-

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by Explore Bristol Research

-% University of
OPEN (o) ACCESS BRISTOL

Deb, S. S., & Munro, A. T. D. (2007). Closing the loop for dynamic IP QoS
provisioning: a case study. 32nd |EEE Conference on Local Computer
Networks, 2007 (LCN 2007), 368 - 375. 10.1109/L CN.2007.56

Link to published version (if available):
10.1109/LCN.2007.56

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research isadigital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

* Your contact details
* Bibliographic details for the item, including a URL
» An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

https://core.ac.uk/display/29025653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/LCN.2007.56
http://research-information.bristol.ac.uk/en/publications/closing-the-loop-for-dynamic-ip-qos-provisioning-a-case-study(0a0eab1f-4fb7-4f44-b21b-c3851027fe10).html
http://research-information.bristol.ac.uk/en/publications/closing-the-loop-for-dynamic-ip-qos-provisioning-a-case-study(0a0eab1f-4fb7-4f44-b21b-c3851027fe10).html

32nd IEEE Conference on Local Computer Networks

Closing the Loop for Dynamic IP QoS
Provisioning: A Case Study

Swati Sinha Deb, Alistair Munro
Department of Electrical and Electronic Engineering
University of Bristol
Bristol, UK
Email: {Swati.Deb, Alistair.Munro}@bristol.ac.uk

Abstract—This paper investigates an approach to enabling
dynamic reactive quality-of-service (QoS) management for IP
networks. We use the information collected from monitoring
traffic flows combined with middleware for setting network
element configurations to differentiate the service given to traffic.
We report on experiences of implementing the QoS manage-
ment system using XORP (eXtensible Open Router Platform)
and Click, the open source software router. The performance
evaluation in terms of packet loss, dynamic behaviour of QoS
configuration and time to re-configure the XORP+Click router
is presented.

I. INTRODUCTION

There is a class of applications, such as performance man-
agement (for traffic monitoring, configuration tuning and plan-
ning purposes), usage-based accounting, or attack/intrusion
detection, that require traffic measurements from the network.
They deliver information to which the provider can be ex-
pected to react over a relatively long timescale. By contrast,
there is a collection of issues of interest concerning the use
of traffic measurement to discover what is actually happening
in an IP network, and subsequently to control closer to real-
time how packets are processed, i.e. closing control loop
without operator intervention. This is topical for “the Internet”,
i.e. the collection of internetworked communications systems
running IP protocols. The Internet thrives on diversity and
openness but this has a potential downside when exploited for
malicious purposes or actively attacked. While policing such
undesirable activity is probably a good thing to do, it does
require mechanisms that are themselves as incorruptible as
necessary while being simple, having low cost (in additional
traffic load or system complexity, or operator expertise), and
being configurable and mobile (i.e. they can be put where they
are useful and usable).

In this paper we present a software prototype implementa-
tion that integrates simple off-the-shelf components to build
flexible passive measurement system that has the essence
of these attributes. In summary, the proposed measurement
system consists of an IPFIX (IP Flow Information Export)
compliant meter (as in [1]), exporter and collector. The flows
are detected at line speed using a Tarari regular expression

0742-1303/07 $25.00 © 2007 IEEE
DOI 10.1109/LCN.2007.56

IEEE
368 computer
@ lOsoue

(regex) agent [2] '. We use a relational database to query
and store the measurement data for further analysis by var-
ious applications to troubleshoot and answer various typical
questions related to network performance. To demonstrate
the proposed network measurement system we consider QoS
monitoring as a use case. The deployment of QoS provisioning
within an Internet has generated lot of interest recently within
the research community, (but not very much in the user and
operator domain). One way to deploy QoS on the Internet is
through the IETF (Internet Engineering Task Force) defined
policy-based routing. Our prototype uses this in combination
with the differentiated service (DiffServ) model as a demon-
strator of QoS management applicable to IP networks. It is
reminiscent in some ways of the UMTS QoS architecture
specified by 3GPP, although we are aiming at a bi-directional
reactive system in which QoS management is just one possible
supported function.

The paper is organized as follows. In section II we de-
scribe the flow-export protocol used in the prototype, and
discuss why we chose it in preference to the current IPFIX
protocol. Section III describes the software implementation of
the network monitoring system. Section IV demonstrates the
testbed and performance of the software-based edge router
architecture in which the forwarding plane of the router is
dynamically configured to enable QoS based on the network
policies, transport, middleware and application functions. It
also illustrates performance evaluation of the router in terms
of dynamic behaviour of router, throughput and time to re-
configure the router. Section V of the paper discusses existing
work. Finally, section VI concludes the paper and identifies
future work.

