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Abstract: This paper examines the implementation of an
automated W-CDMA microcellular deployment and coverage
reconfiguration algorithm based on the concepts of Situation
Awareness (SA). A deterministic microcellular propagation
model (Citrus) is used to provide the detailed site-specific
propagation data. An initial network deployment is performed
over one square kilometre of central Bristol using the
Combination Algorithm for Total Optimisation (CAT).
Buildings are then added or removed from the microcell to
represent realistic time variations in the geographic
environment. A new Situation Awareness (SA) algorithm is
developed and applied to the modified W-CDMA microcell to
automatically reconfigure the network’s coverage and capacity
based on the new propagation environment. Optimisation of
coverage and capacity is achieved through the use of a Genetic
Algorithm (GA). This paper presents the details of the
underlying SA algorithm and the results obtained for the above
scenario. These new algorithms are shown to automatically
sustain a high Grade of Service as the microcellular
environment evolves over time. Gains of up 203% in spectral
efficiency were observed for the 144 kbps service.

1. Introduction

Cellular W-CDMA networks differ significantly from
second generation systems such as GSM. In particular,
they will offer variable bit rate services with peak rates far
in excess of those currently available. To meet these
requirements, many thousands of basestations will need to
be deployed using a hierarchical cell structure. Given this
situation, there is a very strong need to design and deploy
cost-effective networks. A well-designed system will
make good use of traffic, propagation and collateral
information to maximise spectral efficiency and optimise
key parameters such as coverage and capacity. This leads
to the efficient use of network resources and provides
increased revenue for the network operator. From a user
perspective, a well-planned network delivers high Quality
of Service (QoS) to all geographic locations for a wide
range of mobile applications.

The QoS delivered to users in a network can change
significantly over time as a result of variability in both the

traffic and the propagation environment (e.g. the
construction of new buildings, the demolition of old
buildings and changes in vegetation etc.). In the case of
microcells, these fluctuations can result in major changes
in cellular coverage and capacity. Adaptive or dynamic
networks are now being proposed in order to drive down
the cellular infrastructure cost while maintaining QoS in a
time varying network. More specifically, Self-Organising
techniques have been proposed to achieve dynamic
network behaviour [1]. In order to implement Self-
Organisation, previous research has focused on the
implementation of ‘Situation Awareness’ (SA), which
represents key enabling functionality [1][2]. SA requires
basestations to monitor parameters such as pathloss
(basestation to basestation and basestation to mobile),
with this information shared across the network. These
techniques maximise the use of the fixed cellular
infrastructure by allocating resources when and where
they are required. Adaptive algorithms for macrocells
based on the concept of Situation Awareness have already
been devised to reconfigure coverage for different
scenarios (i.e. the addition or removal of basestations)
[1][2]. These macrocell studies made use of the relatively
simple COST 231-propagation model. For a microcellular
environment, predicting and achieving geographic
coverage is a far more complex affair that depends on site
specific parameters such as building locations and local
terrain features [3]. Given this situation, microcellular SA
techniques must be based on coverage data obtained from
more accurate, site-specific, propagation models.

Starting with a particular W-CDMA microcellular
deployment, the aim of this paper is to determine whether
Self-Organisation techniques can maintain QoS over an
evolving geographic environment. For this purpose, site
specific coverage prediction data is generated using a 3-D
building, foliage and terrain database for a central region
of Bristol. An initial deployment is performed using the
Combination Algorithm for Total Optimisation (CAT) [4].
The CAT selects base sites that are optimised to meet
initial coverage and capacity requirements [4]. The SA
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adaptive algorithm is then used to demonstrate how
coverage can be automatically maintained despite
significant changes in the propagation environment (i.e.
the introduction of new high rise buildings and the
demolition of existing structures).

2. Propagation Model and Initial Base site
Optimisation

A well-developed fully three-dimensional deterministic
propagation model is used to generate the time varying
propagation data required in this study. The model uses
geographic data (terrain, building, foliage and ground
cover) to predict power as well as time, frequency and
spatial dispersion in the radio channel [4]. It is optimised
for intracellular coverage as well as inter-cellular
predictions (interference) between different cells in a
mixed-cell network.

Once coverage prediction is complete, the Combination
Algorithm for Total Optimisation (CAT) is used to
optimise the number and location of base sites required to
meet operator defined coverage and capacity requirements
[5]. The CAT algorithm analyses a list of all possible
basestation locations and chooses the minimum sub-set
required to meet the design criteria. As time passes,
changes in the propagation environment will inevitably
degrade the performance of the cellular network.

