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Abstract— In this paper we present an analog implementation of 
the mean-field algorithm for inference in Undirected Graphical 
Models (UGM). One of its numerous applications is signal 
detection in wireless receivers which can benefit from low power 
analog circuitry. An example detector for a double Alamouti 
Space-Time Block Code (STBC) has been designed and laid out 
in a 0.25µm SiGe BiCMOS process. 

I. INTRODUCTION 
In this contribution we consider an inferential task on 

Undirected Graphical Models, also known as Markov Random 
Fields (MRF). UGM are a very useful formalism for 
describing conditional dependence between random variables. 
An UGM consists of a graph G with an associated set of 
variables and connecting edges G={V, E}. An example of 
such graph is depicted in Fig.1, where the larger red dots 
represent unobserved variables of interest and smaller blue 
dots represent observed variables. The structure of the graph 
(connections) lends itself to a factorization of the joint 
distribution function 
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From equation (1) we note that the joint distribution of 
interest is a product over cliques (sets of fully connected 
nodes), which are singleton variables and pairs of variables. 
Our task is to calculate sets of marginal distributions for all 
unobserved variables, given the values of the observed 
variables and the structure of the graph, i.e. 
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where Z is a normalizing constant and “–i” stands for “all 
except i”. 

This task can be efficiently performed (either exactly or 
resorting to approximations) with analog circuitry. Analog 
signal processing has the potential to outperform digital 
implementations in terms of power consumption and silicon 
area, as a great number of nonlinear operations and algorithms 

can be mapped in analog circuits in a straight-forward manner. 
Analog decoding of channel codes [1] is a good example of 
inference on graphs in analog domain with applications in the 
field of communications. These decoders typically perform the 
computation of approximate marginal distributions using sum-
product [2] or belief propagation algorithm which can be very 
efficiently implemented with translinear circuits. Graphical 
models for error correcting codes tend to contain a low density 
of connections. The advantages of analog implementation of 
decoders for such graphs are twofold. First, message passing 
algorithms, which can be highly parallelized, offer near 
optimal performance on them. Secondly, the low degree of 
interconnections ensures that resulting layouts are very 
compact. If we move beyond sparse graphs, sum-product and 
related algorithms start to fail due to the presence of short 
cycles or loops in the graphs, especially if the interactions 
between variables are strong. 

In this paper we try to extend the application of such 
analog decoders to include inference on graphs with a higher 
degree of interconnections. Analog implementation of naive 
Mean Field [3, 4] algorithm is proposed. Due to the simplicity 
of the approximation used, complexity (and thus silicon area) 
can be reduced compared to existing sum-product decoders. 
Simulated annealing is proposed alleviate a possible 
performance degradation caused by short loops and strong 
variable interactions. 

 

 

 

 

 

 

 

 

 

Figure 1. UGM of the considered problem. 
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Figure 2. Optimal and mean field BER curves for the proposed system for 

  a) 2 receive antennas, b) 3 receive antennas, c) 4 receive antennas. 

The rest of the paper is organized as follows. Section II 
introduces the Mean Field algorithm and its application to 
MIMO detection. Section III outlines analog implementation. 
In section IV the design of an example detector is presented. 
Finally, conclusions are drawn in section V.  

II. MEAN FIELD INFERENCE 
Our generic inference problem can be modeled as 

 = +z Rx v  (3) 

where x = (x1, … xN )T is the set of unobserved variables for 
which marginal distributions have to be calculated, z is a 
vector containing the observations, and the matrix R describes 
the interactions between variables (i.e. defines the strengths of 
the edge potentials of the UGM of interest), with v being a 
term of non-white Gaussian noise v∼N(0,σn