II. TRAFFIC MEASUREMENT: PROCESSES AND PROTOCOLS

The two techniques used to measure network traffic are
active measurement and passive measurement. Active mea-
surement sends probe packets into the network. Tools like
ping and traceroute are fairly crude examples of this; other
better conceived tools have been proposed by IETF working
groups. Other techniques are indirectly active, such as the

'Some terms used in this paper may be registered trademarks of corpora-
tions including Tarari, XACCT, and Cisco. Where used, we intend them to
be interpreted in the same way as they are understood in common usage in
the IP community.

ty

round-trip time, or delay, estimates used in some multicast
congestion management models (PLM, WEBRC, PSLM). The
active approach creates extra traffic and the traffic, or its
parameters, are artificial. By contrast, passive measurement
utilizes the existing traffic in the network to gather traffic
statistics. One way of doing this is to poll passive monitoring
devices periodically and record responses that are used to
assess network performance and status. It is typically applied
where the traffic of interest is already present. Passive mea-
surement can be performed using sniffers or OC3MON [3], or
it can be embedded in routers, switches or end hosts. Remote
Monitoring (RMON) [4], which is based on IP network man-
agement protocol, (SNMP), Cisco’s NetFlow [5] and Intel’s
CoMo (Continuous Monitoring) [6] are some examples of
embedded functions.

Intel’s CoMo shows typical features that could be expected
of a modern passive measurement system:

« an open software platform;

« allows any generic metric to be computed on an incoming
traffic stream;

o provides privacy and security guarantees to the network
users, CoMo users and the owner of the monitoring link;

e it is robust in a sense that no “black-out” periods occur
when it cannot sustain the incoming traffic streams;

« can be extended and personalised using plug-in modules,
which are responsible for various transformations of the
data;

e export to external mass storage.

CoMo’s core processes perform basic operations such as
packet capture, filter and data storage. Incoming packets are
processed in various ways, according to configuration, and
finally stored onto hard disks from where the data are retrieved
on user request. CoMo uses a stream database approach to
manage network data queries.

The communications community has produced various pro-
posals for, or adopted de-facto solutions as, standards. For
example, at protocol level, the IETF IPFIX working group [1]
has defined how to export IP flow measurement data collected
at different points at the network from IPFIX exporter to IPFIX
collectors. At present IPFIX is based on Cisco’s NetFlow to
export IP measurement data to different range of management
applications. Groups interested in charging have produced their
own proposals.

A. Choosing a Flow-Export Protocol

The IPFIX working group assessed several export proto-
cols and associated architectures, and chose a model based
on Cisco’s NetFlow. We chose CRANE (Common Reliable
Accounting for Network Element) protocol [7] because we
believe it has its own strengths, and the differences and
similarities deserve further exploration in any case. We aim
in the long term to address the following questions, motivated
by:

1) Origin and history - the CRANE protocol emphasizes

extensibility with the goal of applicability to a wide

Template
FlowSet

Template

Data FlowSet FlowSet

Gacket Data FlowSet
Header

Fig. 1. NetFlow Version 9 packet layout

range of accounting tasks and business processes, i.e.
it is more than a traffic or packet capture and export
system. What benefits and new insights could this per-
spective bring?

2) Issues of methodology, architecture, information flow,
and function - these provide a cultural framework that
underlies the protocol. Is the CRANE protocol a richer
language that can be used to build more powerful flow
export and management systems?

3) Sampling granularity - what can be ignored, or even that
nothing is ignored. What loss is tolerable?

4) Transport of data - the usual choice of unreliable vs.
reliable underlying services, and their coexistence with
other services and applications sharing the network.
What recommendation is best?

5) Security - is a flow export system more of a threat
to overall security and availability than an asset to the
network?

6) Event notifications - how to select events and who
reports them?

7) High-availability and resilience - does the language
spoken between exporters and collectors make it easier
to achieve a high grade-of-service?

The main characteristics Cisco’s NetFlow and CRANE are
given below, for the purposes of comparison, and the reader
should please refer to [8] for a detailed analysis of other
existing protocols such as DIAMETER, LFAF, and Streaming
IPDR. Note: we refer to NetFlow version 9 when we write
NetFlow.

o Both CRANE and NetFlow provide a mechanism for
defining the layout (ordering and size of fields) and
semantics (datatype) of exported data records using a
template approach. A NetFlow exporter will send the
template definitions to the collector before sending flow
records. One of the key elements in NetFlow is the
template FlowSet which describes the type and length of
individual fields within following NetFlow data records
that match a template type. NetFlow also provides for an
option template and its corresponding options data record.
The option template set is used to provide information
regarding “meta-data” about the NetFlow process itself
and not about IP flows. The NetFlow record format, as
shown in Fig. 1, consists of packet header followed by
atleast one or more template or data FlowSets. Fig. 2
shows CRANE packet. In a CRANE system there is
a phase of template negotiation between server(s) and
a client participating in a given session before actual
accounting data is sent. CRANE uses “keys” to specify
the fields in the template. A key can be enabled or
disabled. An enabled key means that the data record

369

A Final Template
CRANE Header F'"a'ge'"”'ate Data
ata
Acknowledge

Fig. 2.

