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ABSTRACT

Reduced complexity detection of spatially multiplexed data
transmissions under frequency flat fading is considered. Not-
ing that the optimal detection is the generation of marginal
distributions of a joint probability distribution, we use the
approximate marginal generating algorithm termed the tree-
based reparameterization. The resulting system complexity
is having an order which is less than quadratic in the number
of transmit antennas. Simulation of a8 × 8 BPSK system
shows a coded bit error rate of10−3 at an SNR level of only
1dB greater than required by the optimal method.

Key words- MIMO, approximate inference, belief prop-
agation, tree-based reparameterization.

1. INTRODUCTION

It is well appreciated that multiple input multiple output
(MIMO) wireless channels provide a huge capacity poten-
tial [1] and that future wireless communications will invari-
ably resort to the use of such channels. Transmission of
spatially multiplexed independent data streams from a trans-
mitter with multiple antennas can lead to the extraction of
the huge capacity potential offered, in the presence of op-
timal detection at the receiver. Unfortunately, optimal de-
tection has a complexity which is exponential in the num-
ber of transmit antennas and hence is practically infeasible.
Thus reduced complexity symbol detectors such as the V-
BLAST (vertical Bell laboratories layered space-time) al-
gorithm [2] are needed to take advantage of the capacity
potential of MIMO systems with a large number of trans-
mit antennas. Presently, the state–of–art in near optimal re-
duced complexity MIMO detectors are the sphere decoders
[3]. Other successful approaches include the successive mo-
ment matching to Gaussians based approach of [4] and the
Gibbs sampling based Monte Carlo sampling approach of
[5].

We can consider optimal soft detection in a spatial mul-
tiplexing system as the generation of thea posteriori marginal

probability distributions (which we call as the APPs) of the
symbols transmitted by each antenna. This optimal detec-
tion can be seen to be a task of marginalization in a joint
probability distribution. In this work, we will frequently
refer to the representation of probability distributions via
undirected graphical models [6]. As will be shown later,
the joint distribution on which marginalization needs to be
performed in this case correspond to an undirected graph-
ical model with cycles. Had the graphical model been cy-
cle free, the required marginal distributions could have been
computed with a complexity which is linear in the num-
ber of variables using a message passing algorithm such as
the “sum-product algorithm” [7]. Even in the presence of
cycles, repeated message passing as if there is no cycles,
which is termed “loopy belief propagation” has been shown
to produce good approximate marginals in some applica-
tions [8].

In this work we apply a generalization of loopy belief
propagation termed tree-based reparameterization [9], which
has shown to have faster convergence than loopy belief prop-
agation, for the task of approximate marginal generation in
MIMO symbol detection.

2. SYSTEM MODEL AND OPTIMAL SYMBOL
DETECTION

Let us consider annt–transmit antenna,nr–receive antenna
MIMO communication system operating in frequency-flat
quasi-static Rayleigh faded channels. Considering an equiv-
alent complex base-band discrete signal model, for each
time instant we have

y = Hx + w. (1)

Denoting the matrix transpose operation by(•)†, herey =
(y1, ..., ynr )† with yj being the received signal value on an-
tennaj, x = (x1, ..., xnt)† with xi being the transmitted
modulated symbol by antennai andH is annr × nt matrix
with the(j, i)th element beinghi,j which is the channel fad-
ing coefficient from transmit antennai to receive antennaj.
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We will consider a normalization such that eachhi,j has a
circularly symmetric Gaussian distribution with a variance
of 1 (i.e. has a distributionCN (0, 1)). Let the transmit-
ted symbols be selected from a setB = {a1, ..., aN} with
|B| = N . Also, w = (w1, ..., wnr )† wherewj is the
spatially uncorrelated additive white noise manifesting at
thejth receive antenna with a distributionCN (0, N0). We
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Fig. 1. The System Model

can consider optimal detection considering the subsequent
channel decoding operation as the generation of the marginal
distributionsp(xi|y) for eachi ∈ {1, · · · , nt}. Consider-
ing no prior information onx, with proper normalization,
the posterior distribution of the space-time symbols can be
computed as

p(x|y) ∝ exp

(

−
‖y − Hx‖2

N0

)

. (2)

From this joint posterior distribution,p(xi|y) for eachi can
be computed in a brute force manner by a total enumeration.
Because of the enumeration over the configuration space of
x (which has a sizeNnt ), the complexity of the optimal
algorithm is exponential in the number of transmit antennas,
nt. For largent this represents a prohibitive complexity for
practical implementation and reduced complexity symbol
detection methods become necessary.

