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ABSTRACT

The high demand for unlicensed spectrum mandates the use

of higher frequencies, such as the 60 GHz band, where large

amounts unlicensed bandwidth exists. In this paper, the re-

sults from Power Azimuth Spectrum (PAS) measurements in

a home and an office environment are presented with a view

of revealing the amount of scattering power at that frequency

and its relative power to the Line-of-Sight (LoS) signal. More-

over, a tractable scheme is proposed for the estimation of the

Power Azimuth Spectrum from absolute power measurement

data which produces a very close fit with the measured PAS.

A discussion is made on the accuracy of this method which

is dependent on the directionality of the antenna elements, the

fading in the channel and the presence of noise.

I. INTRODUCTION

The large penetration of Wireless Local Area Networks

(WLANs) in the residential and office environments along with

the ever increasing demand for higher bandwidth is expected

to eventually overflow the already congested radio spectrum at

microwave frequencies [1]. A potential solution to this prob-

lem, from a technological point–of–view, is a combination of

spectrum efficiency enhancing techniques (such as Multiple–

Input Multiple–Output (MIMO) technology) with the exploita-

tion of additional (higher) frequency bands.

This paper examines the potential of the 60 GHz frequency

band for indoor WLAN applications. This band is viewed by

many as a very attractive candidate for future communication

systems due to a high reuse factor which is the result of in-

creased signal attenuation from free-space propagation, scat-

tering and oxygen attenuation compared to lower (microwave)

frequencies. The high reuse factor has allowed for an enormous

bandwidth (between 5 and 7 GHz) to be allocated globally for

unlicensed use [2, 3], however, it is undisputable that the suc-

cessful employment and utilisation of this bandwidth requires

profound knowledge of the propagation characteristics in this

frequency range.

The authors have a specific interest in the area of MIMO

technology where multiple antenna elements are employed in

both ends of a communication link. A crucial parameter that

governs the performance of such systems is the existence of

scatterers in a given environment [4]. Information about the

scattering objects can be derived from the Power Azimuth

Spectrum (PAS) which determines the spatial distribution of

the received power over the azimuth domain. Hence, it is of vi-

tal importance to identify accurately the spatial channel prop-

Figure 1: Measurement system

erties to ultimately be able to make accurate predictions on the

potential performance of MIMO systems at that frequency.

Recently, the deconvolution scheme was proposed for the

estimation of the PAS from complex electric field pattern mea-

surements [8, 9]. In this paper, a number of (real valued) power

measurements were performed and therefore a deconvolution

scheme was found unsuitable. Instead, a simplified serial can-

cellation scheme is employed which is based on an iterative

process of Multipath Power Component (MPC) identification.

II. MEASUREMENT DESCRIPTION

The measurement equipment employed in this study was bor-

rowed from the University of Glamorgan (U.K.) and has been

used in numerous measurements in the past [10, 11, 12]. A de-

scription of this equipment is presented in the following para-

graphs.

A. Measurement equipment

The system employs Phase Locked Loop (PLL) synthesisers

which have an enhanced frequency stability (±1 kHz) that al-

lows the use of a narrow IF filter at the receiver. The transmitter

consists of a 20.8 GHz PLL whose signal frequency is multi-

plied by a factor of three by means of a frequency multiplier,

leading to an output frequency of 62.4 GHz. This signal is fed

to a waveguide attenuator and subsequently to an appropriate

transmitting antenna.

The received signal is mixed with a 61.8 GHz PLL local os-

cillator obtaining a very stable IF of 600 MHz. This IF signal is

then used to evaluate the received signal strength via a logarith-

mic amplifier (LogAmp). To further decrease the noise floor of

the 600 MHz DAQ data logger, an IF band pass filter is used to

reduce the noise power at the LogAmps input which lowers the

noise floor to -57 dBm.

A laptop computer was responsible for the control of the two

servomotors where the transmitter and receiver modules were

mounted. Moreover, this laptop employed a data–acquisition

card with 4 channels and 100 ksamp/s sampling frequency that

1-4244-1144-0/07/$25.00 c©2007 IEEE
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Table 1: Omni antenna characteristics

Specified Frequency Range 59 to 64 GHz

Gain Variation Elevation 2 ± 1.5 dB

Gain Variation Azimuth ± 1 dB

Polarisation Vertical

Nominal 3 dB Beamwidth Greater than 600
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Figure 2: Normalised field pattern on the E plane

was used to perform the data acquisition. The turn tables were

connected to the PC serial port and were controlled via a ded-

icated indexer with a proprietary control language. This lan-

guage was programmed into the measurement software code,

allowing the software to fully control the turn tables. All the

measured data was recorded into a structured Matlab data file

for further processing.

B. Antenna Elements

For both measurement campaigns two different types of an-

tennas were used; at the transmitter (Tx) an omni–directional

antenna was deployed while the receiver (Rx) was connected

to a custom–made 36 dBi directional lens horn antenna. The

omni antenna has been specifically designed to provide a verti-

cally polarised 3600 field of view in the azimuth with the widest

possible acceptance angle in the elevation. The main character-

istics of this antenna are given in Table 1.