CRANE packet for a given CRANE session

will contain the data item specified by the key whereas
a disabled key will skip the specified data item. The
enabling and disabling of keys in template negotiation
affects the bandwidth requirement. After the template
negotiation, the CRANE client only needs to send actual
accounting data without any descriptors of the data. This
reduces the processing in network elements.

o In NetFlow the data is represented using network byte
order whereas the CRANE protocol can choose the byte
ordering. The key advantage is that this lowers the
processing demand on exporter based on little-endian
architectures.

o In NetFlow the data flow is unidirectional. The data flow
is basically from exporter to collector, with the collector
only sending acknowledgements. In CRANE protocol
the flow of control messages between the exporter and
collector are bi-directional.

o NetFlow has been designed to be transport protocol inde-
pendent. Hence, it can operate over congestion-aware pro-
tocols such as SCTP, as well as TCP and UDP. CRANE
protocol operates over either SCTP or TCP transport
protocol, and inherits the congestion awareness of these
protocols. In NetFlow, the use of ‘“reliable” transport
protocol is optional, and it does not support application-
level acknowledgements. CRANE uses application-layer
acknowledgements as an indication of successful process-
ing by the CRANE server.

e« CRANE protocol can either use lower-layer security
mechanisms such as IPSEC or TLS whereas NetFlow
over UDP relies on IPSEC. NetFlow does not impose any
confidentiality, integrity or authentication requirements as
this reduces the efficiency of the implementation.

e« CRANE supports redundant server configurations and
fault tolerance. NetFlow allows currently two collectors
to be configured in an exporter. Both the collectors in
NetFlow receive all the data records and could use the
sequence number or inter-collector communication to de-
duplicate the data records. This may waste bandwidth and
other network resources.

o NetFlow supports sampling. CRANE considers sampling
to be inadmissible as it is targeted towards Telco-grade
accounting.

In brief the key attributes of the CRANE protocol are:
End-to-end reliability: it uses a transport layer protocol
such as TCP or SCTP that ensures in-sequence, reliable data
packet delivery. It is bi-directional over the entire duration
of a session. It implements protocol level acknowledgements
that ensure the accounting records are stored and processed
successfully in the CRANE server(s).

Efficiency: it is the only protocol that can choose the byte

ordering of the data. Using “template negotiation” only desired
data records and fields are transmitted with considerably less
overhead compared to other data encoding techniques.
Flexibility: it imposes minimal constraints on the data struc-
ture of transmitted accounting records. Implementing a “tem-
plate negotiation” process can support any user-defined data
structure. The protocol also has version and capability nego-
tiation facility.

Scalability: it scales well with an increasing number of
network elements due to its high performance, low overhead
and load balancing capability.

III. NETWORK TRAFFIC MONITORING SYSTEM
A. Software Implementation

The prototype consists of an IPFIX meter, exporter and
collector. The other components that build the complete mea-
surement system are traffic generator, XORP (eXtensible Open
Router Platform) [9] + Click modular software router [10],
Tarari hardware regex agent that acts as a filter, CRANE
protocol to export the metered data records to collector and
MySql database to store the data records. The complete system
is shown in Fig. 3.

The packet classification function is the most frequently
exercised part of the system, and a potential bottleneck, so we
use the Tarari regex agent because of its powerful firmware
capabilities [2]:

1) High speed pipelined architecture

« “DFA” style state machine for maximum speed
o Processes five jobs simultaneously for throughput of
up to 1 Gbps per regex agent
o Support for load balancing across 4 regex agents
for either maximum regular expression capacity of
4 Gbps throughput
2) Two pattern matching modes

« Parsing mode in which a prioritized greedy match-
ing strategy uniquely labels input byte sequences as
lexemes

« Pattern Matching mode in which every pattern that
matches is reported regardless of overlap

3) Multiple selectable outputs formats

o Token list with start and end pointers
o Token list with just start pointers

o Token list with no pointers

« Bit vector

4) Tarari regex analysis tool

« Reports a Pareto analysis of state usage per regex
« Enables targeted optimization of the most resource
intensive expressions

The measurement application runs as a process in user-space.
The IPFIX meter and exporter consists of a Linux/PC machine.
A traffic generator supplies packets from different applications
and these are captured in pcap format at one of the configured
interfaces of XORP + Click software router. This is known
as the observation point. Timestamping is performed using

370

CRANE Protocol (CRANE Server(s))

Collector

MySQL
Database

(CRANE Client)
Flow Record

Simple FDT

Time-based Sampling

IPFIX Metering Process
(OPTIONAL

Network Elements

A (Offline Process) saL

Query

Flow
Information

Tarari Agent A
Flow Detection

Packets are | Timestamping
pcap
compatible

XORP + Click Router

Ethernet
Network
Interface

regex Tarari
Py "

