using FPDT adapted to 
H.264 show that it can introduce a severe drift, especially in 
intra frames. Figure 8 shows the difference between an intra 
frame transcoded using FPDT and the same frame transcoded 

using CPDT. It highlights the spatial propagation and 
accumulation of drift inside a frame due to intra prediction. 
This drift is caused by the non linearity of some functions used 
in FPDT. In the case of H.264, the intra prediction process can 
propagate and accumulate these errors up to 480 times.  

 
Fig. 8 Drift in intra frames due to FPDT 

 
To avoid this drift, CPDT can be used, although it is 

computationally more complex. Moreover FPDT can work 
well in the case of inter frames as temporal prediction 
introduces less accumulation of errors. Our approach proposed 
here is a Mixed Requantization Algorithm (MRA) which uses 
CPDT for the intra frames and FPDT for the inter frames thus 
combining the advantages of the two different approaches 
[13]. Moreover using the CPDT for intra frames gives a higher 
quality for the whole sequence as subsequent inter frames will 
be predicted from a better quality reference and thus have a 
higher PSNR.  

To make the two algorithms work together it is necessary to 
change the content of the frame buffer of the pixel domain 
algorithm before passing it to the transform domain algorithm. 
This can be done by subtracting the content of the frame 
buffers one and two of the pixel domain algorithm and put the 
difference in the frame buffer of the transform domain 
algorithm. Using parameters described in [14] and [15], our 
MRA scheme requires 48% less memory than CPDT and 35% 
fewer computations. 

IV. RESULTS 

Figure 9 compares the transcoding of a video sequence 
composed of three concatenated CIF sequences. The first 60 
frames are from “Pedestrian”, frames 60 to 120 are from 
“Tractor” and the last 60 frames are from “Toys”. These 
sequences were selected to represent a wide range of possible 
scenarios and concatenated to simulate a normal consumer 
environment where scene changes will occur regularly. The 
first sequence contains multiple occlusions and rapid 
movement, the second a tracking camera and high texture and 
the third, complex motions and uniform areas. The bitstream 
has been encoded at 30 frames per second with one intra frame 

Drift in intra frame due to FPDT

 

 

-15

-10

-5

0

5

10

Drift direction 

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on January 22, 2009 at 10:35 from IEEE Xplore.  Restrictions apply.



IEEE Transactions on Consumer Electronics, Vol. 52, No. 1, FEBRUARY 2006 220 

every 30 frames and a group of pictures containing two B 
frames for every P inter frame. 

Four techniques are presented; a full decode and recode 
(FDR), CPDT, MRA and FPDT. Simulations have been done 
with an input bitstream encoded with the JM8.5 reference 
software at a bitrate of 7.78 Mbps and an output bitstream 
after requantization of 3.06 Mbps. 

The plots in figure 9 compare the PSNR values obtained 
with the four different techniques using two different input 
bitstreams. The first input bitstream (a) is obtained with an 
encoder that encodes inter frames using temporal (inter) or 
spatial (intra) prediction. For the second input bitstream (b) the 
encoder uses only temporal prediction in inter frames. It shows 
quite clearly that the CPDT gives far better results than the 
FPDT and is close to the FDR. Moreover, the FPDT can 
introduce large changes of quality in the video. These changes 
are caused by the randomness of the accumulation of the 
rounding errors. They lead to a flickering video which can be 
highly uncomfortable for the end-user. The randomness 

introduced by the rounding errors can create blocking effects 
(figure 10) in inter frames as two adjacent blocks can be 
predicted from different reference frames with different 
rounding errors. This effect cannot be seen in the PSNR 
values, but it reduces the overall objective quality of the video. 
The randomness of errors can also be noticed on the rate 
distortion curves provided in figure 11. The profile of the 
FPDT curve is very variable and the one of the MRA relatively 
uneven whereas the one of CPDT and FDR are smooth.  

The MRA sequence has a high drift for inter frames in the 
first sequence of the bitstream containing intra block (frames 1 
to 60 of figure 9a). This is due to the video properties. As the 
first sequence contains occlusions, the encoder uses intra block 
inside inter frames and thus the accumulation of errors due to 
the use of FPDT increases. For the rest of the sequence MRA 
works well. 

This type of drift does not exist when the input bitstream of 
the transcoder is encoded without intra blocks in inter frames 
(figure 9b). It is however important to note that not using intra 
blocks in inter frames can reduce the compression efficiency 
of H.264. Moreover if the transcoder is used in a commercial 
system it can be uneasy or even impossible to change the 
encoder settings to avoid intra blocks. 

 

 
 

Fig. 10 Blocking effect due to FPDT (left) same frame with MRA 

(middle) and CPDT (right) 
 

Table 1 shows the average PSNR for the transcoding of the 
original sequence at different transcoded bitrates. It highlights 
the fact that as the bitrate decreases, keeping the input 
encoding decision decreases the efficiency of the compression 
and thus the quality. This phenomenon is even clearer on the 
rate distortion curves presented in figure 11. This is due to the 
large range of compression tools H.264 provides. As the 
original video has a high bitrate, the encoder uses small 
macroblock partitions and fine motion vectors. This leads to 
larger overheads in the bitstream. As the quantization 
parameter increases, larger macroblock size and coarser 
motion vectors should be used to take advantage of skip or 
direct modes which greatly reduce the overheads. However, in 
the case of a CPDT, where the encoding decisions are kept, 
this is not possible. Mode refinement can compensate for this, 
but increases the transcoding time. With FPDT or MRA, mode 
refinement is not possible as we work on the residual and thus 
cannot recompute the value of the new predictor if the mode 
changes. 
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Bitrate  
(Mbps) 

FDR 
(in dB) 

CPDT     
(in dB) 

MRA     
(in dB) 

FPDT     
(in dB) 

6.39 46.73 46.60 42.28 35.40 
4.73 46.61 44.53 41.80 35.93 
3.06 42.64 42.06 39.16 34.56 
1.32 38.00 36.18 33.61 31.70 
0.88 35.82 31.20 28.80 28.18 

 

Table 1 Comparison of the PSNR obtained at different transcoded 

bitrates 
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Fig. 11 Rate distortion for the different transcoding strategies 

 
Different mode refinements are possible. It can be motion 

vector refinement in inter frame [16] or mode changes in intra 
frame [17]. It is then possible to vary the refinement strategies 
depending on the computational complexity available to 
maximize the rate distortion of the transcoded bitstream [18].  

 
V. CONCLUSION AND FUTURE WORK 

 

FPDT as developed for previous coding standards cannot be 
used for H.264 transcoding as it introduces an unacceptable 
level of drift. The work presented here demonstrates clearly 
that the drift introduced by this algorithm cannot be ignored 
with the H.264 standard. A realistic approach for transcoding 
should be based on CPDT with the possibility of including 
mode refinement. Only this type of architecture gives a quality 
suitable for consumer orientated product. In the case of scarce 
computational power, the MRA is an acceptable alternative 
even though it can give variable results depending on the video 
properties and it does not support mode refinement. 

The work presented here helps to define the basis for a 
transcoding platform orientated toward consumer markets. 
This work could be pursued further by developing suitable 
refinement strategies to balance complexity and quality. 
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