In the following, we will consider undirected graphi-
cal models for the representation of probability distributions
[6]. We can see that optimal detection is the task of gener-
ating marginal distributions from a joint distribution, with a
corresponding undirected graphical model which has loops.
One popular method of obtaining approximate marginals
corresponding to loopy graphs is the application of loopy
belief propagation [8], which is basically the repeated ex-
ecution of the steps of the sum-product algorithm ignoring
the loops of the graph. In [9], Wainwrightet. al. presents a
generalization of loopy belief propagation called tree-based
reparameterization (TRP), which is shown to have faster
convergence. In this work, we will apply the TRP method

for the MIMO symbol detection problem. Before describing
the algorithm, let us first consider how the sum-product al-
gorithm can be applied to compute the exact marginal distri-
butions of a joint distribution which has a tree (more specif-
ically, chain) structured undirected graphical model.

3. SUM-PRODUCT ALGORITHM FOR A CHAIN
STRUCTURED UNDIRECTED GRAPHICAL

MODEL

Let us restrict our attention to joint distributions of the set
of discrete random variablesx with a corresponding undi-
rected graphical model which is chain structured as shown
in Fig. 2. LetV be the set of vertices of the graph andE

be the set of edges. Noting that thecliques (sets of fully
connected nodes) of the graph are the singleton variables
and pairs of connected variables, let us assume that the joint
probability distribution factorizes according to a set of clique
potentials as

p (x) ∝
∏

s∈V

ψs (xs)
∏

(s,t)∈E

ψs,t

(
xs, xt

)
. (3)

Given this set of potential functions, the sum-product al-
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Fig. 2. Message passing of the sum-product algorithm

gorithm can be executed as a set of forward and backward
message passing recursions through the chain. For exam-
ple, the message from the variablexi to the variablexi+1:
Mi→(i+1) is generated as

Mi→(i+1)

(
xi+1

)
∝

∑

xi∈B

[
ψi,i+1

(
xi, xi+1

)
ψi

(
xi

)
M(i−1)→i

(
xi

)]
. (4)

This recursive forward/backward message passing gives, for
example, the exact marginal probability mass functions of
the singleton variables as

qi

(
xi

)
∝ M(i−1)→i

(
xi

)
ψi

(
xi

)
M(i+1)→i

(
xi

)
. (5)

One can note that the expression for a joint distribution in
terms of potential functions as in (3) is not unique. For a
tree connected set of variables, given the marginals of vari-
ables corresponding to the nodes and edges of the tree, an-
otherreparameterization (as termed by Wainwright [9]) of



the joint distributionp(x) is as

p (x) =
∏

s∈V

qs (xs)
∏

(s,t)∈E

qs,t (xs, xt)

qs (xs) qt (xt)
(6)

4. THE TREE-BASED REPARAMETERIZATION

Now let us relax the condition that the graphical model is a
tree, and let the setE of (3) to possibly include cycles, with
the restriction that the joint distribution can be represented
by a set of potentials involving singleton and pairwise vari-
ables. A resulting example of an undirected graphical model
is shown in Fig. 3, which is actually the graph correspond-
ing to p(x) in MIMO symbol detection. The graph in Fig.
3 is calledcomplete since all the nodes are pairwise con-
nected. Still, we can always identify a collection of edges of
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x2 x3

x4
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x6x7

Fig. 3. The undirected complete graphical model corre-
sponding tont = 8.

the graph which will correspond to a spanning tree (which
we will denote as the setEk). By a spanning tree, we refer
to a tree which covers all the nodes of the graph. Then, we
can decompose (3) as

p (x) ∝
∏

s∈V

ψs (xs)
∏

(s,t)∈Ek

ψs,t

(
xs, xt

)