Application
requiring network
measurement data

Flow Creator

Observation
Point

Flow Keys Flow
(XML File) Template File

- Traffic Generator

FDT : Flow Detection Technique

Fig. 3. Network measurement system architecture

<?xml version="1.0"?>
<IDOCTYPE FLOWDATA SYSTEM "file://h:\XML\FlowData.dtd">

<FLOWDATA>

<FLOW FLOWNAME="DEFAULT">
<FLOWKEY NAME="MacDstAddr" VALUE="{ANYBYTE}6}"/>
<FLOWKEY NAME="MacSrcAddr" VALUE="{ANYBYTE}6}"/>
<FLOWKEY NAME="Type" VALUE="\x08\x00"/>
<FLOWKEY NAME="IPProto" VALUE="6"/>
<FLOWKEY NAME="IPSrcAddr" VALUE="{ANYBYTE}4}"/>
<FLOWKEY NAME="IPDstAddr" VALUE="{ANYBYTE}N4}"/>
<FLOWKEY NAME="TCPSrcPort" VALUE="2000"/>
<FLOWKEY NAME="TCPDstPort" VALUE="80"/>

</IFLOW>

<FLOW FLOWNAME="FLOW1">
<FLOWKEY NAME="MacDstAddr" VALUE=""/>
<FLOWKEY NAME="MacSrcAddr" VALUE=
<FLOWKEY NAME="Type" VALUE=""/>
<FLOWKEY NAME="IPProto" VALUE="6"/>
<FLOWKEY NAME="IPSrcAddr" VALUE="172.20.1.2"/>
<FLOWKEY NAME="IPDstAddr" VALUE="172.20.3.3"/>
<FLOWKEY NAME="TCPSrcPort" VALUE="2000"/>
<FLOWKEY NAME="TCPDstPort" VALUE="80"/>

</[FLOW>

</[FLOWDATA>

Fig. 4. Flow key xml file

the respective Click element, which records in seconds and
microseconds when a packet is received.

B. System Architecture

The overall architecture can be divided into an offline com-
ponent where the user specifies the flow definition and a near
real-time component which is the IPFIX metering process.
The main building blocks of metering process are packet
header capturing, timestamping, packet filtering, sampling and
classifying. The key task of the metering process is to generate
flow records.

The offline component, i.e., the specification of the flow
consists of two parts. The first is the flow keys XML file,
as shown in Fig. 4, containing flow keys corresponding to a
particular flow definition. A flow is defined as a set of IP
packets passing an observation point (i.e. a defined interface
into a router) in the network during a certain time interval.
In the current implementation, all packets belonging to a
particular flow have a set of common properties such as source

%option warn

ANYBYTE .
IP_PKT {ANYBYTEX9}

TCP_PROTO \x06

UDP_PROTO w11

IP_HDR_CHKSUM {ANYBYTE}{2}

IP_SRC_ADDR1 \xac\x14\x01\x02

IP_DST_ADDR1 \xac\x14\x03\x03

IPHEADER1 {IP_PKTHTCP_PROTONIP_HDR_CHKSUMKIP_SRC_ADDR1}{IP_DST_ADDR1}
IPHEADER2 {IP_PKT{UDP_PROTO}IP_HDR_CHKSUM}{IP_SRC_ADDR1}{IP_DST_ADDR1}
TCP_SRC_PORT1 \x07\xDO

TCP_DST_PORT1 \x00\x50

TCP_SRC_PORT2 \x1fix40

TCP_DST_PORT2 \x23\x29

TCP_FRAME {ANYBYTEX16}

TCPHEADER1 {TCP_SRC_PORT1{TCP_DST_PORT1}{TCP_FRAME}

TCPHEADER2 {TCP_SRC_PORT2}{TCP_DST_PORT2{TCP_FRAME}

UDP_SRC_PORT1 \x17\xa7

UDP_DST_PORT1 \x0fixd?
UDP_FRAME {ANYBYTE}4}
UDPHEADER1 {UDP_SRC_PORT1}{UDP_DST_PORT1}{UDP_FRAME}

%s
%%

IPHDR IPTCPHDR IPUDPHDR

{IPHEADER1} {
<< NO OUTPUT >>
<< START IPTCPHDR >>

{IPHEADER2} {
<< NO OUTPUT >>
<< START IPUDPHDR >>

}
<IPTCPHDR>{TCPHEADER1} {
<< OUTPUT 1 >>
<< HALT >>

}
<IPTCPHDR>{TCPHEADERZ2} {
<< OUTPUT 2 >>
<< HALT >>

}
<IPUDPHDR>{UDPHEADER1}{
<< OUTPUT 3 >>
<< HALT >>

Fig. 5. Tarari regex template

IP address, destination IP address, network protocol (IP, ICMP,
etc.), application protocol (which can be related to the port
number in many cases provided conventions are followed). A
single flow key file can have multiple flow definitions. Each
flow key is a name/value pair. The second component in the
offline process is the flow template file. The template file is of
similar structure to Tarari regex specification. The template
file represents the regular expression to identify complex
network flows. The template file is designed with replaceable
parameters where the parameter values can be picked up from
the flow key XML file (name/value pairs). The process of
merging the XML based flow key file and flow template file
will be performed offline by a flow creator, a Perl based parser.
The output of this parser will be a regex file, as shown in Fig.
5, which will contain regular expressions to identify flows.
This regex file is then used by the Tarari API to perform
pattern matching. Tarari agent acts as a hardware filter that sort
packets of a flow from incoming streams of flows according to
the selection criteria specified in the flow keys XML file. The
Tarari infrastructure identifies a flow and reports the results
to the next process. Optionally, one can have a software filter
instead of hardware filter.