On the other hand, the lens horn antenna had a 3 dB–

beamwidth of approximately 1.50 and was used to measure the

received power by obtaining power samples over 3600 in the

azimuth plane in steps of 10. The normalised field response on

the E plane is illustrated in Fig. 2.

III. MEASUREMENT RESULTS

Two different propagation environments were investigated in

this study; namely a home and an office environment. For the

home environment a 4.7 m × 3.5 m lounge area was employed

with a number pieces of furniture and a staircase Fig. 3. The of-

Figure 3: Home environment floor–plan showing the received

power distribution after the log–amp.

Figure 4: Office environment floor–plan showing the received

power distribution after the log–amp.

fice environment was an 18 m× 12.4 m office at the University

of Bristol with several desks, chairs and computer equipment

separated by partitions as shown in Fig. 8.

By rotating the lens antenna in the azimuth plane it was pos-

sible to identify the strength of the LoS signal and individual

reflected signals at two different receiver locations in each en-

vironment. The measured PASs are superimposed in Fig. 3 and

8.

In the home environment a significant difference between the

power of the LoS and the reflected components can be easily

observed. In detail, differences of approximately 15 dB were

observed between the LoS signal and the strongest (first–order)

reflections. In the office environment the results are similar

with differences of around 13 dB between the powers of the

LoS signal and the strongest reflection at a Tx–Rx distance of

5 m. For an increased T–Rx distance however (10 m) a smaller

difference of 8 dB was observed.
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Table 2: Effective MPCs

Location Number of effective MPCs

Home 1 41

Home 2 43

Office 1 28

Office 2 27

IV. POWER AZIMUTH SPECTRUM ESTIMATION

The measured powers from this measurement campaign were

post-processed using a PAS estimation technique. In detail, a

serial cancellation algorithm was used to remove the antenna

pattern effect from the received PAS. Since the Tx antenna had

an omni pattern this process was performed directly on the re-

ceived power. The algorithm used for this study is shown below

using MATLAB notation.

Input: Measured Power Spectrum (PASmeas)

Antenna Pattern (AP )

Output: Estimated Multipath Power Components (MPC)

Reconstructed Power Spectrum (PASrec)

for i=1:q do

[maxV alue maxIndex] = max(PASmeas);

MPC(i,:) = [maxV alue maxIndex];

tempAP = circshift(AP , maxIndex).*maxV alue;

PASmeas = PASmeas − tempAP ;

PASrec = PASrec + tempAP ;

end

In order to determine the number of MPC (q) that were ef-

fectively contributing to the PAS, the minimum Root Mean

Squared Deviation (RMSD) between the measured PAS and

the reconstructed PAS was calculated as follows for different

values of q.

RMSD =

√

(PASmeas − PASrec)
2

(1)

The number of MPCs that corresponded to the minimum

RMSD are shown in Table 2.

The measured and the reconstructed PAS along with the

identified MPCs are shown in the following figures for the two

locations in each environment.

It is clear that there is a very close fit between the recon-

structed and the measured PAS. In detail, it was found that the

RMSD was less than 1 % in all the examined scenarios. How-

ever, as far as the identified MCSs are concerned it is also clear

that there is a number of cases where the number of detected

MPCs is more than one for each peak of the received PAS. This

unavoidable inaccuracy can be attributed to the noise in the en-

vironment and the limited directionality of the system. More-

over, the effect of multipath fading decreases the accuracy of

the method even more especially in the non-LoS orientations.

To increase the accuracy, a higher directionality antenna could
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Figure 5: Received and reconstructed PAS for home environ-

ment, Location 1
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Figure 6: Received and reconstructed PAS for home environ-

ment, Location 2
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Figure 7: Received and reconstructed PAS for office environ-

ment, Location 1
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Figure 8: Received and reconstructed PAS for office environ-

ment, Location 2

be employed and several measurements in adjacent positions to

counteract for the effect of the noise and the channel fading.

For the purposes of our investigation, the results are proven

sufficiently accurate and demonstrate very clearly that the LoS

signal along with the first and second order reflections dom-

inate the PAS. In non-LoS locations, the dynamic range that

was available in the measurement system (≈ 48 dB at a 5 m

distance) did not allow us to receive any signals above the noise

floor.

V. CONCLUSION

This paper presented the procedure and the outcomes of a mea-

surement campaign conducted in a home and an office envi-

ronment at 62.4 GHz. The PAS was measured in two locations

in each environment using an omnidirectional transmitting an-

tenna and a highly directional lens horn antenna at the receiver.

In the post-processing stage a serial cancellation algorithm was

used to estimate the MPCs. The exact number of these MPCs

was decide from calculations of the RMS deviation between

the measured response and the reconstructed PAS.

By comparison of the measured and the reconstructed PAS

the aforementioned method was shown to provide sufficiently

accurate results for the purpose of our investigations. How-

ever, it was also shown that the procedure is inherently ill-

conditioned due to the real-valued information that was avail-

able from the measurement and also that the method’s accuracy

was highly dependant on the antenna directivity.

To increase the accuracy of this method a larger number of

spatially discrete measurements is suggested so that the effect

of noise and fading could be minimised.
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