︸ ︷︷ ︸

∝ pk(x)

·

∏

(s,t)∈E\Ek

ψs,t

(
xs, xt

)

︸ ︷︷ ︸

∝ p\k(x)

. (7)

Now, we can choose to run the sum product algorithm to
find the “pseudo marginals” or “beliefs” ofpk (x). Let us
assume that the computed “beliefs” in this manner are given
asqs(x

s) andqs,t(x
s, xt) for s ∈ V and(s, t) ∈ Ek. Given

these beliefs, we can give a reparameterization ofpk (x) as

pk (x) =
∏

s∈V

qs (xs)
∏

(s,t)∈Ek

qs,t (xs, xt)

qs (xs) qt (xt)
(8)

This reparameterization can be plugged back into (7) to de-
termine the new potential functions for the graph. In its
execution, tree-based reparameterization algorithm consists
of considering a series of spanning trees. For each spanning
tree, the sum product algorithm is executed to recompute the
“beliefs” of the constituent variables and pairs of variables
which in turn keeps reparameterizing parts of (3).

5. THE TRP MIMO DETECTOR

5.1. Initial potential functions for the MIMO symbol
detection

For the idea of tree-based reparameterization as presented
in section 4 to be extended for the problem of symbol de-
tection in flat faded MIMO channels, we need to find the
initial potential functions associated with the singletonand
pairwise variables. From (2) we can see that

p (x |y ) ∝ exp

(
2

N0
Re

(
x‡H‡y

)
−

1

N0
x‡H‡Hx

)

,

where(•)‡ denotes the conjugate transpose operation. There-
fore the posterior distribution can be decomposed into the
form of (3) with a corresponding complete undirected graph-
ical model to produce the initial potential functions as

ψ0
s (xs) = exp

(
1

N0

[

− |xs|2
(
H‡H

)

s,s
+

2Re
{
(xs)

∗ (
H‡y

)

s

}])
(9)

ψ0
s,t

(
xs, xt

)
= exp

(

−
2

N0
Re

{

(xs)∗
(
H‡H

)

s,t
xt

})

.

(10)
Here,(•)∗ denotes the conjugation operation, for a matrix
A, (A)s,t denotes the(s, t)th element and for a row or col-
umn vectorb, (b)s denotes thesth element. Thus, armed
with these potential functions to start with, we can execute
the tree-based reparameterization algorithm (TRP method)
to approximately evaluate the marginal distributions of the
symbols transmitted by each antenna.

For a givennt, we know that the undirected graphical
model is a complete graph similar to Fig. 3. For the ex-
ecution of the algorithm, the first thing to be done is to
select a sequence of spanning treesT1, ...,Tk, ...,TK with
corresponding edge setsE1, ...,Ek, ...,EK . Instead of arbi-
trary trees, we select a set of chainsC1, ...,Ck, ...,CK with
each chain spanning all the variables. This standardizes the
execution of the sum-product algorithm and will lead to a



reduction in implementation complexity. For evennt, the
minimum number of chains to cover all the edges of the
graph isK =

(
nt

2

)
/(nt − 1) = nt/2. A method to select

nt/2 chains to cover all the edges of the graph will be pre-
sented in section 5.2. Also, by a consideration of the simula-
tion results, we perform no more thanK = nt/2 iterations
of the TRP method, which is seen to capture the available
information. Consideringnt/2 non–overlapping trees only,
also obviates the need to update the edge potentials of the
graph which reduces the implementation complexity.

For a given time instant, the potentials associated with
the singleton and pairwise variables are initialized using(9)
and (10). Thereafter, the TRP detector at thekth itera-
tion, selects the chainCk and the corresponding edge set
Ek. Let us assume the chosen chain leads to an ordering
of the indices of the variables as{k1 → ... → ki−1 →
ki → ki+1 → ... → knt

}. The sum product algorithm is
executed to compute the new forward-backward messages
(Mk

ki−1→ki

(
xki

)
andMk

ki+1→ki

(
xki

)
) along the chain as

well as the new “beliefs” of the variables associated with
the vertices (qk

ki

(
xki

)
) of this chain using (5).