The next process is sampling. Sampling refers to selecting
a subset of the traffic captured at observation point. Sampling
techniques can be classified as random sampling, where packet
selection is based on random functions (such as n-out-of-N,
uniform probabilistic, non-uniform probabilistic) and system-
atic sampling, based on deterministic functions. The selection

371

decision in systematic sampling can depend on packet times-
tamp (time-based), packet count (count-based) or packet con-
tent (content-based). Content-based sampling includes hash-
based methods. We have a provision of time-based sampling
and this represents a deviation from the CRANE model. Packet
selection is triggered at periodic instants separated by a time
called the spacing. All packets that arrive within a certain
time of the trigger (called the interval length) are selected. At
present we are using a very simple technique to create flow
records from input stream of packet or session records. These
are formatted as single line records comprising standard fixed
fields, such as timestamp, IP addresses, ports, that are reported
for every record and other data components reported using the
widely favoured Type-Length-Value (TLV) format. We use the
flow 5-tuple consisting of source IP address, destination IP
address, transport protocol, source port and destination port
as a hash to update and associate the records in the Flow
Record array.

The exporter is an entity that performs the transfer of
measurement data to the collector. It accesses the flow record
cache, selects the Flow Records to be exported and builds
CRANE messages out of them.

The collector is an entity that receives and stores the
measurement data from an exporter.

The final component is a relational database where the
collector stores the measurement data. We chose to use MySql
database for the following reasons:

o It should be fairly easy for the server to insert new data.

o It should be easy to retrieve data when a query is

submitted from the management applications.

1) CRANE Protocol Software: The software implementa-
tion of the CRANE protocol is shown in Fig. 6, to transport the
metered data from upstream systems such as network elements
to downstream systems. The CRANE protocol defines the nec-
essary messages that need to be exchanged, such as connect,
flow start, template data, error, flow stop. Each message is
composed of specific CRANE objects.

The CRANE client is implemented on the exporting side
(data producing side) and the CRANE server is implemented
on the collecting side (data receiving side). The CRANE client
is integrated with the network element’s software, enabling it
to collect and send the usage information to the CRANE server

In CRANE client there are two threads running. The multi-
threading is implemented using the ACE (Adaptive Communi-
cation Environment) Framework [11]. One of the processes in
the CRANE client, called the Flow Record Manager, reads the
flow records from input stream and stores locally into the Flow
Record Cache. The Flow Record Cache is a set of structure of
different types of data record. Once the Flow Record Cache is
full, the oldest records are dropped first to accommodate the
new flow records. The CRANE client will retrieve the flow
records from the Flow Record Cache.

The CRANE protocol is an application running over a
reliable transport layer such as TCP or SCTP. In our design,
the CRANE messages are transmitted using TCP. The CRANE
server connects to the CRANE client, and is responsible for

ini file (Conf. file)
stored at server

Client IP
Address Port

128.160.20.10 4730

Thread PWM
-
Seryer 1 Hu

ini file (Conf. file)
stored at server

O

Flow Record Cache

TCP,

Flow Record
Manager

Client IP
Address Port

128.160.20.10 4730

Thread Prom[

Tcp Seryer 2
CRANE Client listening at

Port 4730

pawns Thread

=]

" ini file (Contf. file)
stored at server

Client IP

Record :
,,,,,,,,,,) :

Address Port

Tee 128.160.20.10 4730

Thread Processes
CRANE Client

configuration file

— Thread Processes
IP Address | Server Status |Priority <
.21.30.2 P 1 =
68.21.30. ul
Seryern Hu

Software implementation of CRANE protocol

O

Fig. 6.

re-establishing a connection in case of a failure. Another
process in the CRANE client spawns thread to accommodate
connections from multiple servers simultaneously. Once a
CRANE server has established a connection with the CRANE
client; the CRANE client then configures the network address
of all the CRANE servers belonging to the session. It also
maintains the CRANE server’s status which reflects whether
the server is active or inactive and the priority of the server.
The transport layer is responsible for monitoring the CRANE
server’s responsiveness and notifying the CRANE client of
any failures. The server priority reflects the CRANE client’s
preference regarding which CRANE server should receive the
accounting data.

Another thread in the CRANE server(s) stores the received
accounting data into the database.