3. Reconfiguration using SA

Our cellular study is performed over a one square
kilometre region of central Bristol. An aerial photograph
of this district is shown in Figure 1. A microcellular
UMTS W-CDMA FDD network is now simulated
assuming non-homogenous traffic with a variable traffic
mix (see Table 2 for details). As discussed previously, a
number of basestations (10 6-sectored) are optimally
deployed using the CAT algorithm. Different design
targets are used based on the various loading conditions
and traffic mixes shown in Table 2. The QoS in each case
is determined from the outage probability for the specified
C/I threshold. To simulate temporal variations in the
environment, modifications are made to the 3-D
geographic database. This takes the form of adding and/or
removing building structures. The resultant outage
probability will almost certainly rise once these changes
have been made to the geographic database. However,
results are expected to indicate that automated SA can
enable a near constant outage probability to be
maintained.

3.1 Adaptive Algorithm using SA

The problem of optimising coverage and capacity in a W-
CDMA system is a classic case of a multiple objective
problem. Inherently, such problems do not have a single

solution and optimisation techniques must evaluate a best
possible solution. Genetic Algorithms have been used for
some time in the literature for radio coverage
optimisation. As reported by Lieska [6], the advantage of
the Genetic Algorithm (GA) over other combinatorial or
heuristic methods is that it directly processes the computer
representation of the potential solutions, rather than
manipulating mathematical formulations (object
functions).

In this analysis the use of the GA is extended to include
the concept of providing the Radio Network Controller
(RNC) with SA functionality. As such, basestations can
self-configure their coverage in order to provide a Grade
of Service (GoS) that maximises the network operators’
revenue and provides an acceptable QoS to subscribers.

The following technique could be implemented in a
manner where mobile stations report their RSSI (received
signal strength indicator) to the RNC, which would then
direct basestations to adaptively adjust their transmit
powers with a view to minimising key network parameters
such as outage and blocking probability.

Figure 1: Coverage of a one square kilometre region of
central Bristol using 10 UMTS Basestations

3.2 Genetic Algorithms (GA)

The GA is derived from evolution and genetics [7]. The
term chromosome refers to a candidate solution to a
problem encoded as a bit string. The population
represents the search space of potential solutions. There
are three main operators in GA: Selection, Crossover and
Mutation. Selection selects chromosomes in the
population for reproduction. The fitter the chromosome,
the more times it is likely to reproduce. Crossover refers
to the fact that ‘high quality’ parent chromosomes
recombine to produce high quality offspring candidate
solutions. Traits from the most dominant individuals will



therefore survive into the next generation. Finally,
Mutation is the operator that randomly flips bits in a
chromosome.

The canonical GA consists of an initial population of n
randomly generated l-bit chromosomes. The fitness of
each chromosome is evaluated using a fitness function
f(x). Subsequently, a pair of parent chromosomes is
selected from the current population, the probability of
selection being an increasing function of fitness. With
probability pc the pair of chromosomes is recombined to
form two offspring. Finally, mutation of the two offspring
occurs at each locus with probability pm and the current
population is replaced with the new population.

3.3 Problem definition

The problem objective is to maximise W-CDMA
coverage and minimise outage probability and blockage.
The solution consists of finding the optimum values of
downlink transmit powers at the basestations to maintain a
target GoS in the network.

3.3.1 Chromosome encoding and fitness function

The downlink transmit power values are represented as a
power vector and converted to binary for bit string
representation. An 8-bit representation is chosen to
encode each transmitter level in the vector string.

The initial population is composed of 100 individuals and
is generated so that each transmitter has a random power
level ranging from 0 to28dBm (the latter value being the
maximum downlink power for microcells).

The fitness function used in the GA is given below:

1)yprobabilit (Outage1)yprobabilit (Blocking

chromosomesolution  each by  covered area Total

+++
=f(x)  (1)

The numerator consists of parameter to be maximised
while the denominator contains parameters to be
minimised. Each chromosome solution is evaluated using
equation 1. Figure 2 illustrates the fitness landscape for
100 deployed users and 100 generations. The parameter
values are listed in Table 1.

Parameter Value
Recombination probability 0.7

Mutation probability 0.001
Population size 100
Number of runs 100

Table 1: Parameter values

3.3.2Grade of Service

The Grade of Service is defined as [8]:

                              blPGoS += χ (2)

where χ represents the outage probability and Pbl the
blocking probability. Figure 2 can be viewed as the
average area per grade of service. Consequently, if
equation 1 is multiplied by the number of users deployed,
it is possible to determine the system capacity per unit
area for a specified GoS.
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Figure 2: Fitness function for average of 35 users/cell

4. Simulation approach

A Monte Carlo simulation approach is used to generate
snapshots for different user distributions and to evaluate
different network parameters such as outage probability
and blocking probability. For each simulation run, the GA
iterates over 100 generations to converge to an optimum
solution as seen from Figure 2.