From the reparameterization provided by (8), this en-
ables the computation of the new potentials associated with
these same variables corresponding to the verticesV of the
chain as

ψk
ki

(
xki

)
∝

ψk−1
ki

(
xki

)
Mk

ki−1→ki

(
xki

)
Mk

ki+1→ki

(
xki

)
(11)

Finally, with the observation that the initial edge potentials
ψ0

s,t (xs, xt) needs to be computed only once per frame leads
to the TRP detection algorithm given in Table 1.

Table 1. Pseudo code of the TRP detector for MIMO sym-
bol detection

A Select the sequence of chainsC1, ...,Ck, ...,CK .
B Initialize the edge potentialsψinit

s,t (xs, xt)
for (s, t) ∈ E using (10).

C For each received signal vectory

C.1 Setk = 1. Initialize ψ0
s (xs) for s ∈ V

using (9) andψ0
s,t (xs, xt) = ψinit

s,t (xs, xt)
for (s, t) ∈ E.

C.2 Perform message passing along the chainCk

and compute the new potentials of the variables
associated with the verticesV using (11).

C.3 Increasek by one. Ifk > K go toC.4,
other wise go toC.2.

C.4 Output the properly normalizedψK
s (xs)

for s ∈ V as the computed posterior
marginal distributions.

5.2. A sequence of spanning chains

We can see that there are many possibilities ofnt/2 span-
ning chains which will cover all the edges of the graph once
and only once (the number of transmit antennas,nt is as-
sumed to be even, which is practically the usual case.). The
identification of one particular sequence of chains is as fol-
lows.

First, let us define the operation⌊k⌋nt
acting on some

k ∈ {−(nt − 1), · · · , 0, · · · , nt − 1} as⌊k⌋nt
= k if k > 0

and⌊k⌋nt
= (k+nt) if k ≤ 0. Then the sequence of chains

C1, ...,Ck, ...,CK can be described by thekth chain con-
taining the sequence of variables with the indices ordered
as {⌊k⌋nt

→ ⌊k + 1⌋nt
→ ⌊k − 1⌋nt

→ ⌊k + 2⌋nt
→

· · · → ⌊k + nt/2⌋nt
}.

6. COMPLEXITY COMPARISON

The optimal method of obtaining the posterior probability
mass function with its enumeration over all the possible
configurations ofx can be seen to have a complexity per
time instant, in the order ofO(Nntnr

2).
For the TRP algorithm, the complexity of the algorithm

is governed by the message passing operation on each tree
decoding and has an orderO(KN2(nt − 1)). From a con-
sideration of the simulation results for fully connected sys-
tems, the number of TRP iterations is actually set tont/2.
Hence the complexity of the algorithm isO(N2nt(nt−1)).

Thus, the TRP decoder reduces the system complex-
ity from O(Nntnr

2) to O(N2nt(nt − 1)) with a bit er-
ror rate performance as given in the next section. There-
fore, in terms of the transmit antennas, the complexity is
O(nt(nt − 1)) which is less than theO(n3

t ) complexity
of low complexity decoders such as the V-BLAST decoder
(fast version of [10]).

7. SIMULATION RESULTS

In the following, each frame transmission contained1152
data bits which were encoded by a rate half turbo coder and
iterleaved using a random interleaver. The turbo coder con-
sisted of two constituent(5, 7)8 convolutional codes. The
transmitted symbols were chosen from a BPSK alphabet.
The sequence of chains were selected as described in sec-
tion 5.2. The turbo decoder performed4 iterations.

Fig. 4 and Fig. 5 show the decodings in4× 4 and8× 8
systems respectively. Here,Es denotes the average energy
per transmitted symbolx.

8. CONCLUSIONS

We have used Wainwright’s tree-based reparameterization
for the reduced complexity symbol detection in spatially



multiplexed MIMO systems. The resulting algorithm has
anO(nt(nt − 1)) complexity which is much less than the
O(n3

t ) complexity of other popular reduced complexity sym-
bol detection algorithms. Simulation results for the8 × 8
BPSK system show that at a coded bit error rate of10−3,
the TRP method is only1dB away from the optimal perfor-
mance.
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