IV. APPLICATION CASE STUDY -QOS MANAGEMENT

Fig. 7 shows the testbed used for the QoS management
experiment. The testbed is composed of traffic transmitter,
traffic receiver and XORP+Click routers that are connected
by 10Mbps Ethernet links. It has a policy client and CRANE
client installed. The CRANE client is used to transfer the
network measurement data to the CRANE server. The CRANE
server then stores the flow information into the SQL database,
which can be used by various management applications such
as attack/intrusion detection, traffic engineering for further
analysis, and, in our case, QoS management.

The Bandwidth Manager sends an SQL query to retrieve
the flow properties. It then determines the rate of the session

372

‘ QoSPolicyGroup ‘

‘ Out-of-Profile ‘ ‘ EWMAThreshold

PolicyRule1

- | PolicyRuleN

H Accept | | ConditionN H ActionN
-

Policy
Repository

MaxﬁthH Min_th ‘

avgRate <
Min_th

saL

(Monitoring
Information)

<Tmpl ID,
FlowStart(sec),
FlowStart(microsec),
FlowEnd(sec),
FlowEnd(microsec),
TotalBytes,
PacketCounter,
Protocol, SrclPAddr,
DstIPAddr, SrcPort,

DstPort> CRANE Server

Background Traffic

Flow Record
Information

Network
Monitoring
tion

(Flow Records)

Config

— e

10Mbps (— | 10Mbps &] 10Mbps &
= = | S—— [L =
Edge Router Core Router Edge Router Traffic
Transmitter (XORP+Click Router) + (XORP+Click Router) + (XORP+Click Router) + Receiver
CRANE Client CRANE Client CRANE Client

CRANE Protocol

Policy Client (PEP)

Policy Client (PEP)
DiffServ Domain

Policy Client (PEP)

Fig. 7. QoS management testbed

(or flow). Using this rate Bandwidth Manager calculates the
avgRate, which is achieved by using the exponential weighted
moving average (EWMA) [12]. It then communicates this to
the policy server. The policy server makes a decision based on
the policy rules it retrieves from the policy repository, which is
an openLDAP (Lightweight Directory Access Protocol) [13]
server. Our implementation uses the three tier policy model as
described in [14] to store the policies.

The internal router configuration of forwarding plane, such
as classification, marker, meter and scheduler are Click ele-
ments, are dynamically adjusted to guarantee each traffic flow
QoS requirements. Based on the avgRate and the thresholds,
which is used to determine the load condition of the network,
the policy server makes a dynamic decision of which policy
to use for out-of-profile traffic, i.e., to accept, remark as best
effort or drop, as illustrated in Fig. 8.

The policy server then sends the decision to the policy client
using Common Open Policy Service (COPS) protocol [15].
Each time the policy condition changes the XORP interfaces
are re-configured according to the new Click configuration
file. The new Click configuration file is installed by the
policy client using the user-level hot-swapping option. The
hot-swapping in the user-level is performed using the Click
ControlSocket element, which opens a control socket that
allows other application to call read/write handlers on the
router.

A. Performance Analysis

The experiment performed aims at estimating the efficiency
and responsiveness of the system.

The first experiment focuses on dynamic configuration of
the router. The traffic generator sends UDP packets of 256

In-Profile
Traffic

Meter
(Rate
limiting)

WFQ

Classifier Scheduler

Marker

Output
Line

Out-of-Profile
Traffic

Traffic Rate
(determined
from
network
monitoring
system)

Accept

Dynamic
Decision
Based on
Load
Conditions

Re-Mark as
Best-Effort
(Medium
Load)

Fig. 8. Dynamic QoS decision

10000 T T T
Low Load Medium Load High Load
9000 - 7

\AbAm

5000 : ul

8000 -

7000 -

6000

Rate (kbps)

4000 T

3000

2000 -

Max_th |
Min_th
Incoming traffic rate -
avgRate

0 I I I I I I
30 50 60

Time (sec)

1000 -

Fig. 9. Input traffic: dynamic behaviour of XORP+Click router

bytes. We send 400-4000 packets per sec to load the network
differently each time. The test is run for 60 seconds and
every 20 seconds we change the load, i.e., from low load
to medium load and then high load. To achieve low load
conditions the traffic generator sends 400-1400 packets per
second randomly, for medium load it sends 1500-2900 packets
per second and for high load it sends 3000-4000 packets per
second. Policing is performed at the edge of the network for a
given traffic, which is identified by flow 5-tuple as described
above. Policy is determined by the traffic specification. In
this experiment we set the meter rate limit to 1000kbps, i.e.
the incoming traffic must not exceed 1000kbps. For testing
purposes we transmit out-of-profile traffic (traffic that has rate
equal or greater than 1000kbps). The out-of-profile traffic can
be accepted, re-marked as best effort or dropped depending
on the load conditions. The in-profile traffic is that conforms
to the traffic specification. Following DiffServ protocol, the
in-profile traffic is marked with IP Precedence of 6 to give
higher priority.