2 R) .  In the 
sequel we will assume the terms of x take values from a binary 
alphabet {-a, a}. From (3) we can write  

 ∑
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where zi, rij and vi are the terms of z, R and v respectively, and 
ni is the number of connections to variable i in the graphical 
model. It can be noted that each observation is a sum of a term 
containing the variable of interest plus an undesired term 
which contains interference from the rest of variables and 
noise. The variable’s posterior mean value can be obtained 
from equation (5)  
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where
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In mean field algorithm, the values for the posterior means 
are successively approximated as 
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 In order to improve the convergence we can resort to 
simulated annealing [5], leading to our final expression: 
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where T is a normalized annealing parameter which increases 
gradually from zero to unity and Tmin represents the 
temperature in the last iteration (i.e. the lowest temperature, 
which should be of the same order of magnitude as σn

2 ). For 
convenience, the elements of z and R have also been 
normalized, i.e. ( ),, 1i i jz a r⋅ < . 

In section III, analog implementation of equation (7) is 
discussed. 

As aforementioned, the application targeted is detection of 
Space Time Block Codes (STBC). Specifically, a simple 
Alamouti STBC is considered [6], in which diversity is 
obtained by transmitting two symbols s0, s1 in two time slots 
and using two antennas. Assuming QPSK modulation, the 
transmission scheme can be summarized as: 

  0 1 2s x j x= + ⋅ ,  1 3 4s x j x= + ⋅  
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In this case, if the channel remains static during both time 
slots, matched filter becomes optimal in the ML sense and 
detection complexity is linear (R is diagonal). We will 
consider a combination of two Alamouti transmitters working 
in parallel [7], therefore doubling the rate at the expense of 
sacrificing orthogonality. The resulting 8×8 matrix R has the 
form: 

 1 4

2 4
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k
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I A
R

A I
 

where I4 is the identity matrix of size four, and A is a 4×4 
matrix of non-zero elements which represent interactions 
between non-orthogonal variables. Therefore, only two 
quadrants are diagonal whereas the other two are fully 
connected. This particular inference problem can also be 
represented by the UGM of Fig.1, where each variable is 
connected to four others. This kind of graph already becomes 
difficult for message passing algorithms due to the short loops 
present, especially when the number of receive antennas 
approaches the minimum (two in this case).  

Bit error rate curves for the proposed algorithm applied to 
this system are presented in Fig. 2, for the cases of two, three 
and four receive antennas. As diversity is increased by adding 
more receive antennas, the interactions between variables 
become weaker (off-diagonal elements of R have lower 
values) and mean field algorithm becomes near optimal. 
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III. ANALOG IMPLEMENTATION 
As previously noted, the term inside the tanh function in 

(7) contains a local observation and a sum of terms which 
account for the interference from other variables. Computation 
of these terms is straightforward in analog domain by using a 
modified version of a well known circuit: the Gilbert 
multiplier [8]. A single Gilbert multiplier like the one in Fig. 3 
can efficiently compute the product of two mean values. 

In our case, the two sets of input currents are made 
proportional to the corresponding element ri,j of the inference 
matrix and the current estimate ˆ jm  respectively: 

1 0 ,X X ref i jI I I a r− = ⋅ ⋅ , 
1 0 ˆY Y ref jI I I m a− = ⋅  

that is: 
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 ( )0Y ref jI I p x a= = − ,  ( )1Y ref jI I p x a= = . 

Note that since we normalized the terms of the matrix, all 
the input currents take some positive value smaller than the 
reference current Iref . The value of Iref will be chosen taking 
into account the required decoding speed and maximum power 
consumption of the circuit. 

This leads to the following output currents for the Gilbert 
multiplier: 
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2
ref

Z i j j

I
I r m= − ⋅ , ( )1 , ˆ1

2
ref

Z i j j

I
I r m= + ⋅   

and thus the output differential current is proportional to the 
desired interference term. It is worth noting that this current 
domain representation of the terms is particularly convenient 
since current signals can be summed without any additional 
circuitry. 

 1 0 , ˆZ Z ref i j jI I I r m− = ⋅ ⋅ . (8) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic of a Gilbert current multiplier and  
output current equations. 