The spectrum efficiency is a measure used to gauge the
effectiveness of the SA algorithm for different traffic
scenarios (Table 2). Table 3 provides a selection of
simulation results obtained using sectored antenna
patterns at the basestations.

Data rate(kbps) 15(voice) 144(data) 384(data)

Eb/No target (dB) 6.7 4.3 5.6
Mix 1 100% - -
Mix 2 - 100% -
Mix 3 - - 100%
Mix 4 75% 20% 5%

Table 2 Traffic scenarios

5. Simulation results
Figure 3 illustrates the GoS of the network for different
loading conditions. For a specified GoS it is possible to
use this data to establish the system soft capacity using
equation 3 [9].

             bandwith systemS.A.F/   ratebit V cscs ××=            (3)

where ωcs represents the average load offered in Erlangs
and S.A.F denotes the service activity factor.
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Figure 3: GoS curve for homogeneous voice services

From Figure 3 and assuming a specified GoS of 10%, the
system capacity for a 15 kbps voice service is evaluated at
110 kbps/MHz/cell.

Traffic mix
Spectrum efficiency

[kbps/MHz/cell]
Mix 1 115.1
Mix 2 201.0
Mix 3 380.0
Mix 4 162.5

Table 3 Spectrum efficiency for different traffic mix
for initial database

A similar curve, as seen in Figure 4, is obtained for
various service mixes for a network covered with ten six-
sectored ( o60 beamwidth) basestations. It can be deduced
from Figure 4 that at the specified GoS target (10%), the
use of a 384 kbps data service results in the best spectrum
utilisation from the traffic mixes considered.
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Figure 4: GoS curve for various traffic mixes

5.1 Temporal Variations

The microcellular database in Citrus is now modified in
order to reflect evolutions in the local environment. These

evolutions can result in significant changes in the
propagation between mobiles and basestations. Outage
values are evaluated for both the old and new databases
using identical deployment schemes.

The SA algorithm detects the impact of the geographic
evolutions (such as uncovered areas or regions of high
interference) and engages the GA to calculate new
basestation transmit power levels to remedy the situation.
Figure 5 shows results obtained for the modified database
with and without automatic GA updates.
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Figure 5: Outage probability for voice services

It can be seen that the outage probability rises much faster
when the SA algorithm is not used to compensate for
changes in the local environment.

Initial
database

Modified database

With SA Without SAServices
Spectrum efficiency [kbps/MHz/Cell]

(GoS=10%)

Voice (15 kbps)
115.11
(38.37)1

124.34
(41.34)

102.69
(34.23)

Data  (144 kbps)
201

(6.98)
190

(6.58)
62.98

(2.186)

Data (384 kbps)
380

(4.95)
240

(3.125)
<100
(1)

Mix services (75/20/5)
162.5

(10/3/0)
163

(11/3/1)
156

(11/3/1)

Table 4: Benchmark results for spectrum efficiency

For voice services, SA results in a 21% increase in
spectral efficiency. For 144kbps data services, a benefit of
203% can be derived as seen in Figure 6. For 384 kbps
data services, figure 7 shows that without SA the target
GoS cannot even be achieved. In the case of mixed
services, a benefit of 4.48% is predicted from Figure 8.
From Table 4, it can be seen that SA restores the network
spectrum efficiency to values obtained at deployment
except for the 384kbps, which appears extremely sensitive
to pathloss.  

                                                          
1 Expected number of subscribers using service per sector
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Figure 6: Outage probability for cs data (144 kbps)
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Figure 7: Outage probability for cs data (384 kbps)
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Figure 8: Outage probability for mixed services

6. Conclusions

This paper has investigated the use of GA and Situation
Awareness algorithms to automatically support the
deployment and configuration of a mixed traffic W-
CDMA microcellular network. The ability of the
basestations to monitor changes in the propagation

conditions and QoS perceived by subscribers allows the
network to efficiently self adapt. Results show that for
different traffic mixes, SA can be used to reconfigure the
network in terms of restoring a target GoS, following
changes in the microcellular environment.

The coverage needs to be re-evaluated periodically and
this could be performed in practice using location aware
mobile terminals that report their RSSI levels to the
surrounding basestations. The algorithm appears cost
effective since it requires no additional hardware other
than a server for processing purposes. Optimised
parameters would then be downloaded to network
elements during non-critical hours of operation.

Using detailed propagation models (such as Citrus) and
optimum deployment algorithms (such as the CAT), an
optimum deployment of microcellular W-CDMA was
performed. Using the SA methods discussed in this
paper, the network was then able to automatically self-
configure to maintain these high levels of coverage and
capacity even as the geographic environment evolved.
Without the use of SA, the network capacity was seen to
fall off in sympathy with changes in the local
environment.
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