Fig. 9 shows the link load during the period of the exper-
iment. This measurement was taken at the ingress interface
of the edge router. We set the Max_th to be 6000kbps and
Min_th to be 3000kbps. The Bandwidth Manager retrieves
the flow properties from the monitoring system every 1 second
to determine the rate. The policy server makes the decision
according to the avgRate.

373

900 T T

800 B —

700~ ml

600 - . -

Rate (kbps)

Low Load Medium Load High Load

0 L L I I L L
0 10 20 30 40 50 60 70

Time (sec)

Fig. 10. Outgoing traffic: dynamic behaviour of XORP+Click router

12000

: :
I Packets sent

[] Packets received
10000 -| I Packets dropped]

8000 [1

6000 [1 1

Packet statistics

4000 b

2000

L |

1.05 5 7.8 8.3 9.45
Bandwidth (Mbits/sec)

Fig. 11. Packet loss

Fig. 10 shows received traffic behaviour. The out-of-profile
traffic is dynamically handled depending upon the load con-
ditions. When the load is medium, a high priority packet is
remarked as best effort packet and then shaped at 125kbps
and in low load condition the out-profile traffic is accepted
and shaped at 875kbps. Similarly, when the load is high all
the packets are dropped.

The average time to re-configure the router for the simple
policy rules used in the experiment is approximately 45 usec.

The next experiment determines the throughput using the
IPerf tool [16] for evaluating packet loss. It generates a single
UDP flow and runs for 10 seconds. The results depicted in
Fig. 11 show no packet losses for throughput below 7.8Mbps
or equivalently 952 packets per second (packets are 1024 byte
datagrams). Beyond that threshold the losses are due to the
Click element processing limitations inside the router.

Table I shows the execution times (in microseconds per
packet) of each element involved in providing QoS in software
router. The result represent a low level of performance because
the implementation is in user space. We use 64 byte UDP

Element Time(usec)
Strip 36
CheckIPHeader 65
SetTimestamp 25

Meter 23
TarariHandler 280
FlowClassifier 33

Shaper 57
WFQSched 112
LinearlPLookup | 34
RED 60
TABLE I

EXECUTION TIME REQUIRED BY EACH ELEMENT TO ENABLE QOS IN
XORP + CLICK SOFTWARE ROUTER, IN MICROSECONDS PER PACKET

packets as minimum size packets stress the router harder
than larger packets; the CPU and several other bottleneck
resources are consumed in proportion to the number of packets
forwarded, not in proportion to bandwidth.

V. RELATED WORK

Traditional sources of traffic monitoring are SNMP, Cisco’s
NetFlow and packet level data. SNMP provides information
about the management data which describes the system config-
uration. SNMP can be used to determine the volume of traffic
(in bytes), monitoring device uptimes, and network interface
throughput. Flow-level data captured by Cisco’s NetFlow
provides high level fine grained data and application specific
information at high speed while packet-level data captured in
the form of pcap format by tools like tcpdump and ethereal
are mostly used to debug applications and intercept network
setup.

The main challenges in network measurement are the capa-
bility to identify and classify traffic accurately at high speed,
timely export of the measurement data and the potential of
storing huge amount of data. A methodology is discussed and
reviewed on [17] that relies on the observation of the first
five packets of a TCP connection to identify the application.
A content-based classification approach to identify network
applications is discussed in [18]. It is capable of accurately
classifying and identifying traffic flows that could otherwise
be classified incorrectly. References [19] and [20] discusses
a Naive Bayes estimator to categorize traffic by applications.
It considers hand-classified network data that is given to a
supervised Naive Bayes estimator.

Rapid changes in the organisation and their environment are
mostly through policy driven activities. The issue is addressed
by using a policy repository and plug-in-modules of policy
elements. The main problem is how to enforce policies no
matter what kind of policies are required to be enforced
and how do we provide flexibility and adaptability to this
policy enforcement to accommodate future requirements? An
integrated grid resource management architecture based on
QoS-constraint policy discussed in [21] derives cost-sensitivity
policy enforcement procedure which can be applied to this
architecture in Grid over GMPLS (Generalize Multi-Protocol
Label Switch) network. The article [22] discusses the Enter-

374

prise Policy Server, which is responsible for the installation
and tracking of QoS policies on the network. This includes
policy interpretation from high level definition into low level
device configuration, policy conflict resolution, device com-
munication, policy installation, and policy storage.

VI. CONCLUSIONS AND FUTURE WORK

We have described the design and implementation of a
flexible programmable passive network monitoring system.
An approach to dynamically configure differentiated service
capabilities in an open source software router platform is
discussed. The proposed framework uses information collected
from network monitoring, transport, middleware and applica-
tion functions.