Therefore, by simply connecting together the outputs of 
several multipliers we can obtain a set of currents {I1, I0} such 
that 
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These currents are then passed to the circuit of Fig. 4. The 
first stage is an additional Gilbert multiplier which performs 
simulated annealing. This makes possible a single stage 
implementation of the algorithm since annealing can be 
performed ‘on the fly’, i.e. the temperature can be controlled 
directly from an external signal: 

 ( )0 1
2

ANN
A

II T= − ,  ( )1 1
2

ANN
A

II T= + . 

The difference of voltage between the terminals of the 
resistors becomes 
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Finally, the output differential pair performs the tanh function 
required to compute a new update of the posterior mean: 
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In a complete decoder, the number of Gilbert multipliers is 
determined by the number of connections to the each variable 
in the graphical model. In our case, ni=4 for all variables, so 
four multipliers per variable are needed, and eight individual 
blocks make the complete Mean Field detector. In general, if 
the density of interconnections remains constant then the 
complexity of the algorithm (and the size of the circuit) is 
O(N2) where N is the number of variables.  

Other message passing algorithms, like sum-product, have 
the same order of complexity but besides Gilbert multipliers 
they require additional circuitry to perform summation of log-
probabilities in voltage domain, whereas in our case the 
summations are performed in current domain. On the 
downside, mean field requires annealing to offer the same 
level of performance, therefore making convergence slower. 
In the analog implementation that means longer transients can 
be expected before the currents settle to a good estimate. 

IV. ANALOG MIMO DETECTOR CHIP 
Layout of the complete detector is shown in Fig. 5. The 

analog part consists (from bottom to top of the layout) of a 
matrix of 32 Gilbert multipliers (one for each non-zero off-
diagonal element of R or, equivalently, two for each edge on 
the UGM), a current normalization stage, 8 additional 
multipliers to perform simulated annealing, and a final stage 
performing tanh function.  

While all the inputs to the circuit are purely analog (with 
the exception of reset signals to bring all the initial 
probabilities to a uniform distribution), comparators have been 
added to provide hard (digital) decisions at the output. 
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Figure 5. Layout of the complete detector 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The circuit has been designed in a 0.25µm SiGe BiCMOS 
process and operates from a single supply of 3.3V. The 
estimated power consumption of the analog core is 140mW, 
and simulations show a potential decoding speed of over  
100 Mbps. The total area of the chip is 5.2 mm2. It is worth 
noting that due to the fully parallel implementation decoding 
speed can increase linearly with the number of variables, thus 
making possible a very high throughput for more complex 
systems. 

Although HBTs were used for this particular design, 
translinear circuits can also be constructed employing MOS 
transistors operated in weak inversion, which exhibit a similar 
exponential voltage-current characteristic. A purely MOS 
implementation would effectively reduce the power 
consumption and total area of the decoder. 

The choice of bipolar transistors is based on matching 
considerations. Simulations including models for transistor 
mismatch show that the degradation in performance is a mere 
shift to the right on the bit error rate curves, unless matching 
becomes poor enough to create an error floor above the 
inherent mean field one. Typical mismatch in sub-threshold 
MOS transistors dangerously approaches this limit for our 
application to MIMO cases where performance relies on 
accurate representation of variable and edge potentials. For 
other applications (e.g. channel decoders, or a combination of 
MIMO detection and channel decoding), a purely MOS 
implementation would be viable since the whole system is 
somewhat more immune to transistor mismatch. 

V. CONCLUSIONS 
Inference in analog circuits based on mean field annealing 

has been proposed. The main benefit of the mean field 
approximation is its simplicity which translates directly on 
simpler layouts compared to existing analog decoders based 
on sum-product algorithm, thus making it more suitable for 
factor graphs with a high degree of connections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A decoder prototype has been designed and laid out with 
the objective of testing the proposed implementation. The 
circuit is able to decode signaling from two parallel Alamouti 
transmitters. The performance of the analog detector and 
effects of process variations and transistor mismatch will be 
evaluated on real silicon. 
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Figure 4. Output block performing simulated annealing and non-linear function. 
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