Initial results illustrate the performance of the proposed
approach with respect to dynamic QoS behaviour of an open
source software router, packet loss and time to re-configure.
It shows that the packet loss and the time to re-configure
the XORP+Click router according to the flow criteria set are
negligible. Extensions of this specific theme of experiment
would be to investigate the issues related to dynamic handling
of out-of-profile traffic in relation to charging and pricing
mechanisms.

In terms of the soundness of the approach, we can appeal
to the basic Internet principles, in that we are not breaking
the end-end model, nor do we demand that state be stored
and refreshed in forwarding elements on behalf of end-to-end
relationships. What we have provided is a set of information
flows and a distributed processing framework that exploit the
capabilities of a flow export function and demonstrate how the
loop can be closed - i.e. as a case study of what flow export
is for.

Although we have chosen a different specific platform, we
would expect that the recommendations and RFCs of the
IETF IPFIX WG would support the protocol functionality we
need. However, protocol specifications are not written in an
architectural vacuum, and we would draw the reader’s attention
to what we consider to be significant benefits of the CRANE
architecture. And we must not forget that the strength of the
IETF is that its recommendations can be ignored if a better
approach is identified!

At this stage of development we are not in a position to
answer obvious, or deeper, questions about the rationale for
such a monitoring system and whether it is an asset to the IP
community or another threat to the open Internet. Performance,
security against all the usual threats, what is a flow anyway,
is IP QoS any use: all these are still open. For now, we see its
potential as a platform for discovering what is going on out
there and responding to it.

REFERENCES

[1] J. Quittek, T. Zseby, et al., Requirements for IP Flow Information Export
(IPFIX), RFC 3917, October 2004.

[2] Tarari Inc., Regular Expression Agent Processor API Guide, White paper,
available from http://www.tarari.com/library.asp.

[3] J. Apisdorf, K. Claffy, et al., OC3MON: flexible, affordable, high per-
formance statistics collection, In Proc. of the USENIX Tenth System
Administration Conference (LISA X), Chicago, IL, September 1996.

375

[4] S. Waldbusser, R. Cole, et al., Introduction to the Remote Monitoring

(RMON) Family of MIB Modules, RFC 3577, August 2003.

B. Claise, Cisco Systems NetFlow Services Export Version 9, RFC 3954,

October 2004.

G. lannaccone, CoMo: An open infrastructure for network monitoring -

Research Agenda, Intel Research Technical Report, February 2005.

K. Zhang and E. Elkin, XACCT’s Common Reliable Accounting for

Network Element (CRANE) Protocol Specification Version 1.0, RFC 3423,

November 2002.

S. Leinen, Evaluation of Candidate Protocols for IP Flow Information

Export (IPFIX), RFC 3955, October 2004.

M. Handley, O. Hodson and E. Kohler, XORP: An Open Platform for

Network Research, In Proc. of First Workshop on Hot Topics in Networks,

October 2002.

[10] E. Kohler, R. Morris, et al., The Click Modular Router, ACM Trans. on
Computer Systems, vol. 18, no. 3, August 2000.

[11] D. C. Schmidt and S. D. Huston, C++ Network Programming: System-
atic Reuse with ACE and Frameworks, Addison-Wesley Longman, 2003,
ISBN 0-201-79525-6.

[12] E.P. George Box, W.G. Hunter, J. Stuart Hunter, Statistics for Experi-
menters: An Introduction to Design, Data Analysis and Model Building,
John Wiley & Sons, 1978.

[13] http://www.openldap.org/

[14] R. Rajan, et al., A Policy Framework for Integrated and Differentiated
Services in the Internet, IEEE Network, vol. 13, no. 5, pp. 36-41,
September/October 1999.

[15] D. Durham, J. Boyle, et al., The COPS (Common Open Policy Service)
Protocol, RFC 2748, January 2000.

[16] http:://dast.nlanr.net/Projects/Ipert/

[17] L. Bernaille, R. Teixeira, I. Akodkenou, et al., Traffic classification
on the fly, ACM SIGCOMM Computer Communications Review, April
2006.

[18] A. W. Moore and D. Papagiannaki, Towards the accurate identification
of network application, In Proc. of Passive and Active Measurement
Conference, Boston, MA, March 2005.

[19] A. W. Moore and D. Zuev, Internet traffic classification using Bayesian
analysis techniques, In Proc. of ACM SIGMETRICS, Banff, Alberta,
Canada, June 2005.

[20] T. Auld, A. W. Moore, and S. F. Gull, Bayesian neural networks for
internet traffic classification, IEEE Transactions on Neural Networks, vol.
18, no. 1, January 2007.

[21] H. Song, C. H. Youn, C. Han and C. Chen, QoS-constraint
Configuration Management Policy Enforcement Scheme in Grid over
GMPLS Networks , In Proc. of Internation Conference on Communication
Technology, Guilin, China, November 2006.

[22] A. Melia, Quality of service in enterprise networks , IEE Colloquium
on Services Over the Internet - What Does Quality Cost?, June 1999.

(3]
1

(71

[6

(8]
[9]

